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Abstract— Reinforcement-learning (RL)-based brain-
machine interfaces (BMIs) interpret dynamic neural activity
into movement intention without patients’ real limb
movements, which is promising for clinical applications.
A movement task generally requires the subjects to
reach the target within one step and rewards the subjects
instantaneously. However, a real BMI scenario involves
tasks that require multiple steps, during which sensory
feedback is provided to indicate the status of the prosthesis,
and the reward is only given at the end of the trial. Actually,
subjects internally evaluate the sensory feedback to adjust
motor activity. Existing RL-BMI tasks have not fully utilized
the internal evaluation from the brain upon the sensory
feedback to guide the decoder training, and there lacks an
effective tool to assign credit for the multi-step decoding
task. We propose first to extract intermediate guidance
from the medial prefrontal cortex (mPFC) to assist the
learning of multi-step decoding in an RL framework.
To effectively explore the neural-action mapping in a large
state-action space, a temporal difference (TD) method
is incorporated into quantized attention-gated kernel
reinforcement learning (QAGKRL) to assign the credit over
the temporal sequence of movement, but also discriminate
spatially in the Reproducing Kernel Hilbert Space (RKHS).
We test our approach on the data collected from the
primary motor cortex (M1) and the mPFC of rats when they
brain control the cursor to reach the target within multiple
steps. Compared with the models which only utilize the
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final reward, the intermediate evaluation interpreted from
the mPFC can help improve the prediction accuracy by
10.9% on average across subjects, with faster convergence
and more stability. Moreover, our proposed algorithm
further increases 18.2% decoding accuracy compared with
existing TD-RL methods. The results reveal the possibility
of achieving better multi-step decoding performance for
more complicated BMI tasks.

Index Terms— Brain-machine interface (BMI), reinforce-
ment learning, medial prefrontal cortex, sensory feedback,
multi-step task, temporal difference learning.

I. INTRODUCTION

BRAIN-MACHINE interface (BMI) builds up a commu-
nication pathway between cortical areas and external

devices [1]. BMI generally collects neural activities from
motor-related areas and interprets them into motor intentions
using a decoder [2], [3], [4]. The reinforcement learning
(RL) method fits the scenario for paralyzed people as it
does not need real limb movement to decode. When the
trajectory deviates from the target, the subjects must adjust
their neural activities to correct the trajectory to approach
the target through trial and error [5], [6]. When the subjects
accomplish the predefined task, a reward (food or water) will
be presented externally at the end of the trial to guide the
learning of the task. At the same time, such explicit rewards
are utilized for training an RL-based decoder by updating the
mapping between neural activities and actions.

Several RL methods have been proposed in the BMI
area to learn the state-action mapping with an instantaneous
reward [7], [8]. In the classic center-out or reaching experi-
ments, the subjects (rats and non-human primates) were simply
required to reach targets within one step once the correct
direction was selected, so it was relatively effortless for them
to understand the task. Correspondingly, the neural patterns of
different directional moving states are distinct for the decoder
to separate. And the decoder gets reward information for
each time instance and updates the parameters instantaneously.
Therefore, it is more efficient for the decoder to establish the
mapping between neural activities and actions.

