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Abstract— Gait analysis and evaluation are vital for dis-
ease diagnosis and rehabilitation. Current gait analysis
technologies require wearable devices or high-resolution
vision systems within a limited usage space. To facili-
tate gait analysis and quantitative walking-ability evalua-
tion in daily environments without using wearable devices,
a mobile gait analysis and evaluation system is proposed
based on a cane robot. Two laser range finders (LRFs)
are mounted to obtain the leg motion data. An effective
high-dimensional Takagi-Sugeno-Kang (HTSK) fuzzy sys-
tem, which is suitable for high-dimensional data by solv-
ing the saturation problem caused by softmax function
in defuzzification, is proposed to recognize the walking
states using only the motion data acquired from LRFs. The
gait spatial-temporal parameters are then extracted based
on the gait cycle segmented by different walking states.
Besides, a quantitative walking-ability evaluation index is
proposed in terms of the conventional Tinetti scale. The
plantar pressure sensing system records the walking states
to label training data sets. Experiments were conducted
with seven healthy subjects and four patients. Compared
with five classical classification algorithms, the proposed
method achieves the average accuracy rate of 96.57%,
which is improved more than 10%, compared with conven-
tional Takagi-Sugeno-Kang (TSK) fuzzy system. Compared
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with the gait parameters extracted by the motion capture
system OptiTrack, the average errors of step length and gait
cycle are only 0.02 m and 1.23 s, respectively. The com-
parison between the evaluation results of the robot system
and the scores given by the physician also validates that
the proposed method can effectively evaluate the walking
ability.

Index Terms— Cane robot, gait analysis, walking-ability
evaluation, machine learning.

NOMENCLATURE

Pri , Pli , i = 0, 1, 2 Feature points of shanks and feet.
Ph The point denoting the user’s position

in the world coordinate system.
qh, q̇h, q̈h The user’s posture, speed and accel-

eration.
x, ẋ, ẍ The positions, the corresponding

velocities and accelerations of both
legs and the target human.

αlx , αrx , αly, αry Angles of the shanks in the sagittal
and coronal planes.

α̇lx , α̇ly , α̇rx , α̇ry Angular velocities of the shanks in the
sagittal and coronal planes.

d, ḋ Distance and the gradient of the dis-
tance between the shanks.

D The fixed relative posture between the
cane robot and the user.

H,HS Original and Z -score standardized
motion data set, respectively.

M,MT Gait data set and training data set of
gait data, respectively.

Ir,m Membership degree function for the
mth attributes after fuzzed in the r th
rule.

O j Output of j th layer of HTSK fuzzy
system.

S0 Static State.
S1 Swing phase of the left leg from ts41

till ts12.
S2 Double support phase from ts12 till

ts23, when the center of gravity shifts
from righ to left.

ωr , ω̄r , ω̄
∗
r Conventional firing level, normalized

firing level, and the improved firing
level of HTSK fuzzy system.
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Tl, Tr Step time of the left and right leg.
PL S ,PRS Ratios of the left leg swing phase, and

the right leg swing phase.
PL D, PR D Double support phases when the cen-

ter of gravity shifts from right to left,
and from left to right, respectively.

v The user’s walking speed.
Ll , Lr Step lengths of the left leg and right

leg.
Ls , Lw Stride lengths and step widths of the

user.
SI Walking symmetry index of step

lengths.
u The vector of gait paparmeters.
xts34

l2 ( j), xts34
r2 ( j) Locations of the left and right legs at

ts34 of the j th gait cycle.
xts12

l2 ( j), xts12
r2 ( j) Locations of the left and right legs at

ts12 of the j th gait cycle.
std(v) Standard deviation of the speed v.
I Walking-ability evaluation index.
atan2 Four-quadrant inverse tangent func-

tion in the range of [−π, π].

I. INTRODUCTION

GAIT analysis and walking-ability evaluation are essential
for clinical disease diagnosis and treatment in rehabil-

itation medicine [1]. Conventional clinical gait analysis and
walking-ability evaluation rely on the physician’s observation
and evaluation of the patients’ motion based on clinical scales,
such as the Tinetti scale [2] and the Holden functional ambu-
lation scale [3], and so on. Recent developments in sensors
and intelligent diagnosis technologies have led to an increasing
interest in automatic gait analysis. The intelligent gait analysis
system can provide more detailed spatial-temporal parameters
including strides, cadences, and walking velocities for evalu-
ating the movement function of the elderly and patients with
gait disorders more quickly and accurately than the visual
inspection [4], [5], thus benefits the diagnosis and walking-
ability evaluation.

