
2896 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

FiCA: A Fixed-Point Custom Architecture
FastICA for Real-Time and

Latency-Sensitive Applications
Seyed Mohammad Reza Shahshahani and Hamid Reza Mahdiani

Abstract— Independent Component Analysis (ICA) is a
common method exploited in different biomedical signal
processing applications, especially in noise removal of
electroencephalography (EEG) signals. Among different
existing ICA algorithms, FastICA is a popular method with
less complexity, which makes it more suitable for practical
implementation. However, and due to its inherent computa-
tionally intensive nature, development of a custom FastICA
hardware is the best way to utilize it in high-performance
real-time applications. On the other hand, development
of a custom hardware in a fixed-point manner is also
a complex and challenging task due to the algorithm’s
iterative nature. Moreover, the algorithm intrinsically suf-
fers from some convergence problems which prevents to
be practically exploited in latency-sensitive applications.
In this paper, a fixed-point fully customized, scalable, and
high-performance FastICA processor architecture has been
presented. The proposed architecture is developed in an
algorithm-aware manner to mitigate the inherent FastICA
algorithmic failures. The synthesis results in a 90 nm tech-
nology show that the design proposes a computational time
of 0.32 ms to perform an 8-channel ICA with a frequency
of 555 MHz. The performance-related measurements prove
that its normalized throughput is 10 times more, compared
to the closest rival.

Index Terms— Artefact detection, brain-computer inter-
face, EEG, FastICA, fixed-point arithmetic, independent
component analysis, VLSI, word-length optimization.

I. INTRODUCTION

INDEPENDENT Component Analysis (ICA) is a common
mathematical transformation used for solving the Blind

Source Separation (BSS) problem in many applications includ-
ing speech, image, and biomedical signal processing [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10]. Mathematically,
ICA tries to map the signals to some statistically indepen-
dent components. Extracting these independent components
is specifically useful in many biomedical applications such

Manuscript received 19 March 2022; revised 16 July 2022 and
10 September 2022; accepted 28 September 2022. Date of publi-
cation 12 October 2022; date of current version 20 October 2022.
(Corresponding author: Hamid Reza Mahdiani.)

Seyed Mohammad Reza Shahshahani is with the Department of Elec-
trical Engineering, Shahid Beheshti University, Tehran 19839-69411,
Iran (e-mail: smr.shahshahani@gmail.com).

Hamid Reza Mahdiani is with the Department of Computer Science
and Engineering, Shahid Beheshti University, Tehran 19839-69411, Iran
(e-mail: mahdiani@sbu.ac.ir).

Digital Object Identifier 10.1109/TNSRE.2022.3213010

as separation of maternal-fetal electrocardiograms (ECG) [4],
as well as removing task-irrelevant activities such as artefacts
from functional magnetic resonance images (fMRI) [5], and
electroencephalography (EEG) signals [6], [7], [8], [9], [10].
In the case of artefact removal, the artefacts are extracted
as independent components which can be detected and
eliminated.

There are several approaches to perform the ICA, among
which two are the most common. The first approach named as
Infomax [11] is based on information maximization which is
derived from higher order statistics and has high computational
complexity. The other one is the FastICA algorithm [12]
which works based on negentropy maximization. Although it
has lower computation complexity and is therefore relatively
faster [12], real-time necessities when using this algorithm
are still of concern and targeted by several real-time and
high-performance hardware implementations [13], [14], [15],
[16]. Moreover, considering the practical usage of FastICA, its
other significant disadvantage which has not been previously
addressed and prevents it to be utilized in latency-sensitive
and real-time applications is that it inherently involves some
iterative steps initiated by random values, which sometimes
fail to converge based on the input data as well as the random
number values.

Although the biomedical signals are normally acquired with
low frequencies, the significant challenge in their denoising
using FastICA is that it requires too much computations which
should be executed very fast to meet the requirements of a
real-time application. There are some hardware realizations
of FastICA to address this issue. Van et al. [13] proposed
an energy-efficient architecture using a level of parallelism in
the weight update process for EEG signal processing. How-
ever, they adopted floating-point arithmetic. Yang et al. [14]
designed a low-power FastICA architecture for seizure detec-
tion from Electrocorticography (ECoG) signals. They used an
approximate systolic array eigenvalue decomposition (EVD)
engine to preserve higher performance. Van et al. [15] pro-
posed a cost-effective and variable-channel, yet floating-point
arithmetic, hardware FastICA architecture by using Gram-
Schmidt orthogonalization instead of EVD for signal whiten-
ing. Bhardwaj et al. [16] proposed a coordinate rotation digital
computer (CORDIC)-based FastICA processor targeting the
intrinsic redundancies of the original algorithm. A significant
drawback of the designs proposed in [13] and [15] is that

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-7237-4234
https://orcid.org/0000-0002-6840-1033

SHAHSHAHANI AND MAHDIANI: FiCA: A FiCA FOR REAL-TIME AND LATENCY-SENSITIVE APPLICATIONS 2897

they utilized the floating-point arithmetic to overcome the high
complexity of the algorithm hardware implementation, while
it also drastically degrades the hardware cost and performance.
On the other hand, although [14] and [16] have used fixed-
point arithmetic, they have simply used a constant Word-
Length (WL) of 32 and 14, respectively, throughout many of
the system sub-blocks. Moreover, even for the selected single
WL, they have not provided any WL optimization or noise
analysis details which is a major requirement for achieving
the best cost-performance trade-off in any fixed-point custom
hardware. Also, to preserve the higher performance, [14] has
applied some significant simplifications in the EVD calculation
process (as one of the most computation intensive steps of
FastICA) which reduces the overall output precision. Finally,
the common significant and most computation intensive draw-
back of all the mentioned designs is that none of them have
considered or even notified about the inherent failure-prone
nature of the FastICA algorithm, which arbitrarily results
in delayed calculation of the independent components which
might violate fundamental requirements of some real-time and
latency-sensitive applications. To address the above significant
shortcomings, FiCA (a Fixed-point Custom Architecture Fas-
tICA) processor is proposed in this paper, with the following
novelties:

- Fully Customized Fixed-point Implementation. An
all-inclusive numerical analysis has been performed
throughout all blocks and sub-blocks of the proposed
architecture. The result is a fully customized fixed-point
architecture with 6 different WLs for specific regions of
the architecture, targeting to achieve the best performance
while paying the least possible costs.