However, tasks are more complicated in real BMI appli-
cations as they demand multi-step prosthesis control instead
of simple one-step command [9], [10], [11]. For example, the
subject needs to avoid the objects in the space or reach the final
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target within the multiple steps. In this scenario, a reward will
be given only by the end of the trial instead of instant reward
delivery for each step. The previous one-step RL algorithms
have not been applied to tackle the delayed reward efficiently
in the multi-step task. Although researchers could calculate
the relative position to the target as instantaneous reward
information for the decoder training in some direct reaching
tasks [9], temporal difference (TD) learning is commonly
used as it provides a learning procedure for delayed reward
RL problems [12]. It learns from the actual rewards and
the predictions of the future rewards that the agent expects
to obtain from the next state. The error is backpropagated
through time to update the decoder. Tobias et al. proposed
a novel learning scheme (SAGREL) to update the input-
output mapping by a neural network structure with a delayed
reward [13]. Here, the error signal (one-step State-Action-
Reward-State-Action (Sarsa)-style) only uses information from
the previous state with limited temporal history. SAGREL
often traps in the local minima due to the nonlinear neural
network structure. This algorithm has only been tested on a
simple classification while not implemented in the BMI area.
SAGREL would face the challenge to find the correct neural-
action mapping because the neural inputs are generally noisier,
and the state-action space grows larger in a real BMI scenario.
Bae et al. introduced the kernel temporal difference KTD (λ)
error to Q-learning (Q-KTD) for neural decoding in RLBMI
to find the mapping between a monkey’s neural states and
the positions of a computer cursor or a robot arm [14]. The
kernel structure in Q-KTD ensures a global optimum within
the explored state space. However, such a space is limited due
to the adopted the ε-greedy policy for the action selection.
In the delayed reward task, the decoder could easily bias the
good actions with a low action value in the early stage, and
the ε-greedy policy would seldom explore such actions in the
later training sessions. The Q-KTD method has been applied
in one-step BMI tasks. For the multi-step task, it calculates
the extra reward information to assist learning at each time
instance, which essentially is the instantaneous reward. Above
TD-RL algorithms have not fully utilized the intermediate
evaluation from the brain in the multi-step task where the
reward is sparse. Additionally, the previous RL decoders are
not powerful enough to assign credit over a large state-action
space in the multi-step task and thus may fail to explore the
optimal mapping between the neural activities and a sequence
of actions.

Real-time sensory interaction is vital in BMI scenarios, as it
exists all the time to indicate the prosthesis status [15], [16],
[17]. Subjects observe the sensory feedback and evaluate it
internally to refine the actions. Especially the medial prefrontal
cortex (mPFC), including the anterior cingulate cortex (ACC),
evaluates the current state based on the sensory feedback, and
this internal evaluation will correspondingly guide the subject
to obtain future rewards [18], [19], [20], [21]. Note that mPFC
has been acknowledged to play a crucial role in decision
making, including conflict monitoring [22], error detection
[23], executive control [24], reward-guided learning [25], [26],
and decision-making about risk and reward [27]. Here, we are
interested in investigating if the mPFC responses can indicate

the status of the prosthesis before the subject has received
the final water reward. In literature, Hajcak et al. performed
a gambling task on human subjects to investigate whether the
mPFC is related to visual feedback [28]. The visual stimuli
are designed to represent the final win or loss. They found
that the neural activities of the mPFC responded differently
when the visual stimuli were presented to the subject. In other
words, the mPFC activities reflect the binary classification of
the evaluation on the feedback that leads to bad outcomes
versus good outcomes. Warren et al. trained rats to use their
nose to poke three ports that were associated with different
reward probabilities [29]. The odor cues representing different
final rewards would be given before the rats received the
external reward. They recorded the local field potential from
the rodent ACC in four rats and observed the deflection in the
local field potential when the subject encountered no-reward
odor feedback. Moreover, Bryden et al. discovered that 38 of
111 recorded ACC neurons in rats significantly increased
neural firing by the onset of the odor feedback compared to
the baseline with no odor feedback [30]. All these statistical
findings verify that the mPFC activities respond differently
to the sensory feedback related to future outcomes. However,
these neuron patterns of the mPFC response upon the sensory
feedback are based on statistical analysis across trial averages
and have not been utilized to derive the intermediate evaluation
in the single-trial analysis. Not to mention that this information
has been utilized in BMI scenarios.

In this paper, we are interested in building an RL framework
that utilizes the intermediate reward signal upon the sensory
feedback to assist decoders in learning the neural-action
mapping in a multi-step task. Specifically, we will utilize
mPFC neural activities to generate intermediate guidance
upon the sensory feedback. Instead of only using the final
reward, we can update the decoder with this extra evaluation
information during the trial. To effectively assign credit for
the multi-step task, we further propose a decoding algo-
rithm that incorporates the temporal difference method into a
quantized attention-gated kernel reinforcement learning algo-
rithm (TD-QAGKRL), which achieves the global minimum
of input-output mapping by exploring the space expanded not
only spatially over neural states in the Reproducing Kernel
Hilbert Space (RKHS) but also over a time sequence of the
movement. Our algorithm projects the sequence of neural
input data into RKHS and builds a universal approximation
between spatial-temporal neural features and action values.
The sequence of actions is selected probabilistically using a
softmax policy. A new learning rule is developed to assign the
intermediate credit over the space of the neural firing pattern
in RKHS and the time sequence of the movement that leads
to future rewards.