Tracking human motion during walking and gait event
detection are key technologies in gait analysis. Advanced tools
have been applied to obtain motion data. The vision-based
motion capture systems with reflective markers are employed
due to the high accuracy and low latency [6]. Kinect or other
camera devices fixed in the environment are also used to
obtain motion data [7]. Wearable systems based on inertial
measurement units (IMUs) are used to extract gait parameters,
including the speed, gait cycle, and stride length [8], [9], [10].
Plantar pressure measurement systems are alternative widely-
applied tools for gait analysis [11], [12]. The plantar pressure
sensor can directly detect gait events such as heel strike (HS)
and toe off (TO), allowing gait analysis conceivable.

It should be noted that the existing gait analysis technologies
are normally limited by the requirement for wearable sensors
and the constrained usage space. The high-resolution vision-
based motion capture systems (e.g. Vicon, OptiTrack, PTI,
etc.) are inconvenient to monitor human motion in personal

daily walking environment due to their high cost and usage
space limitation. It is also challenging for conventional vision
sensors (including Kinect and many commercially available
cameras) to attain continuous stable human motion tracking in
the daily walking environment due to field angle and ambient
light limitations, which makes gait analysis problematic. The
plantar force systems are difficult to fit different users, as the
number of in-shoe force sensors required varies according to
foot size [13].

Among the research of non-wearable gait analysis sys-
tems, owing to the high mobility of the mobile robot and
combination of vision-based gait detection systems, the gait
analysis system based on a mobile robot and vision sensors
has become a hot topic over recent years. Chi et al. [14]
proposed a gait recognition method by extracting ankle future
points based on Kinect and a Turtle-Bot. Paulo et al. [15]
proposed a gait analysis method by using the smart walker
with detecting feet based on a camera. Since current mobile
robot related gait researches depends largely on the above-
mentioned vision sensors, there still remain the deficiencies of
current gait analysis technologies, such as high-cost, ambient
light limitations, multifarious image processing operation and
low detection resolution.

In this paper, with the advantages of the LRF, i.e. strong
adaptability to surroundings and high detection accuracy, two
LRFs mounted on the cane robot are used as an alternative to
obtain the gait data without wearable sensors. Thus, a mobile
gait analysis system based on a cane robot and two LRFs is
proposed.

However, two challenges remain for gait analysis and
walking-ability evaluation using the proposed system.

1. It is difficult to obtain accurate 3D gait spatial-temporal
parameters using LRFs that can only scan horizontal distance
information.

2. The LRFs cannot directly detect the gait events including
HS and TO, which makes it difficult to obtain the accurate gait
cycle segmentation in gait analysis.

In this paper, a walking state classification algorithm based
on HTSK fuzzy system is proposed to extract the accurate gait
cycle. Since the plantar pressure system is the gold standard
of gait event detection, the motion data for training HTSK
fuzzy system is labeled by the walking states obtained from
the plantar pressure system in the pre-experiments. The well-
trained HTSK fuzzy system can then reliably classify the
walking states using only the motion data obtained from LRFs.
Moreover, the gait spatial-temporal parameters are extracted
from the leg motion data segmented by the chronological
walking state sequence. Based on the gait parameters of the
clinical Tinetti scale, a quantitative walking-ability evaluation
index is also proposed.

The main contributions are summarized as follows.
1. A gait detection method in daily walking environments

without wearable sensors is proposed using a cane robot with
two LRFs. Based on the proposed HTSK fuzzy system for
walking state classification, the accuracy of recognizing differ-
ent walking states by using only motion data from two LRFs
reaches to 96.57%. The proposed gait parameter extraction
algorithm achieves a low measuring error level (0.02 m (ME)
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Fig. 1. The cane robot.

and 0.02 m (RMSE) of the step length, as well as 0.13 s (ME)
and 1.23 s (RMSE) of the gait cycle).

2. In terms of the clinical Tinetti scale, an automatic
walking-ability evaluation system is proposed. The walking-
ability evaluation results are compared with the ratings given
by the rehabilitation physician according to the Tinetti gait
analysis scale.

3. The gait analysis and walking-ability evaluation system
is built in the real world. Real experiments are conducted with
healthy volunteers and patients.

The remainder of this paper is organized as follows. The
cane robot, the overall concept of gait analysis and walking-
ability evaluation system, and the human motion detection
method are introduced in Section II-A. The gait analysis based
on HTSK fuzzy system, the gait parameters extraction as well
as the walking-ability evaluation are introduced in Section III.
Pilot study and conclusions are presented in Section IV and
Section V separately.

II. PROTOTYPE OF THE CANE ROBOT WITH TWO LRFS

A. The Cane Robot System

In our previous study, a single LRF mounted cane-type
omni-directional robot is designed for providing walking
assistance and companionship based on the human-following
control method [16].