- Scalability. The proposed architecture is augmented with
substantial levels of scalability in its different sections to
accommodate with different applications with various num-
ber of channels, sampling frequencies, and so on, which
demand for different performances. FiCA can be configured
at design time to meet the desired cost-performance trade-
off based on real-time and latency necessities of different
applications.

- Higher Performance. The inherent parallelism of the algo-
rithm inside and between its different blocks is extracted
to maximize the overall system throughput while retaining
balance between different blocks. To support the activated
parallelism of the blocks, a new Parallel Matrix Manipula-
tion Memory (PM3) module is also introduced as the core
communication mechanism of the architecture to simplify
and accelerate the data movement between different par-
allelized blocks. By means of the explained precautions,
the resulted hardware achieved orders of magnitude better
performance than the best existing rivals.

- Suitability for latency-sensitive applications. A part of the
scalability embedded in the design, is mainly devised to
overcome the inherent failure-prone nature of the algorithm.
This resulted in an algorithm-aware architecture which can
be exploited for latency-sensitive applications.

The next sections of the paper are arranged as fol-
lows. Section II briefly reviews the theoretical background
of the original FastICA algorithm. Section III introduces the
FiCA details, its latency, throughput, and numerical precision

Fig. 1. FastICA algorithm block diagram.

analysis. Section IV includes the experimental results and
a detailed comparative study to demonstrate the superiority
of FiCA to the existing state of the art designs. Section V
concludes the paper.

II. FASTICA THEORETICAL BACKGROUND

In BSS, it is assumed that there are n independent sources
as

X = AS (1)

where X and S are n × m matrices representing m samples
of n observed channels of the input signal as well as its
extracted statistically independent components, and A is an
n × n mixing matrix. Assuming there is at most 1 gaussian
source, the algorithm tries to find S from X by estimating the
n × n demixing matrix W (equals to A−1). So, the source
signals can be calculated by the unmixing model of ICA as
below

S = W T X (2)

where W , the weight matrix, is an n × n matrix.
FastICA calculates the weight matrix by maximizing non-

Gaussianity estimated by negentropy. As indicated in Fig. 1,
the algorithm mainly consists of two steps: 1) preprocessing,
and 2) weight calculation. The details of each step are as
follows.

A. Preprocessing

To reduce the complexity and the number of iterations in
the iterative “weight calculation” steps, the signals are first
preprocessed by “centering” and then “whitening” of the input
signals as explained in more details in the following:

1) Centering: In this step, the mean of each channel of
signal is calculated and subtracted from it. So, for the i th

channel of signal the centering process is as

x̄i = xi − E{xi} (3)

where x̂i is the centered (zero-mean) version of xi signal and
Exi is its mean.

2) Whitening: This step contains three sub-steps. First, the
covariance matrix of the signals is calculated and then decom-
posed using EVD

CX = E
{

X̄ T X̄
}

= E DET (4)

where X̄ is the matrix containing n channels of zero-mean
signals, E is the matrix of eigenvectors, and D is the diagonal

2898 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

matrix of eigenvalues. Finally, using E and D, the whitening
matrix is calculated and applied to the centered signals as

Z = D−1/2 ET X̄ (5)

This transformation transforms the centered signals X̄ to
the signals Z of which the covariance matrix is the identity
matrix.

B. Weight Calculation

As indicated in Fig. 1, the weight calculation step accepts
the whitened signals to find the demixing weight vectors in an
iterative training process. As mentioned before, the algorithm
uses the non-Gaussianity criterion measured by negentropy to
find the weight vectors. It tries to find a weight vector w
which projects the signals into a space where non-Gaussianity
is maximized. The negentropy J is approximated by

J (wT Z) ∝ [E {G (y)} − E {G (ν)}]2 (6)

where G is a non-quadratic function defined as

G (u) = 1

a
log cosh(au) (7)

where a is a constant. The iterative process starts with choos-
ing an initial (e.g. random) unit vector w. Then, w is updated
as

w+ = E{Z
[
g

(
wT Z

)]T } − E{g�(wT Z)}w (8)

where g is the derivative of G. Also, to prevent vectors of dif-
ferent components from converging to the same maxima, they
need to be decorrelated. The deflationary method decorrelates
vectors sequentially based on Gram-Schmidt orthogonaliza-
tion [12]. This means that before each iteration the projection
of the vector being calculated on the previously calculated
vectors is subtracted from it and then normalized as

w+
k+1 = wk+1 −

∑k

j=1

(
wT

k+1w j

)
w j (9)

w = w+∥∥w+∥∥ (10)

where w0 is initialized with small random values.
This update process continues until the old and new weight

vectors, (w and w+), are in the same direction, i.e., their dot
product converges to 1. However, if this convergence criterion
is not satisfied in a predetermined number of iterations, the
weight calculation should be stopped, rescheduled, and then
restarted with another initial random vector. Having calculated
all n weight vectors, the demixing matrix W is constructed.
The output preparation step, then computes the n ICA com-
ponents by applying the matrix W to the whitened data based
on (2).

III. THE PROPOSED FICA PROCESSOR FOR

FIXED-POINT VLSI IMPLEMENTATION

To realize the dataflow in Fig. 1, FiCA, a high-performance
and algorithm-aware hardware realization of the FastICA
algorithm, is proposed in this paper. The details of the archi-
tecture building blocks are presented and discussed first, and

Fig. 2. Parallel matrix manipulation memory (PM3).

the whole FiCA is then explained and its throughput and
numerical precision analysis are discussed in details.

To demonstrate the range and precision of the values
throughout the incoming sections, the fixed-point notations of
[17] are used. Thus, S(a, b) represents a signed value with a
WL of a + b + 1 where a and b are the WLs of the range and
precision parts of that value, respectively. Similarly, U(a, b)
represents an unsigned value with a WL of a + b.

A. Building Blocks of FiCA

In the following sub-sections, detailed structures and expla-
nations of the processor modules are provided with a one-
to-one correspondence with the data flow steps discussed in
section II.