To validate our proposed method on the platform of the
BMI, we trained two rats to learn to brain control the cursor to
reach the target area within multiple steps. The rats had already
mastered the one-lever-press manual control task. In the new
task, the rats needed to adjust their neural activities to control
the cursor to reach the start area, and an audio tone will be
given to indicate the start of the trial. Then it had to control
the cursor continuously moving to enter the success area to
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receive a water reward at the end of the trial. The intermediate
evaluation is extracted from the mPFC of rats upon the sensory
feedback. Then, we implement a support vector machine
(SVM) combined with a confidence metric to classify the
mPFC neural activities when hearing sensory feedback versus
receiving no sensory feedback. The intermediate guidance with
high confidence is used to train the TD-QAGKRL decoder
for the multi-step task. In comparison, we also implement the
SAGREL and Q-KTD methods as the decoders. First, to verify
the advantage of using intermediate reward extracted from the
mPFC activities, we compare our approach using intermediate
guidance with the scenario only using reward at the final
step of a trial. Moreover, we want to validate the decoding
performance of TD-QAGKRL with the SAGREL and Q-KTD
when using the same reward information. The evaluation is
the correct rate regarding the ground truth for each step.

The rest of the paper is organized as follows. Section II
A introduces the experiment design and data collection.
Section II B illustrates the online multi-step decoding frame-
work, including the characterization of the mPFC activities
as the internal evaluation of the sensory feedback and the
structure of our proposed decoder. In Section III, we visualize
the neural patterns of the mPFC activities upon the sensory
feedback and compare our proposed method with the other
existing methods in terms of decoding performance and recon-
structed prosthesis trajectory. In the last section, conclusions
and discussions are presented.

II. METHOD

A. Experiment Design and Data Collection

We use two male Sprague Dawley (SD) rats in our exper-
iment. The BMI experimental paradigm was designed and
implemented at the Hong Kong University of Science and
Technology. All animal handling procedures were approved by
the Animal Ethics Committee of the Hong Kong University
of Science and Technology, strictly complying with the Guide
for Care and Use of Laboratory Animals.

The whole experiment paradigm consists of two stages.
In the manual control (MC) stage, the rats were trained to
press the lever in the behavioral box using its right limb
after hearing a start tone [31]. The rat would be rewarded
with a water drop and presented with a success tone when
the task was accomplished. When the subjects achieved an
average success rate of over 80%, they entered the second
stage: brain control (BC) without a lever. In the BC stage,
the primary motor cortex (M1) and the mPFC neural activities
were fed into an online Kalman filter (KF) decoder to generate
the continuous cursor trajectory, as indicated in Fig. 1(a).
The input of the Kalman filter is formed with the multiple
channel firing rates considering the 400 ms firing history, and
the output is the continuous cursor trajectory every 100 ms.
Kalman filter parameter is pre-trained with the data collected
from the well-trained manual control data with an average
decoding accuracy of 0.82 in correlation coefficient (CC).
Compared with the control experiments as the baseline, where
we feed the shuffled M1 activity into the KF, the decoding
performance is much lower (0.089 in CC). In the subplot of the

Fig. 1. BMI experiment of a multi-step brain control task. (a) An SD rat
adjusts its neural activities to control the decoding trajectory to complete
the position reaching task in a behavioral box. (b) Behavioral procedure
of the brain control position reaching task across trials.

trajectory (the dashed square), we defined a start (blue area)
and success range (red area). In each trial, the subject needed
to adjust its neural activities and let the decoded trajectory
reach the start range and stay for over 2 s to trigger the
900 ms start tone, shown as a red speaker in Fig. 1(b). And
the subject needed to reach and stay within the success range
for 500 ms. A water drop would be presented by the end
of the trial together with 90 ms success audio tone (blue
speaker). The maximum allowed duration of each trial was
5s. After receiving the reward, the subject had to brain control
the trajectory to return to the start area to trigger the next start
tone. The whole movement trajectory consists of reaching the
success range and returning to the rest range. If the subject
cannot trigger the start or reach the success area, an autocue
will be given after 10 s.