In this paper, to ensure reliable gait analysis and rehabil-
itation evaluation under both the walking-aid and accompa-
nying circumstances, two LRFs (URG-04LX-UG01, Hokuyo
Automatic Co., Ltd.) are attached to the proposed cane robot
and used to scan the environment in two horizontal planes,
as shown in Fig. 1. The newly proposed cane robot system
consists of three-wheel omni-directional mobile chassis, a 24V
battery, a Personal Computer (PC), a metal rod, a 3D-printed
handle, an emergency switch, and two LRFs.

As shown in Fig. 2, the cane robot collects the user’s motion
data with the two LRFs, estimates the user’s walking intention,
as well as analyzes the user’s gait.

B. Human Motion Detection With the Cane Robot

As shown in Fig. 4, the two LRFs scan the environment in
two horizontal planes to detect the location of human shanks
at different heights z0 = −42.0 cm and z1 = −22.5 cm. The

Support Vector Domain Description (SVDD) based-method is
introduced to extract the user’s leg pair [17]. However, the leg
detection method is hard to deal with the loose pants and long
skirts. Elastic straps are used to restrain subjects’ loose pants
for reliable leg detection. Pl0(xl0, yl0, z0), and Pl1(xl1, yl1, z1)
are the locations of the user’s left shank detected by the
LRFs, respectively. Similarly, the location of the user’s right
shank detected could be noted as Pr0(xr0, yr0, z0), and
Pr1(xr1, yr1, z1) respectively. The line segments of Pl0 Pl1 and
Pr0 Pr1 can be used to approximate the human legs.

The user’s feet are estimated as two intersections (i.e.
Pl2(xl2, yl2, z2), and Pr2(xr2, yr2, z2)) of the line segments
Pl0 Pl1 and Pr0 Pr1 with the ground, while z2 = 0.0 cm. After
the location of leg is mapped to the sagittal plane of the human
body, as shown in Fig. 5, the location of the left foot xl2 and
the right foot xr2 can be obtained by (1) based on the equal
ratios theorem.

xl2 = z0xl1 − z1xl0

z0 − z1
, xr2 = z0xr1 − z1xr0

z0 − z1
. (1)

Similarly, as shown in Fig. 6 the locations in Y W axis can be
determined by (2) in the coronal plane

yl2 = z0 yl1 − z1yl0

z0 − z1
, yr2 = z0 yr1 − z1yr0

z0 − z1
. (2)

The midpoint of the line connecting the leg ground contact
point is recorded as the person’s position Ph(xh, yh, z2),
satisfying:

xh = xl2 + xr2

2
, yh = yl2 + yr2

2
. (3)

The human’s posture is denoted as qh = [xh, yh, θh]T.
Human’s orientation θh is defined as the person’s positive
facing direction, which can be estimated by the intention
estimation algorithm proposed in [16].

The swing angles of the legs can be obtained in the sagittal
and coronal planes of the human body, as shown in (4),

αlx = atan2(xl0 − xl1, z0 − z1),

αly = atan2(yl0 − yl1, z0 − z1),

αrx = atan2(xr0 − xr1, z0 − z1),

αry = atan2(yr0 − yr1, z0 − z1). (4)

According to the periodic characteristics of walking, the
distance between legs changes periodically during walking and
satisfies

d = �−−−→
Pr2 Pl2�. (5)

Based on the two LRFs, the positions of the left and right
legs, human posture qh , speed q̇h = [ẋh, ẏh, θ̇h]T, acceleration
q̈h = [ẍh, ÿh, θ̈h]T, swing angles of both legs in the sagittal
and coronal plane αlx , αly , αrx , αry , and the distance between
the legs d can be estimated and used for gait analysis.

Moreover, as shown in Fig. 3, while the user holds the
3D-printed handle, the cane robot can provide the user with
physical support. The force/torque sensor (WACOH TECH
Inc.) is attached under the handle to record the interaction
force Fh = [ fx fy nz]T between the human and the robot
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Fig. 2. The diagram of the gait analysis and evaluation system. Based on the human-following control method proposed in our former research [16],
the cane robot can maintain a fixed relative posture D = [Dx ,Dy , β]T with the target human, allowing the LRFs to obtain the accurate gait data.
The fixed relative posture D can be customized under the rehabilitation physician’s suggestion. Using only the motion data from LRFs, the HTSK
fuzzy system can classify the walking states. The gait spatial-temporal parameters are then extracted based on the gait cycle segmented by walking
states. The walking-ability evaluation system presents a quantitative results based on the obtained parameters.

Fig. 3. The human-robot interaction force in the walking trial with physical
support.

to identify whether the user uses aid or not in the walking-
ability evaluation. fx and fy are the interaction forces in the
X W axis and Y W axis, respectively. nz is the torque around
the Z W axis.