1) PM3 Main Memory: The structure of the FiCA main
memory is illustrated in Fig. 2 for an 8-channel processor
(i.e. n = 8) without loss of generality. It is named as Parallel
Matrix Manipulation Memory (PM3) and consists of 8 separate
8-port memory modules, each containing 256 (i.e., m = 256)
registers of the format S(0, W L1−1), to store the normalized
values of the 8 channels of signals. Each memory module has
also two address ports regarding the read and write accesses.
A custom-designed circuitry is also provided which makes it
possible to access the stored values in two different modes:
“8-parallel column access” and “8-parallel row access”, where
the “Access Mode” is 1 or 0, respectively. The first mode
enables parallel access to 8 elements of one memory module at
a single clock cycle, whereas the latter provides parallel access
to a similar element from all 8 memory modules. Moreover,
indicated in Fig. 2, the PM3 module supports simultaneous
read and write operations whose locations are defined using
the RMMI and WMMI signals, respectively.

2) Preprocessing Unit: As mentioned earlier, this block
mainly consists of the centering and whitening sub-units which
are realized as follows.

a) Centering sub-unit: Fig. 3-a demonstrates the internal
structure of this unit. It receives the signals and subtracts the
mean of each signal from it as follows

x̄ (i) = x (i) − E {xi} = x (i) −
(∑256

j=1 x (j)

256

)
(11)

This means that for each channel, one accumulator (ACC),
one 8-bit shift-to-right (division by 256) and one subtractor
are necessary. As indicated in the figure, this unit consists of

SHAHSHAHANI AND MAHDIANI: FiCA: A FiCA FOR REAL-TIME AND LATENCY-SENSITIVE APPLICATIONS 2899

Fig. 3. Preprocessing block details: (a) centering and (b) whitening
sub-units.

8 ACCs, 8 arithmetic shifters, and 8 subtractors to increase
parallelism and process the 8 input channels concurrently.
It both receives and outputs signals with S(0, W L1 − 1).
The output of the unit feeds both the main memory and the
whitening unit as indicated in Fig. 3-a.

b) Whitening sub-unit: Fig. 3-b shows the internal structure
of this unit which is divided into three parts, i.e., “covariance
calculation”, “EVD”, and “whitening matrix calculation and
application” as separated by dashed lines in the figure. This
unit is responsible for signal whitening. First, based on (4),
the covariance matrix of the signals is calculated. Since CX
is symmetric, only 36 distinct values should be calculated.
This can be implemented in a scalable manner. To maximize
the performance, here, 36 MACs and 8-bit shifters have been
used to compute all matrix entries in parallel (Fig. 3-b, upper
part). The calculated values of the covariance matrix are
then stored in a memory named as eigenvalue decomposition
(EVD) memory. This memory consists of two register banks
each one containing 8 register files [18] to store values of the
format S(0, W L1 − 1). One of the register banks dedicated to
storing the calculated matrix of eigenvalues D by the EVD is
filled with the covariance matrix, while the other one which is
for the matrix of eigenvectors E is initialized as the identity
matrix. As shown in the figure, the connection to the EVD
memory is facilitated by means of two data buses D − Bus
and E − Bus.

Upon storing the covariance matrix values in the EVD mem-
ory, the EVD engine starts its task (Fig. 3-b, middle part). The
details of the EVD engine are shown in Fig. 4. Here, we used
a simplified single processing element version of the singular
value decomposition (SVD) processor proposed in [18]. Based
on the Jacobi algorithm [19], the SVD processor receives
2 × 2 sub-matrices of the 8 × 8 covariance matrix stored in
the register bank dedicated to the matrix of eigenvalues. The
calculated rotation parameters, Cφ and Sφ , are stored in a local
memory and after all rotation parameters are calculated for the
whole matrix, they are applied both to the matrix itself and the
matrix of eigenvectors, a and u, respectively. The results, a�

Fig. 4. Modified processing element of the EVD processor of [18].

and u�, are then stored back in the EVD memory. As shown
in Fig. 4, because of symmetry, the adder-subtractor in the
sine/cosine calculator unit is replaced with a 1-bit shift-to-
right and a subtractor. Also, for the same reason, there is
only one set of CORDIC modules calculating the rotation
parameters. Moreover, to increase the accuracy, the number of
adder/subtractors in the CORDIC modules have been doubled
here, increasing to 4 CORDIC iterations per EVD clock cycle.
Due to the existing special circuitry which facilitates reading
from and writing to the EVD memory, its clock speed is half
of that of the I/O operations [18].

Upon finishing the EVD process, the eigenvalues and eigen-
vectors are used as in (5) to whiten the signals (Fig.3-b, lower
part). The matrix of eigenvalues D is diagonal. So, it only
involves eight inverse square root calculations.

The inverse square root is realized by the Newton-Raphson
algorithm [20] as

y (k + 1) = y (k)

2
(3 − xin y (k)2) (12)

where xin is the input. Starting from an initial y(0), after some
iterations y(k) converges to the inverse square root of xin .
Since in this work the eigenvalues are set to be values of less
than 1, we have set the initial value y (0) = 1. The equation
needs 3 multiplications and 1 subtraction. One inverse square
root module has been provided to process all eigenvalues
sequentially. It should be noted that the inputs to this module
are of U(0, W L1 − 1) but since the square root of values less
than 1 are values larger than 1, the output of the module is
of U(W L4, W L3) where W L4 and W L3 represent the range
and precision, respectively.

Since the calculated D− 1
2 is diagonal, its multiplication with

ET reduces to multiplication of each diagonal value of the
former with the corresponding row of the latter. To this end,
one multiplier is provided to do the job sequentially. Since
in each multiplier one input is of U(W L4, W L3) and the
other one is of S(0, W L1 − 1), the output is logically taken
as S(W L4, W L3).

Having calculated D− 1
2 ET , it should be multiplied with the

centered data X̄ . To maximize the performance and exploit
the inherent parallelism of matrix multiplication as much as
possible, as shown in Fig. 3-b, 64 MACs are used here. The
main memory module switches to its 8-parallel access mode at
this stage. Since reading from and writing to the main memory
are independent, the outputs of the MACs are written in the

2900 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

memory while the next block of data is read and processed by
the MACs, simultaneously.