For each rat, two 16-channel microelectrodes were
implanted into the M1 and the mPFC area on the left hemi-
sphere, respectively. Neural signals from the two cortical areas
were recorded simultaneously by a Plexon (Plexon Inc, Dallas,
Texas). The raw signal was sampled at the 40 kHz frequency
and was high-passed at 500 Hz with a 4-pole Butterworth
filter. Here we used a threshold criterion (Thr = −3 ∼ −5σ0,
where σ0 is the standard deviation of the histogram of the
amplitudes) to detect the spikes. An offline sorter (Plexon
Inc, Dallas, Texas) was utilized to sort the single neuron from
each channel, and the spike timing information was restored.
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Fig. 2. Diagram of the online multi-step decoding framework. For each trial, the decoder receives neural activities from M1 to generate a sequence
of actions, and the neural prosthesis will correspondingly change its status. Meanwhile, the sensory feedback will be given to indicate the prosthesis
status. Upon hearing the sensory feedback, the mPFC activities are interpreted as the intermediate guidance to update the decoder before the final
reward is given. Then the prosthesis continues to move until reaching the target, and the final reward will also be utilized to update the parameter of
the decoder.

Spike firing rates were counted with a nonoverlapping 100 ms
time window. Meanwhile, the corresponding behavior events
were acquired by a behavior recording system (Lafayette
Instrument, USA) and synchronized through a Plexon digital
input. A total of 196 and 186 trials for two rats, respectively,
on the well-trained days were recorded for analysis.

B. Intermediate Guidance Assisted Multi-Step Decoding
Framework

We propose an RL framework that employs the intermediate
guidance information from mPFC activities upon the sensory
feedback to assist the subjects in accomplishing a multi-step
task in BMI scenarios. Moreover, we embed a TD method into
QAGKRL as a decoder to effectively reach the optimization
over the spatial-temporal space for the multi-step task. This
framework is designed in an online manner, as shown in
Fig. 2. The decoder receives a sequence of neural activities
from M1 for each coming trial and generates actions that
continuously move the prosthesis. External sensory feedback
is presented in the middle of the trial process to indicate
the prosthesis status. The mPFC activities post the sensory
feedback are put into the classification model to generate the
intermediate guidance, which updates the decoder parameter
upon the sensory feedback before the subject gets the final
external reward. This classifier will be pre-trained with the
data collected from the previous day or using the first several
trials on the same day. The decoder continues to generate
actions for the subsequent trial. When the subject adapts to
the prosthesis control using the neural activities, the decoder
in parallel learns to interpret the neural activities to output
the actions. In our work, the decoder takes in the sorted data
each time and simulates the online scenario to generate the
output accordingly. The details are explained in the following
sub-sections.

1) Internal Evaluation of the Sensory Feedback From the
mPFC: The sensory feedback generally exists during the
interaction between subjects and the neuro-prosthesis. It is
not directly associated with the final external water reward but
indicates the status of the prosthesis [28], [29], [30]. Therefore,
the multi-step decoding online scenario mimics the closed-
loop BMI setting in our experiment. To extract the interme-
diate guidance from the mPFC activities upon the sensory
feedback, we label mPFC activities 500 ms before the trig-
gered sensory feedback (start tone), which represent the state
of trying but have not succeeded, as 0; and label the mPFC
activities 500 ms post the sensory feedback, which represent
the successful trigger of the trial start, as 1. To discriminate
the two cases, we take in every 100 ms neural activity with
a history of 300 ms within the duration as SVM input. The
output is the action labels.