C. Walking States

The most widely used four gait phases of gait cycles
(i.e. the swing phases of the left and right legs, the double
support phases of the left and right legs) are studied in this

paper [18], and the following five walking states are classified
based on the TO and HS gait events, as shown in Fig. 2.

S0: Static state.
S1: The left leg is in the swing phase, while the right leg is

in the support phase from ts41 till ts12.
S2: Double support phase from ts12 till ts23, when the center

of gravity shifts from right to left.
S3: The left leg is in the support phase, while the right leg

is in the swing phase from ts23 till ts34.
S4: Double support phase from ts34 till ts41� , when the center

of gravity shifts from left to right.

III. GAIT ANALYSIS AND EVALUATION ALGORITHMS

BASED ON HTSK FUZZY SYSTEM

In this section, the gait analysis based on HTSK fuzzy
system, the gait parameters extraction as well as the walking-
ability evaluation are introduced. Although the conventional
TSK fuzzy system [19] is widely applied in the classifica-
tion, it usually uses distance-based approaches to compute
membership grades. When the input dimensionality is high,
the distances between data points become very similar [20].
Therefore, the saturation problem caused by softmax function
makes it difficult for conventional TSK methods to solve
the dimension disaster when dealing with the classification
problem of high-dimensional data sets. In order to obtain
accurate walking states for calculating gait parameters, a nor-
malized firing level with data dimension introduced is pro-
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Fig. 4. Coordinate definition of gait analysis.

Fig. 5. Leg detection in sagittal plane.

Fig. 6. Leg detection in coronal plane.

posed in HTSK fuzzy system, allowing the HTSK fuzzy
system to handle high-dimensional data set during classifying
the walking states based on the gait data obtained only by
the LRFs.

A. Preprocessing of Gait Data

The motion data set is denoted as H = {hi }N0
i=1. N0 is

the number of samples. The collected data at time t = i is
denoted as hi = {h1

(i), h2
(i), . . . , hM

(i)}, M is the dimension.
hi consists of the positions of both legs and the target human
x = {xl2, xr2, yl2, yr2, xh, yh}, the corresponding velocities ẋ,
the accelerations ẍ, the recorded motion angles of the shanks
αlx , αly, αrx , αry and corresponding angle velocities, the dis-
tance between the shanks d , as well as the gradient of the
distance ḋ . HS = {hsi }N0

i=1 is the motion data set standardized
by Z -score transformation. The walking state at time t = i is

Fig. 7. The structure of HTSK fuzzy system.

denoted as si , si ∈ {S0, S1, S2, S3, S4}. Consequently, the gait
data set can be denoted as M = {hi , si }N0

i=1. N0 is the sample
size of the data set.

B. HTSK Fuzzy System for Walking State Classification

In the walking state classification problem, the training data
set is denoted as MT = {hn, sn}N

n=1. N is the size of the train-
ing set. hn = {h1

(n), h2
(n), . . . , hM

(n)} is the M dimensional
feature vector of the nth sample. sn ∈ {1, 2, . . . , P} is the
label of the P-class data.

HTSK fuzzy system consists a set of If-Then rules, and the
structure is shown in Fig. 7.

Suppose that an M-input single output HTSK fuzzy system
has R rules, and the r th rule is denoted as (6),

IF h(n)
1 = Ir,1, h(n)

2 = Ir,2, . . . , h(n)
M = Ir,M ,

THEN fr (hn) =
M∑

k=1

(h(n)
m wr,m + br,0). (6)

where Ir,m (r = 1, 2, . . . , R; m = 1, 2, . . . , M) is the mem-
bership degree function for the mth attributes after fuzzed in
the r th rule. wr,m is the weight coefficient. br,0 is the bias
coefficient.

Note that the output of each layer of HTSK fuzzy system
is O j , j = 1, 2, . . . , 7. In the first two layers, the membership
grade O1, the firing level of each rule O2

r = ωr are shown
in (7). cr,m and σr,m are the antecendent parameters.

O1
r,m = Ir,m = exp(− (hm − cr,m)2

2σ 2
r,m

), ωr =
M∏

m=1

Ir,m . (7)

In the conventional TSK fuzzy system, the normalized firing
level ω̄r is a typical softmax function (8), where Hr =
− ∑M

m=1(
(hm−cr,m )2

2σ 2
r,m

) < 0.

ω̄r = exp (Hr)∑R
r=1 exp (Hr)

(8)

As the dimensionality M increases, Hr decreases, which
leads to the saturation of softmax [21]. ω̄r tends to only
give non-zero firing levels to the rule with maximum Hr
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and thus results in a poor classification performance for high-
dimensional input data sets.