This module has two input sources, one coming from the
main memory which is of S(0, W L1 − 1) and the other from
prior multipliers which is of S(W L4, W L3). However, since
the module consists of MACs and shifts and both inputs are
signed, the output is taken as S(W L5, W L3).

3) Weight Calculation Unit: This unit receives the whitened
output signals of the preprocessing block and exploits an
iterative process to calculate the weight vectors needed for
separation of the signals. It is mainly comprised of 3 different
local memory modules (i.e., old weight memory, new weight
memory, and weight matrix) and 5 computational sub-units
(i.e., weight vector initialization, weight update, orthogonal-
ization, normalization, and convergence check). The overall
arrangement and interconnections of the block in FiCA is
shown in Fig. 8 and will be discussed later. The details of
each sub-unit are as follows.

a) Weight calculation unit memory modules: The old and
new weight memories consist of 8 registers for holding the
current and updated weight vectors, respectively. Moreover,
upon convergence, each weight vector is stored in the weight
memory matrix, stacked column-wise next to the previously
calculated ones. So, the weight matrix memory module con-
sists of 64 registers, initially filled with zeros. These memory
modules are connected to the processing blocks via three
separate buses. The data is stored in all the three memory
modules with the format of S(0, W L2 − 1).

b) Weight vector initialization sub-unit: This unit contains a
random number generator using Linear-Feedback Shift Regis-
ter (LFSR) sequence generator [21]. The generated random
numbers are stored in the old weight memory. The initial
random weights are considered to be of S(0, W L2 − 1).

c) Weight update sub-unit: As shown in Fig. 5, this unit
receives the weight vector stored in the old weight memory.
Substituting (7) in (8) results in the weight update function as

w+ = 1

256

(
Z

[
tanh(wT Z)

]
−

∑256

i=1
1 − tanh2 wT Z

)
w

(13)

To realize this equation, first wT Z should be calculated. wT

is 1 × 8 and Z is 8 × 256. This means there are 256 inde-
pendent vector multiplications which can be performed in a
scalable manner. Here, to take advantage of the 8-parallel row
access mode of the memory, 8 MACs are employed to achieve
the highest performance. The results of the MACs are stored
in a local memory which is accessed by the Tanh unit which
calculates the hyperbolic tangent function for the resulting
256-element vector. Hyperbolic tangent function described
as tanh x ≈ ax + b is realized using all piecewise linear
approximation (a an b are real-valued coefficients).

The Tanh unit contains a look up table (LUT) storing the
coefficients of the format S(0, W L2 − 1), 10 comparators to
check for the ranges, 1 multiplier, and 1 adder. At each clock
cycle, it receives and outputs one value. This is used to the
benefit of calculating the second half of (13) which needs one
input at a time. A multiplier is used to calculate tanh2 (wT Z).
This value is always less than 1. So, its subtraction from 1 can
be seen as complementing the value. An accumulator is used to

Fig. 5. Weight update sub-unit.

Fig. 6. Orthogonalization sub-unit.

calculate the summation. The result is then passed to an 8-bit
shifter to compensate for the division by 256. Calculation of
the first half of (13) requires the 8-parallel column access mode
of the memory; thus, it starts after all hyperbolic tangent values
are calculated. It is realized by means of 8 MACs followed
by 8, 8-bit shifters which receive the whitened signals and the
hyperbolic tangent results stored in the related local memory.
Finally, 8 subtractors are used to do the subtractions in parallel.
The updated vector is then stored in the new weight memory.

d) Orthogonalization sub-unit: Fig. 6 shows the details of
this sub-unit. It performs (9) and orthogonalizes the current
weight vector with respect to the previously calculated weight
vectors. It accesses the new weight memory and the weight
matrix memory to do the task. To increase the performance
while maintaining uniformity, (9) is reshaped as

w+
k+1 = wk+1 − BT Bwk+1 (14)

where B is the 8 × 8 matrix stored in the weight matrix
memory. As shown in Fig. 6, for hardware realization, there
are 8 MACs which first calculate BT w, and then multiply
the results by B . Also, 8 subtractors are used to perform the
subtractions in parallel. The result is then written to the new
weight memory.

e) 0: Normalization sub-unit This unit accesses both old
and new weight memories to perform (10). Vector normaliza-
tion, as seen in Fig. 7, is realized using a MAC to calculate
the sum of squared values of the vector, an inverse square
root block similar to the one used in the whitening block, and
8 multipliers to apply the calculated inverse square root to the

SHAHSHAHANI AND MAHDIANI: FiCA: A FiCA FOR REAL-TIME AND LATENCY-SENSITIVE APPLICATIONS 2901

Fig. 7. Vector normalization sub-unit.

vector in parallel. As shown in Fig. 7, the input to the inverse
square root module is of S(0, W L2 − 1) but the output is of
U (W L6, W L3).

f) Convergence check sub-unit: This unit performs the dot
product of the updated weight vector with its old version
(stored in the new weight memory and the old weight mem-
ory, respectively) to check for convergence. This is simply
implemented using one MAC and a comparator which checks
if the result of the MAC is close enough to 1 (i.e., the
vectors are in the same direction) based on a preset value.
If converged,it sends a control signal to the controller to reset
the weight update unit and activate the vector initialization
unit to generate the next initial vector. Otherwise, it signals
the controller to check if the maximum number of iterations
(i.e. 300) is reached. If that is the case, it means the algorithm
has failed; so, the controller reschedules the operation, resets
the weight update unit and the new and old weight memory
modules, and activates the weight initialization unit to generate
another initial vector. If neither convergence has reached, nor
has the maximum iteration number, the updated weight vector
is written into the old weight memory and another iteration
starts.

4) Data Separator: Upon calculating all weight vectors, the
data separation unit accesses the main memory and the weight
matrix memory. This block, which is inherently scalable,
realizes (2) by means of 8 MACS outputting one sample of
the separated signals every eight cycles.