The kernel SVM is implemented with LIBSVM [32], [33].
Here we denote r̂ as

r̂ = h
(
ωT φ(x L

t ) + b
)

, (1)

where h is a threshold function. x L
t is the neural input formed

with a size of 4∗N by 1 (N is the number of channels; 4∗N
includes the 300 ms history and current firing of N channels;
t represents the time instance taken from the duration of
500 ms before and after the feedback in the trial L). ω denotes
weight vector sizing of 4∗1, which is obtained using cross-
validation. b is a constant as a bias in the hyperplane. φ(·)
is a radial basis function, which converts the original data
into the RKHS. The value of ωT φ

(
x L

t

) + b, derived from
the SVM classification result, measures the distance from the
data samples to the classification hyperplane. This distance
distribution of training samples is used to set the threshold
thr, out of which 90% of SVM classification results exist [34].
In the testing phase, we put the mPFC neural activities every
100 ms after the sensory feedback into the pre-trained SVM
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Fig. 3. The network structure of TD-QAGKRL. For each trial, the
decoder projects the sequence of neural input data into RKHS feature
space, builds a nonlinear mapping between spatial-temporal neural
features and action values. The action sequence (blue dots) is selected
probabilistically using a softmax policy. An expanded spatial-temporal
error is utilized to update the decoder parameter.

model to get the intermediate guidance to update the RL
decoder. The dominating classification results within 500 ms
will be the final intermediate guidance for this trial. If the SVM
values lie within the range between -thr and thr, we take the
classified results as low confidence. If low confidence SVM
results dominate the trial, we will not update the decoder
parameters when the subjects observe the sensory feedback
in the multi-step task.

2) TD-QAGKRL Decoding and Updating: Here we propose a
new TD-RL method to learn the neural-action mapping for the
multi-step task. The structure is shown in Fig. 3. The decoder
is fed with a sequence of neural activities and generates
sequential actions to reach the target within a trial. Our
new learning method addresses credit assignment over space
and time. Here, space and time represents credit assignment
spanned in the RKHS and time sequence of the motion in one
trial, respectively. Using the intermediate guidance extracted
from the mPFC, we decompose the whole trial into several
segments separated by sensory feedback. We assume that
exploring the optimal mapping in each segment contributes
to the efficient convergence to the global spatial-temporal
optimization of the neural-state mapping for the whole trial.

We use uL
t ∈ R1×N+1 to represent the neural input from

the M1 and the mPFC considering a background firing as bias
at each time instant within trial L. N is the channel number.
T is the time length of trial L.U L

1:T ∈ RT ×N+1 represents a
sequence of the neural input transformed to RKHS to form the
spatial-temporal feature by a kernel method, κ

(
uL

t , uL
j

)
=<

φ(uL
t ), φ

(
uL

j

)
>, which is commonly used as a Gaussian

kernel:

κ
(

uL
t , uL

j

)
= exp

⎛
⎝−‖ uL

t − uL
j ‖2

2σ 2

⎞
⎠ , (2)

where uL
t , uL

j ∈ U L
1:T , and σ decides the flatness of the

Gaussian kernel.
Then, the action value is computed by linearly combining

spatial-temporal features with the weights as follows:

Qk

(
uL

t

)
=

t−1∑
j=1

wk, j

〈
φ

(
uL

t

)
, φ

(
uL

j

)〉

=
t−1∑
j=1

wk, j κ
(

uL
t , uL

j

)
, (3)

where wk, j is the coefficient between the j th Gaussian kernel
center in the RKHS and the kth action. t represents all the
preceding time instances across all previous L-1 trials.

This network has an inherently growing structure as it allo-
cates a new center for each coming data sample in each trial,
which causes a linearly growing computational complexity.
Here we adopt a quantization approach to decrease kernel
centers [35]. We explore an optimal quantization threshold ξU

according to the distribution of Euclidean distances between
the pairs of input vectors. The value of action k can be
calculated with quantized centers as in Eq. 4. Qk(U L

1:T ) is
formed with a sequence of action values in trial L.

Qk(U
L
1:T ) =

|CL−1|∑
j=1

wk, j κ(U L
1:T , uq

j ) (4)

dC
min = min

1≤p≤|CL−1|
‖ uL

j − C L
p ‖, (5)

where |CL−1| is the size of the centers in RKHS, including
the input sequences of the preceding samples across all the
previous L-1 trials. uq

j is the j th center after quantization,
whose minimal distance dC

min in Eq.5 to all the previous centers
C L

p , which is updated over trials, is larger than ξU . If the
distance of ut to all the previous centers is larger than ξU ,
we assign a new kernel center to this input ut . Otherwise, the
centers remain unchanged.