In order to deal with the saturation problem, HTSK fuzzy
system changes the normalized firing level ω̄r into ω̄∗

r by

replacing Hr with its average H ∗
r = − 1

M

∑M
m=1(

(hm−cr,m )2

2σ 2
r,m

),
as shown in (9)

O3
r = ω̄∗

r = exp (H ∗
r )

∑R
r=1 exp (H ∗

r )
. (9)

The scale of H ∗
r no longer depends on the dimensionality

M . The saturation of softmax caused by the high-dimensional
inputs is solved in a certain degree, and does not affect the
firing levels any more. Therefore, the classification perfor-
mance of HTSK for high-dimensional input data sets can be
guaranteed.

The output of the HTSK fuzzy system, sn , can be obtained
by (10)-(12)

O4
r = ω̄∗

r fr = ω̄∗
r (

M∑

m=1

hmwr,m + br,0). (10)

O5
p =

R∑

r=1

O4
r , O6

p = exp(O5
p

)

P∑

p=1

exp(O5
p), (11)

sn = O7 = argmax
p

(O6
p). (12)

In this paper, we use k-means clustering to initialize the
antecedent parameters cr,m , and mini-batch gradient descent to
optimize the parameters br,0, wr,m , cr,m and σr,m for training
HTSK fuzzy system.

C. Gait Parameters Extraction

As shown in Fig. 2, the switching moment of
walking data sequence S1-S2-S3-S4-S�

1 can be denoted
as ts41, ts12, ts23 and ts41� respectively, and can be
obtained based on the output walking states from
HTSK fuzzy system. The gait parameters u =
{T, Tl , Tr , PL S, PL D, PRS, PR D, v, Ll , Lr , Ls, Lw, SI }
(concluded in [18]) can be obtained by applying the gait
analysis algorithm based on HTSK (GAA-HTSK), as shown
in Algorithm 1. T is the gait cycle period. Tl and Tr are the
step times of the left and right legs, respectively. The ratios
of the swing phases are denoted as PL S and PRS . PL D and
PR D are the ratios of double support phases of the left and
right legs, respectively. v is the user’s walking speed. Ll and
Lr are the step lengths of left and right legs. Ls is the stride
lengths. Lw is the step widths. SI is the walking symmetry
index of the step lengths [22].

D. Walking-Ability Evaluation

In conformity with the conventional Tinetti gait analysis
scale matching 12 points (See Appendix I), the corresponding
algorithm is designed and the appropriate gait data variables
and gait parameters are selected for the walking-ability eval-
uation.

Algorithm 1 The GAA-HTSK
*
Require: The standardized motion data HS = {hsi}N0

i=1, the
well-trained HTSK

Ensure: The walking state si , the gait parameters u( j) of the
j th gait cycle, the number of gait cycles N1

1: Initialize j = 1, si , u( j), N1
2: for i=1 to N0 do
3: Calculate si by hsi based on (6)-(7) and (9)-(12);
4: if the j th state sequence S1-S2-S3-S4 is detected then
5: Segment the gait cycle ts41-ts12-ts23-ts41�;
6: Calculate u( j) of the j th gait cycle [18], [22];
7: N1 = j ;
8: j = j + 1;
9: end if

10: end for
11: return si , u( j), N1

The walking-ability evaluation index can be denoted as I
satisfying

I =
5∑

i=0

ai (13)

where ai is the score of the each test in the scale, and can be
obtained by the walking-ability evaluation algorithm (WAE),
as shown in Algorithm 2.

Due to the limitation of engineering problems, Rule 1 and
Rule 6 in the Tinetti gait analysis scale are not selected
to design the corresponding evaluation indexes. However,
by covering Rule 2, 3, 4, 5 and 7 in the Tinetti gait analysis
scale, the walking-ability evaluation algorithm proposed in this
paper can serves as an effective indication and reference for
evaluating the walking ability in terms of left and right leg
swing performance, whether the step length is equal, walking
continuity, lateral deviation in the straight walking, whether
there is external physical assistance and the walking posture.
A maximum of 12 points is assigned to I . A higher score of
I indicates a better walking ability.

IV. PILOT STUDY

Eleven subjects are involved in this study, as shown in
Table I. There are seven healthy subjects (Subject 1∼4 and
8∼10) and four patients (Subject 5∼7 and 11). Subject 4,
Subject 8, Subject 9 and Subject 10 wear a right lower limb
holder (RLLH) or a left lower limb holder (LLLH) that locks
unilateral knee movement to simulate a patient with lower
limb dysfunction, as shown in Fig. 8. Four patients with right
hemiplegia (RH, Subject 5), right leg ligament strain (RLLS,
Subject 6), scoliosis (SCOL, Subject 7) and left ankle sprain
wearing the lower limb holder (LASLLH, Subject 11) are also
recruited. Subject 1∼7 participate the independent walking
trials. Besides, Subject 8∼11 participate the walking trials with
physical support.