B. Whole FiCA Architecture

Fig. 8 depicts the whole FiCA architecture. Based on Fig. 1,
its four main units, i.e., input preparation, preprocessing,
weight calculation, and output preparation units, are high-
lighted with light gray-shadow boxes. Also, due to multiplicity
of the WLs, which are customarily exploited for different
system blocks, and to provide a global vision on the com-
putation precision of different blocks, three regions associated
with W L1, W L2, and W L3 are indicated in the figure with
different dashed lines. W L4, W L5, and W L6 are excluded
from the figure because of their less importance (explained
later), to avoid any confusion.

Based on the proposed architecture, the FastICA calculation
starts by externally writing 256 samples of the 8 input signals
into the PM3 main memory by the input preparation unit.
As shown, the access to the main memory is facilitated using
a data-bus with a width of 8 × W L1, named as M − Bus.
The 8 channels of signal enter the main memory, and simulta-
neously, the preprocessing block which first centers, and then,
whitens the input samples. When the whitened data is ready in
the memory, weight calculation unit starts. As shown in the fig-
ure, the architecture supports multiple weight calculation units

working in parallel to handle algorithmic failures as described
before. The weight matrix memory can be accessed by all the
weight calculation units and the unit which converges first,
writes the calculated weight vector into that memory. The
number of these weight calculation units can be set at design
time at user’s demand as will be explained later. When all
weight vectors are calculated, the data separator in the output
preparation unit accesses both the PM3 and the weight matrix
memory to compute the independent components.

1) FiCA’s Latency and Throughput Calculations: In this
section, the number of clock cycles each unit takes to fin-
ish its task is accurately presented and finally added up
to analytically calculate the latency and throughput of the
whole FiCA processor. The calculation is done assuming no
algorithmic failures. Considering 8 channels of signals, each
one with 256 samples, it takes 256 clock cycles for the signals
to be completely stored in PM3. Simultaneously, the input
samples also enter the centering unit for mean calculation
(as indicated in Fig. 3-a and 3-b). Then, using the calculated
mean, the centering unit subtracts the mean values from the
signals. Covariance calculation starts one clock cycle after the
beginning of mean subtraction resulting in another 256 clock
cycles and then, the results take 8 cycles to be written in
the EVD memory. For the EVD, as stated in section III.2-b,
clock frequency is half of that of the other blocks. So,
considering the system clock frequency, it takes 2688 cycles
to do the task. The number of cycles regarding the calculation
of inverse square root of the 8 eigenvalues is different for
each eigenvalue. However, it experimentally takes on average
11 iterations. Since each iteration of the inverse square block
takes 6 cycles (due to the pipeline registers in the block),
the overall number of clock cycles in this regard is at most
8 × 11 × 6 = 528 cycles. Moreover, applying each inverse
square root result to its respective row of the matrix of eigen-
vectors takes 8 cycles, resulting in 64 cycles overall. On the
other hand, applying the results to the signals, takes 256 cycles.
Adding up all the mentioned clock cycles, the preprocessing
takes 4057 (=256+256+1+8+2688+528+64+ 256) cycles
to finish.

Upon finishing the preprocessing, the weight calculation
process starts. Weight initialization takes 8 cycles to generate
each initial weight vector, being 64 for 8 weight vectors. The
weight update and normalization take, on average, 624 clock
cycles per iteration. The convergence check unit takes 8 more
clock cycles. So, assuming NI ter number of iterations, the
whole weight calculation process takes (NI ter × 632) +
64 clock cycles. Finally, the data separator takes 8 clock cycles
to calculate each output sample, resulting in 2048(=256 × 8)
cycles. Therefore, adding up all calculated clock cycles, the
whole number of clock cycles the ICA takes to do one full
ICA (i.e., Ncyc) and the total calculation time of the processor
(i.e., Tc in terms of seconds) can be calculated by

Ncyc = 4057 + NI ter ∗ 632 + 64 + 2048 (15)

Tc = Ncyc

fclk
(16)

where fclk is the system clock frequency.
2) FiCA’s Numerical Precision and Quantization Noise Analy-

sis: Numerical precision analysis is a very complicated but

2902 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 8. Architectural details of FiCA.

significant step in custom fixed-point implementation of dig-
ital signal processing systems. Although fixed-point imple-
mentation highly improves hardware cost and performance,
it can highly affect system quantization noise, accuracy, and
functionality, especially in computation intensive and iterative
algorithms. This section provides a block-level numerical
precision analysis of the FiCA processor, in detail.

WL is the main parameter affecting system accuracy and
cost in fixed-point custom implementations. As mentioned
in section III-a explanations and also in Fig. 8, the FiCA
processor utilized six different WLs (W L1, W L2, W L3,
W L4, WL5, and W L6) in its different blocks to achieve the
maximum performance with the least possible cost. To perform
a fine-grained WL optimization and find the optimum values
of these WLs, the Mendeley EEG dataset [22] is used which
includes 54 different EEG recordings with 19 channels with
artificial EOG artefacts. We have used 8 channels covering the
brain motor area: F3, F4, C3, C4, P3, P4, Fz, and Pz.

Among the six defined system WLs, W L4 and W L5 are
utilized to demonstrate the range of values in the whitening
sub-unit (Fig. 3-b). W L6, also, represents the range of values
in the vector normalization sub-unit (Fig. 7). These WLs are
calculated by means of a worst-case analysis on the range of
the values in the floating-point model, in a manner to avoid any
probable overflow as the major source of accuracy loss. Based
on the performed simulations, the minimum acceptable W L4,
W L5, and W L6 are determined as 9, 3, and 10, respectively.