Three kinds of experiments (i.e. walking state classifica-
tion experiments, gait parameters analysis experiments, and
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Algorithm 2 The WAE
Require: The motion data set H with corresponding N1 gait

cycles, the interaction force Fh and gait parameters u
Ensure: Walking-ability evaluation index I
1: Initialize ai =0, i=0, 1,…, 5;

2: if 1 1
N1

N1∑
j=1

(xts34
r2 ( j) − xts34

l2 ( j)) > 0 then a0 = 2;

3: end if

4: if 2 1
N1

N1∑
j=1

(xts12
l2 ( j) − xts12

r2 ( j)) > 0 then a1 = 2;

5: end if

6: if 3| 1
N1

N1∑
j=1

(Ll( j))- 1
N1

N1∑
j=1

(Lr ( j))| ≤ �L then a2 = 2;

7: end if

8: if 4std(v) ≤ 1
2N1

N1∑
j=1

(v( j)) then a3 = 2;

9: end if
10: if 5| max(yh)| ≤ �ymin and �Fh�2 ≤ �F then a4 = 2;
11: else if �ymin < | max(yh)| < �ymax or �Fh�2 > �F

then a4 = 1;
12: end if

13: if 6 1
N1

N1∑
j=1

(Lw( j)) ≤ �Lwmin then a5 = 2;

14: else if �Lwmin < 1
N1

N1∑
j=1

(Lw( j)) ≤ �Lwmax then a5 =
1;

15: end if
16: Calculate I based on (13);
17: return I

The thresholds for the evaluation characteristics may
vary from physician to physician, depending on their
experience and attention to details [23]. In this algorithm,
the thresholds are based on the rehabilitation physician’s
suggestions, including �L = 5.0 cm, �ymax = 30.0 cm,
�ymin = 10.0 cm, �Lwmax = 22.0 cm, �Lwmin =
11.5 cm, and �F = 10 N.
1 Rule 2a of the Tinetti gait analysis scale (See Table VI
of Appendix I).
2 Rule 2b of the Tinetti gait analysis scale.
3 Rule 3 of the Tinetti gait analysis scale.
4 Rule 4 of the Tinetti gait analysis scale.
5 Rule 5 of the Tinetti gait analysis scale.
6 Rule 7 of the Tinetti gait analysis scale.

walking-ability evaluation experiments) are conducted to vali-
date the effectiveness of the proposed gait analysis and evalua-
tion system. The ethics approval for experiments with subjects
was granted by the Ethics Committee of Tongji Medical
College, Huazhong University of Science and Technology
(NO. IORG0003571). Written consents were obtained from
all subjects.

A. Walking State Classification Experiments
The walking state classification performances of the pro-

posed HTSK fuzzy system and other five conventional
machine learning classifier (i.e. Support Vector Machine
(SVM), k-Nearest Neighbor (k-NN), Decision Tree (DT),
Naive Bayesian (NB), and TSK) are compared.

TABLE I
THE INFORMATION OF SUBJECTS

Fig. 8. Plantar pressure sensing system.

1) Data Set Collection: The gait data set M for training
HTSK fuzzy system is collected in the pre-experiments.
As mentioned in Section II and Section III, the motion data
set H can be collected during the subject’s walking. The
plantar pressure sensing system is used as the gold standard
of the walking states classification, and is only used to label
the motion data set H. As shown in Fig. 8, the plantar
pressure sensing system consists of two groups of force-
sensing resistors (FSRs) for detecting the plantar pressures,
with six FSRs in each group. The threshold detection method
is used to analyze the toe and heel motion data to obtain
the classification of walking states [24]. Therefore, at time
t = i , the walking state si corresponding to the motion
data hi in the gait set M is labeled by the plantar pressure
sensing system. The sample period of the proposed system
is 100 ms.

2) Procedures: Wearing the plantar pressure sensing sys-
tem, the subject stands behind the cane robot. Once the
robot has initialized to maintain the relative fixed posture
with the human, then the subject starts to walk 7.62 m
(25 feet) forward at a self-selected speed, as shown in Fig. 9.
The gait data set MT of 11 subjects is obtained based
on the data signals from two LRFs and the plantar pres-
sure sensing system, including more than 30000 samples,
multiple speeds (0.10∼0.73 m/s) and multiple step lengths
(0.16∼1.03 m). Then, the HTSK fuzzy system and other five
conventional machine learning classifiers (SVM, k-NN, DT,
NB, and TSK) are trained and used to recognize the walking
states using only the LRF motion data. For each method,
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Fig. 9. The experimental environment in the union hospital.

TABLE II
AVERAGE PERFORMANCE OF WALKING STATE CLASSIFICATION

TABLE III
COMPARISON WITH SIMILAR RESEARCH LITERATURES

10-fold cross validation is used to evaluate the generalization
ability.

3) Setting of Walking State Classification Algorithms:

1) SVM: The linear kernel function is adopted in SVM. The
penalty coefficient is set to 40, and other parameters are
the default values.

2) k-NN: The number of nearest neighbors is 5, and other
parameters are set to the default value.

3) DT: The default algorithm and parameters in sklearn
library are used.

4) NB: Gaussian naive Bayesian model is used in NB, and
other parameters are selected by default in sklearn library.

5) TSK: According to the actual experimental experience,
the number of fuzzy rules is set to 60. The mini-
batch gradient descent and Adam optimizer are used for
optimization. The selected learning rate is 0.01. The batch
size is set to 32. Randomly select 10% of the data from
the training set as the validation set for early-stopping to
prevent overfitting.

6) HTSK: All the settings are the same with those of TSK
fuzzy system.

The widely accepted accuracy is adopted as the performance
evaluation criteria. The definition of accuracy is:

ACC = TP + TN

TP + TN + FP + FN
, (14)

where TP , TN , FP , and FN represent the number of true pos-
itive, false negative, false positive and true negative samples.

4) Walking State Classification Performance: Typical walk-
ing state classification results for three gait cycles are shown

Fig. 10. The gait data of Subject 1.

in Fig. 10. The motion data of Subject 1 is shown in Fig. 10a.
The walking states estimated by the HTSK fuzzy system and
the true walking states obtained by the plantar pressure sensing
system are shown in Fig. 10b.

The results of the walking state classification accuracy are
shown in Table II. Among them, the accuracy of the proposed
HTSK fuzzy system is the highest, up to 96.57%, which is
improved more than 10%, compared with the performance
of TSK fuzzy system. As shown in Table III, compared with
other similar research literature work, the proposed system
performs well and achieves a higher accuracy. The results
reveal that the HTSK-based walking analysis system can
effectively identify the walking states.

B. Gait Parameters Analysis Experiments

The extracted gait parameters of the eleven subjects are
shown in Table IV. The left and right swing phases of
Subject 1∼3 are evenly distributed. Meanwhile, their mean
values of the walking symmetry index SI are small, indi-
cating that their legs swing symmetrically during walking.
Compared with the healthy subjects, the symmetry indexes
SI of Subject 4∼11 have larger absolute values, which means
that the legs of Subject 4∼11 cannot move symmetrically.

For assessing the accuracy of extracting gait parameters,
the mean error (ME) and the root mean square error (RMSE)
between the gait parameters extracted by the proposed system
and true values should be calculated.
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TABLE IV
RESULTS OF GAIT PARAMETERS

With the low latency (8.3 ms) and high resolution
(1280 × 1024) of motion tracking, the vision-based motion
capture system OptiTrack (Flex 13 Series, NaturalPoint, Inc.)
has become a widely accepted gold standard for gait analysis.
The markers are set on the lateral crural region of knee joints,
shanks, toes, and heels to obtain the subject’s motion data,
as shown in Fig. 11. Gait parameters obtained from the 3D
motion measurements of the markers in the motion capture
system are used as true values of gait parameters.

1) Procedures: Wearing the reflective markers, the healthy
subject stands behind the cane robot. Once the robot has
initialized to maintain the relative fixed posture with the
human, then the subject starts to walk forward. After the
subject completes the walking trial, the gait data set M is
obtained by the proposed system. Then, the gait parameters
can be obtained by Algorithm 1.

2) Gait Parameter Errors: Results of errors (ME, RMSE)
and standard deviation (STD) of the gait variables for the
healthy subjects are shown in Table V. The errors of step
length are 0.02 m (ME) and 0.02 m (RMSE) respectively.
The gait cycle errors are 0.13 s (ME) and 1.23 s (RMSE),
respectively. It shows that the proposed system is at a low
measuring error level.

C. Walking-Ability Evaluation Results

In order to reduce the influence of human factors on the
error caused by different physicians’ evaluations and maintain
the homogeneity of evaluation results, the attending physician
of the Department of Rehabilitation Medicine is invited to
participate in the walking-ability evaluation. According to the
Tinetti scale, the walking ability of each subject is evaluated
only once by score based on the recorded video of the walking
trial. The walking-ability evaluation results evaluated by the
Algorithm 2 and the scores given by the physician based on
the Tinetti gait analysis scale are shown in Fig. 12. The x-axis
indicates the eleven subjects. The y-axis indicates the walking-
ability evaluation results.