The other three WLs (i.e., W L1, W L2, and W L3) deter-
mine the precision of some system blocks. W L1 resembles the
precision in input preparation and output preparation as well
as the preprocessing blocks (Fig. 3), while W L2 represents
the precision of weight calculation units (Fig. 5, Fig. 6, and
Fig. 7), and W L3 stands for the precision of the weight
update (Fig. 5) and vector normalization (Fig. 7) units. The
values of these parameters significantly affect system cost
and quantization noise trade-off and should be accurately
optimized in a structured manner. To better demonstrate the
significance level of each of these WLs by means of number
and importance of its respective sub-block, Fig. 8 depicts their

Fig. 9. Mean number of total failures.

region of effect using different legends. It can be inferred
from the figure that the order of these WLs based on their
impact on system area is W L1, W L2, and finally W L3.
To extract the system sensitivity against each one of these WLs
from different aspects (i.e., quantization noise and algorithmic
failure), the whole system bit-true model is developed and
exhaustively simulated while W L1, W L2, and W L3 values
are in the ranges of 20 to 32, 12 to 29, and 12 to 21,
respectively. To achieve the corresponding results for each WL
configuration, the simulation is repeated 100 times and the
mean of all runs has been considered for the WL optimization
process. The results of this all-inclusive and fully customized
simulation are exploited to determine the effects of W L1,
W L2, and W L3 on 1) weight calculation failure, and 2)
system output accuracy for different WLs as follows.

a) Effects of system WLs on weight calculation failure: The
performed exhaustive simulation results clearly demonstrate
the very high effect of W L2 on the weight calculation process
failure, while the other two WLs are ineffective or have
much smaller effects. Fig. 9, as an instance, demonstrates a
part of the simulation results which shows the mean number
of failures at the weight calculation process for different
W L1 and W L2 values while W L3 = 12. Based on the

SHAHSHAHANI AND MAHDIANI: FiCA: A FiCA FOR REAL-TIME AND LATENCY-SENSITIVE APPLICATIONS 2903

Fig. 10. Mean correlation (best case analysis) (a) different WL1s and WL2s while WL3 = 12, (b) different WL2s and WL3s while WL1 is fixed to 26,
(c) different WL3s while WL1 and WL2 are fixed to 26 and 24, respectively.

simulation result, W L2 should not be less than 17 to control
the number of failures below an acceptable threshold.

b) Effects of system WL on system quantization noise and output
accuracy: The simulation results show that W L1, then W L2,
and finally W L3 have the largest impacts on the system
noise and output accuracy. This is also supported by the
previous findings about the impact of WLs on area. This
means that W L1 which is related to larger area and more
system blocks is also expected to more affect system noise and
accuracy. Fig. 10 shows the average mean correlation of the
bit-true model outputs (for different WLs) with those of the
MATLAB double-precision floating-point FastICA for some
special values of WLs. Fig. 10-a illustrates a part of simulation
results which correspond to the system output correlations for
different W L1 and W L2 values for W L3 = 12. Choosing a
WL of 26 seems to be suitable. Fig. 10-b also demonstrates the
system output precision for different W L2 and W L3 values
while W L1 is fixed to 26. Selecting a WL of 24 both reduces
the system quantization noise and number of algorithmic
failures below an acceptable threshold (based on Fig. 10-b
and 9). Finally, Fig. 10-c illustrates system output correlations
when W L1 and W L2 are fixed to 26 and 24, respectively.
It shows that a W L3 of 14 is a suitable choice. Therefore,
and as the result of exhaustive simulation, the optimum WLs
are W L1 = 26, W L2 = 24, and W L3 = 14, considering
1 ore more guard bits to support probable data dependency.

IV. EXPERIMENTAL RESULTS

In this section, a significant explanation about the suitable
number of weight calculation units in the architecture for any
specific application is provided first. Next, some convenient
functional validation results of the FiCA processor by means
of both synthetic and real EEG signals are presented. The
processor’s ASIC synthesis results are discussed and compared
with some of the state-of-the-art designs at the end.

A. Suitable Number of Weight Calculation Units for a
Latency-Sensitive Application

As mentioned before, one FiCA’s significant specification
is that it supports multiple weight calculation units based
on latency requirements of each application. Fig. 11 shows
cumulative probability of failures that might happen in the
weight calculation process (and, therefore, the whole FastICA)
based on the number of exploited weight calculation units in
the architecture. The figure shows that augmentation of the
processor with only one calculation unit, provides the output
within the expected time in 89.5% of the times, while in 10.5%

Fig. 11. Cumulative probability of failures in the FastICA weight
calculation.

remaining times, the result will be ready after one or more
extra weight calculation iterations due to nonconvergence of
the algorithm as explained in section II. The probability of
weight calculation success increases to 95. 2% and 97% with
two and three weight calculation units in the architecture,
respectively. The simulation results show that the algorithm
needs 50 weight calculation units to theoretically achieve the
100% probability.

B. Functional Validation

To validate the functionality of the proposed fixed-point
ICA processor and measure the effects of the six WLs on
system quantization noise and output accuracy, 8 channels of
synthetic signals are individually generated and mixed, and
the mixture is then fed into the ICA processor, based on
the approach proposed in [13]. Fig. 12-a and 12-b show the
eight original signals (in blue), as well as their counterparts
in the outputs of the double precision MATLAB floating-
point FastICA toolbox, and the fixed-point FiCA, respectively
(both in red). The value next to each signal demonstrates
the correlation between the output signal and its original
version as a measure of correct functionality. Fig. 12-a shows
that even the FastICA MATLAB floating-point model can
recover the original signals with the correlations of about
0.9788 to 0.9997. On the other hand, Fig.12-b shows that,
the FiCA provides meaningfully similar correlations (between
0.9554 and 0.9995) with respect to the floating-point ICA, due
to the effort put on optimizing and choosing the right WLs.

To also demonstrate FiCA’s capabilities in recovering nat-
ural signals in a real application, its processing results on
a set of eight EEG signals (used for numerical precision
analysis in section III) are also included in Fig. 13. Fig. 13
shows the decomposition results of the fixed-point design
(in red), overlaid on the MATLAB floating-point FastICA
outputs (in blue). The corresponding correlation values have
also been shown next to each plot. The results show that
FiCA has successfully decomposed the two artefacts as the

2904 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 12. a) Original 8 channels of synthetic signals (blue) versus the
MATLAB floating-point FastICA results (red); b) the original 8 channels
of synthetic signals (blue) versus the fixed-point FiCA’s results (red).

two top signals in Fig. 13, very close to the estimations by
the MATLAB FastICA toolbox with correlation values of
0.9602 and 0.9570. All other six decomposed sources also
have high correlations with the MATLAB toolbox results.