The walking-ability evaluation index of healthy subjects
(Subject 1, Subject 2, and Subject 3) are significantly higher

Fig. 11. The configuration of OptiTrack markers.

Fig. 12. Results of walking-ability evaluation.

than that of the other eight subjects with lower limb dysfunc-
tion, indicating that the walking ability of healthy subjects
are better than other subjects. Moreover, the results evaluated
by the proposed system and scored by the physician based
on Tinetti gait assessment tool are similar, indicating that the
proposed walking-ability evaluation index and the cane robot
based system can effectively evaluate the walking ability.

D. Discussion

In this study, a novel mobile gait analysis and evaluation
system based on a cane robot is proposed and validated.
HTSK fuzzy system is also proposed for recognizing different
walking states by using only motion data from two LRFs.
Comparing with existing gait analysis studies [6], [7], [8], [9]
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TABLE V
RESULTS OF GAIT PARAMETER ERRORS

based on motion capture systems, wearable sensors or vision
sensors for gait detection, the proposed system has attractive
features, including no wearable sensors needed, low-cost, high
mobility. Even only using the motion data obtained by LRFs,
the proposed HTSK fuzzy system reaches to the accuracy of
96.57%. which is improved more than 10%, compared with
the performance of TSK fuzzy system in Table II. Although
the accuracy of some gait analysis studies based on plantar
pressure sensors and IMUs can reach 100% [28], the accuracy
of the proposed system is at a similar level to most of the
current gait analysis studies (85.21% to 94.5% accuracy),
as shown in Table III.

The proposed gait parameter extraction algorithm performs
well in this study, and achieves a low measuring error (0.02 m
(ME) and 0.02 m (RMSE) of the step length) compared with
the previous study [29]. Moreover, since all the subjects walk
at their self-selected speeds in this study, there are speeding
up, slowing down and even pauses in the process of walking
forward. Therefore, the standard deviations of the extracted
speeds are larger than those of volunteers’ walking at a
constant speed on the treadmill in previous studies [10].

The small difference between the scores calculated from
the proposed method and the scores performed by the reha-
bilitation physician may due to the error of observation and
different attention to details between the proposed system and
the physician, which is clinically acceptable. Many studies
have verified that even different physicians may rate the same
subject differently due to their different experience and atten-
tion to details while using the same gait analysis scale [23].
Thus, quantitative gait analysis can help physicians accurately
and reliably assess patients’ walking ability. As shown in
Fig. 12, the walking-ability evaluation results evaluated by the
proposed system and the physician are similar. Although less
kinematic information was used for calculating the walking-
ability evaluation index, the proposed system is a valuable tool
as its more convenience, lower cost and less site restriction
compared with the motion capture system or IMUs based
wearable system. The spatial-temporal parameters obtained in
this study have been applied in clinical gait analysis. This
would be beneficial in the situations of tracking the progress
of gait after patients can walk independently.

There are also some limitations in this study. First, the
proposed leg detection method is hard to deal with the loose
pants and long skirts. Second, the influence of sampling rate

TABLE VI
TINETTI GAIT ASSESSMENT TOOL

of the LRF on this system is considered and still needs to
be investigated for further improving the accuracy. Third, due
to the differences in walking patterns between patients and
healthy subjects, it has to collect the patients’ training data
sets for recognizing walking states. Fourth, the small size of
the subject group might influence the validity of the walking-
ability evaluation. Fifth, since the subjects’ walking speeds
during the walking trials are self-selected speeds and vary over
time, it is not applicable for analyzing the precise relationship
between the accuracy of the proposed method, the walking
speed, and the stride length in this paper. Finally, it is also
difficult to correlate the low walking ability with a particular
pathology. This is helpful for understanding the capacity of
the proposed system on clinical diagnosis, and for further
improvement on the walking-ability evaluation index.

V. CONCLUSION

In this study, a novel mobile gait analysis and evaluation
system based on a cane robot is proposed and validated. Eleven
subjects are involved in the experiments. The proposed HTSK
fuzzy system achieve the 96.57% accuracy of recognizing
different walking states by using only motion data from two
LRFs. GAA-HTSK and WAE algorithms perform well in this
study. The approach has great potential for further applications
on intelligent diagnosis, healthcare automation and robotics-
assisted rehabilitation using the cane robot or a mobile robot
in both the cases of walking-aid and accompanying during
independent walking.

Future work would be focusing on transfer learning method
for generalizing the suitable walking states classifier with less
collection of the patients’ training data sets and improve the
classification accuracy.

APPENDIX I

See Table VI.
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