C. Processor Synthesis Results and Comparison

Table I includes the main high-level specifications as well
as the detailed implementation results of the FiCA processor in
comparison with its four best rivals, addressed in the literature
review. The first four table rows indicate that all the designs:
1) implemented the FastICA algorithm, 2) targeted EEG
signals except for [14], 3) mostly developed for 8 channels of
signals, and 4) implemented using ASIC 90 nm technology.
These simplify the fair comparison process.

The next three table rows demonstrate main architectural
features of FiCA. According to the 5th table row, FiCA is the
only architecture that can be properly configured to support
the significant algorithmic disadvantage of the ICA algorithm
and to handle any algorithmic failure based on the latency
requirements of the target applications. Also, according to
the 6th row of the table, FiCA as well as [14] and [16],
used fixed-point arithmetic. However, the latter two instances

Fig. 13. Decomposition results of the fixed-point FiCA (red) versus the
results of MATLAB floating-point FastICA toolbox (blue) for 8 channels
of EEG signals containing artefacts.

TABLE I
HIGH-LEVEL SPECIFICATIONS AND SYNTHESIS RESULTS OF THE FICA

PROCESSOR IN COMPARISON WITH STATE-OF-THE-ART

provided no WL-optimization results or any extra explanations
at all, while FiCA is a fully customized, block-level fixed-point
implementation. Moreover, based on the 7th row, FiCA and,
to some extent [14], are the only designs that can be scaled
to match the required cost-performance trade-off.

The last seven table rows provide a thorough comparative
study on cost and performance of the synthesized designs.
Although, unlike other designs, FiCA can be configured to
support different numbers of weight calculation units, for fair
comparison only the results of the single weight calculation
unit configuration have been listed in this table. The 8th table
row presents the circuit area in terms of kilo gates equivalent
(kGE), while the next rows show the maximum achieved clock
frequency. This area is calculated by dividing the synthesizer’s
area output by the smallest 2-input NAND gate in the library.
Based on these results, although the FiCA area is more than
other rivals as expected, according to the tenth row, it has a

SHAHSHAHANI AND MAHDIANI: FiCA: A FiCA FOR REAL-TIME AND LATENCY-SENSITIVE APPLICATIONS 2905

higher clock frequency and provides an overall much better
performance. The 10th table row shows the power dissipation
for this design and other rivals in terms of milliwatt (mW).
For fair comparison, the 11th table row presents the same
results normalized by frequency and circuit area (in terms of
mw/kHz/kGE). According to this row, while the main target
in FiCA development has been performance optimization and
not power, as can be inferred from row 11, except for [14],
other rivals have reported power dissipations of not less than
half of that of this work. Since [14] has put their main focus on
low-power design using different techniques such as approx-
imation, their normalized power dissipation is meaningfully
less than all other designs. The energy efficiency of the FiCA
is also evaluated as 243 μJ/operation based on [23]. The
12th table row shows the maximum ICA computation time
of an 8-channel configuration in FiCA and all other designs
in terms of milliseconds (ms). However, due to FiCA’s much
higher frequency and performance, it can be reconfigured to
support much greater number of EEG channels, sampling
rates, and so on, to accommodate with the necessities of
different applications with different performance requirements.
The 13th table row presents the absolute performance (in
terms of kilo ICA calculations per second) while, for fair
comparison, the last row contains the normalized throughput
of each design (in terms of number of ICA calculations per
second per kGE). According to the last table row results, the
FiCA proposes a normalized throughput of about 100 times
better with respect to [14] as the closest rival. This becomes
of greater importance noticing that the area of [14] is highly
decreased by exploiting an approximation of the EVD process
(instead of its original version exploited in FiCA) as well as
choosing a WL of 14 (in comparison with much higher WLs
in FiCA) due to much better signal-to-noise ratio of ECoG
signals (in comparison with EEG signals in FiCA).

V. CONCLUSION

In this paper, a fully customized fixed-point, scalable, and
high-performance FastICA processor architecture is presented.
The proposed design has been developed in an algorithm-
aware manner to suppress the inherent FastICA algorithmic
failures. This was done by augmenting the system with mul-
tiple weight calculation units. Moreover, using a thorough
WL-optimization approach, the architecture is developed with
six different WLs inside and between its different blocks which
resulted in a fully customized design. The synthesized design
showed a normalized throughput of 10 times more than its
closest rival.

REFERENCES

[1] A. Lombard, Y. Zheng, H. Buchner, and W. Kellermann, “TDOA esti-
mation for multiple sound sources in noisy and reverberant environments
using broadband independent component analysis,” IEEE Trans. Audio,
Speech, Language Process., vol. 19, no. 6, pp. 1490–1503, Aug. 2011,
doi: 10.1109/TASL.2010.2092765.

[2] N. Shanmugapriya and E. Chandra, “Evaluation of sound classification
using modified classifier and speech enhancement using ICA algorithm
for hearing aid application,” ICTACT J. Commun. Technol., vol. 6948,
pp. 1279–1288, Mar. 2016, doi: 10.21917/ijct.2016.0187.

[3] C.-Y. Yu, Y. Li, B. Fei, and W.-L. Li, “Blind source separation based
X-ray image denoising from an image sequence,” Rev. Sci. Instrum.,
vol. 86, no. 9, Sep. 2015, Art. no. 093701, doi: 10.1063/1.4928815.

[4] D. A. Ramli, Y. H. Shiong, and N. Hassan, “Blind source separation
(BSS) of mixed maternal and fetal electrocardiogram (ECG) signal:
A comparative study,” Proc. Comput. Sci., vol. 176, pp. 582–591,
Jan. 2020, doi: 10.1016/j.procs.2020.08.060.

[5] G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser,
L. Griffanti, and S. M. Smith, “Automatic denoising of functional
MRI data: Combining independent component analysis and hierarchical
fusion of classifiers,” NeuroImage, vol. 90, pp. 449–468, Apr. 2014, doi:
10.1016/j.neuroimage.2013.11.046.

[6] R. J. Korhonen, J. C. Hernandez-Pavon, J. Metsomaa, H. Mäki,
R. J. Ilmoniemi, and J. Sarvas, “Removal of large muscle artifacts from
transcranial magnetic stimulation-evoked EEG by independent compo-
nent analysis,” Med. Biol. Eng. Comput., vol. 49, no. 4, pp. 397–407,
Apr. 2011, doi: 10.1007/s11517-011-0748-9.

[7] G. R. Naik, Ed., Independent Component Analysis for Audio and
Biosignal Applications. Rijeka, Croatia: InTech, 2012.

[8] M. B. Hamaneh, N. Chitravas, K. Kaiboriboon, S. D. Lhatoo, and
K. A. Loparo, “Automated removal of EKG artifact from EEG data
using independent component analysis and continuous wavelet trans-
formation,” IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1634–1641,
Jun. 2014, doi: 10.1109/TBME.2013.2295173.

[9] S. Çınar and N. Acır, “A novel system for automatic removal of ocular
artefacts in EEG by using outlier detection methods and independent
component analysis,” Expert Syst. Appl., vol. 68, pp. 36–44, Feb. 2017,
doi: 10.1016/j.eswa.2016.10.009.

[10] M. F. Issa and Z. Juhasz, “Improved EOG artifact removal using wavelet
enhanced independent component analysis,” Brain Sci., vol. 9, no. 12,
p. 355, Dec. 2019, doi: 10.3390/brainsci9120355.

[11] A. J. Bell and T. J. Sejnowski, “An information-maximization approach
to blind separation and blind deconvolution,” Neural Comput., vol. 7,
no. 6, pp. 1129–1175, 1995.

[12] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent
component analysis,” IEEE Trans. Neural Netw., vol. 10, no. 3,
pp. 626–634, May 1999. [Online]. Available: http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=761722%5Cnpapers3://publication/doi/
10.1109/72.761722

[13] L.-D. Van, D.-Y. Wu, and C.-S. Chen, “Energy-efficient Fas-
tICA implementation for biomedical signal separation,” IEEE Trans.
Neural Netw., vol. 22, no. 11, pp. 1809–1822, Nov. 2011, doi:
10.1109/TNN.2011.2166979.

[14] C. Yang, Y. Shih, and H. Chiueh, “An 81.6 μW FastICA proces-
sor for epileptic seizure detection,” IEEE Trans. Biomed. Circuits
Syst., vol. 9, no. 1, pp. 60–71, Feb. 2015, doi: 10.1109/TBCAS.2014.
2318592.

[15] L.-D. Van, P.-Y. Huang, and T.-C. Lu, “Cost-effective and variable-
channel FastICA hardware architecture and implementation for EEG
signal processing,” J. Signal Process. Syst., vol. 82, no. 1, pp. 91–113,
Jan. 2016, doi: 10.1007/s11265-015-0988-2.

[16] S. Bhardwaj, S. Raghuraman, and A. Acharyya, “Simplex FastICA: An
accelerated and low complex architecture design methodology for nD
FastICA,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 5, pp. 1124–1137, May 2019, doi: 10.1109/TVLSI.2018.2886357.

[17] L. D. Pyeatt and W. Ughetta, ARM 64-Bit Assembly Language.
Amsterdam, The Netherlands: Elsevier, 2019.

[18] S. M. R. Shahshahani and H. R. Mahdiani, “A high-performance
scalable shared-memory SVD processor architecture based on Jacobi
algorithm and batcher’s sorting network,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 67, no. 6, pp. 1912–1924, Jun. 2020, doi:
10.1109/TCSI.2020.2973249.

[19] G. E. Forsythe and P. Henrici, “The cyclic Jacobi method for computing
the principal values of a complex matrix,” Trans. Amer. Math. Soc.,
vol. 94, no. 1, pp. 1–23, Jan. 1960, doi: 10.1090/S0002-9947-1960-
0109825-2.

[20] M. J. Schulte and K. E. Wires, “High-speed inverse square
roots,” in Proc. Symp. Comput. Arithmetic, 1999, pp. 124–131, doi:
10.1109/arith.1999.762837.

[21] M. George and P. Alfke. (2007). Linear Feedback Shift Registers in
Virtex Devices. [Online]. Available: https://www.xilinx.com

[22] M. A. Klados and P. D. Bamidis, “A semi-simulated EEG/EOG
dataset for the comparison of EOG artifact rejection techniques,”
Data Brief, vol. 8, pp. 1004–1006, Sep. 2016, doi: 10.1016/j.dib.
2016.06.032.

[23] P. U. da Costa, G. Paim, L. M. G. Rocha, E. A. C. da Costa,
S. J. M. de Almeida, and S. Bampi, “Fixed-point NLMS and IPNLMS
VLSI architectures for accurate FECG and FHR processing,” IEEE
Trans. Biomed. Circuits Syst., vol. 15, no. 5, pp. 898–911, Oct. 2021,
doi: 10.1109/TBCAS.2021.3120237.

http://dx.doi.org/10.1109/TASL.2010.2092765
http://dx.doi.org/10.21917/ijct.2016.0187
http://dx.doi.org/10.1063/1.4928815
http://dx.doi.org/10.1016/j.procs.2020.08.060
http://dx.doi.org/10.1016/j.neuroimage.2013.11.046
http://dx.doi.org/10.1007/s11517-011-0748-9
http://dx.doi.org/10.1109/TBME.2013.2295173
http://dx.doi.org/10.1016/j.eswa.2016.10.009
http://dx.doi.org/10.3390/brainsci9120355
http://dx.doi.org/10.1109/TNN.2011.2166979
http://dx.doi.org/10.1007/s11265-015-0988-2
http://dx.doi.org/10.1109/TVLSI.2018.2886357
http://dx.doi.org/10.1109/TCSI.2020.2973249
http://dx.doi.org/10.1090/S0002-9947-1960-0109825-2
http://dx.doi.org/10.1090/S0002-9947-1960-0109825-2
http://dx.doi.org/10.1109/arith.1999.762837
http://dx.doi.org/10.1109/TBCAS.2021.3120237
http://dx.doi.org/10.1109/TBCAS.2014.2318592
http://dx.doi.org/10.1109/TBCAS.2014.2318592
http://dx.doi.org/10.1016/j.dib.2016.06.032
http://dx.doi.org/10.1016/j.dib.2016.06.032

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