After the action values are calculated for each time instance
within trial L, we will probabilistically choose the action
sequence AL

1:T based on the softmax policy. AL
1:T is formed

with a sequence of chosen action k∗ (blue dots in Fig. 3),

defined as P (Zk∗ = 1) = exp(Qk∗ (uL
t )/τ )∑K

k′=1 exp(Qk′ (uL
t )/τ )

, where τ is the

temperature parameter and K is the action set.
In the multi-step task, the explicit reward is only given

at the end of the trial. However, during the interaction with
the prosthesis, the subjects receive sensory feedback before
they reach the final target, which indicates the decoder has
stayed within the start area long enough to trigger an audio
tone, which indicates the successful start of the trial. Like the
existing multi- step decoders, if the decoded action sequence
reaches the final target successfully, our decoder will get a
ground truth reward rg = 1. Otherwise, it receives no reward
rg = 0. The difference is that we utilize the extra guidance
information when receiving the sensory feedback to update
the decoder. If the subjects accomplish a part of the task,
the decoder will receive an additional intermediate guidance r̂
derived from the classification on mPFC activity as described
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in Eq.1. Here, we formulate the reward function as:

r =

⎧⎪⎨
⎪⎩

rg, Task ends

r̂ , Sensory feedback is given

0, Otherwise

(6)

Based on the reward function, a multi-step task can be
decomposed by the sensory feedback (yellow bars) into
smaller segments, as indicated in Fig. 3. Instead of all the
data within a whole trial, we analyze a sequence of neural data
within the interval between the adjacent (M − 1)th and Mth

feedback. To assign the credit over space and time, we propose
a TD error via backpropagation for the QAGKRL as in Eq. 7.

δtM
= r L

tM +1 + γ Q(uL
tM +1, aL

tM+1) − Q(uL
tM

, aL
tM

) (7)

δλ
tM

= δL
tM

+
∑TM −1

n=1
(γ λ)n δL

tM+n, (8)

where tM represents the time index in segment M . TM repre-
sents the length of segment M . r L

tM +1 is the reward received
at time tM+1, which is obtained from Eq.6. Q(uL

tM +1, aL
tM+1)

and Q(uL
tM

, aL
tM

) are the future rewards expected to be obtained
at time tM+1 and the current time tM , respectively. λ is the
eligibility trace-decay parameter, and γ is the discount factor.

Different from the previous TD methods, Q values are
calculated from current input and the quantized centers in
RHKS, which assigns the credit assignment over space. And
we also consider the temporal difference as in Eq.7. In this
way, we assign the credit over both space and time. Note that
this error is accumulated only within the current segment of
the trial to update the decoder, as shown in Eq. 8. In addition,
a global error-based expansive function is defined to enhance
the learning when an unexpected reward comes, shown as:

g
(
δλ

tM

) =

⎧⎪⎨
⎪⎩

δλ
tM

1 − δλ
tM

+ ε
, 0 ≤ δλ

tM
≤ 1

δλ
tM

, otherwise

(9)

where ε = 1e-4 here, which is a small constant to eliminate
the singularity when δλ

tM
= 1.

This expanded error will be used to efficiently update the
weights of TD-QAGKRL for every time instance within the
trial when sensory feedback is presented. For a new center
in RKHS that cannot be quantized, we assign a new kernel
center to this input uL

t with the weight wk,l . If the input is
quantized to the closest center p, we locally update the center’s
coefficient accordingly, as in Eq.10. This spatial-temporal error
helps to optimize the neural-state mapping for the multi-step
task.{

wk,l = ηg
(
δλ

t

)
, l : new center index

wk,p = wk,p + ηg
(
δλ

t

)
, p : closest center index

(10)

III. RESULT

In this section, we will first visualize the firing patterns
of M1 neural activities during the position-reaching task and
mPFC neuron patterns before and after the onset of the
triggered sensory feedback. We will also demonstrate the
classification results using an SVM across multiple segments

Fig. 4. Average trajectory (top) and raster plots (bottom) of three typical
M1 neurons. The average firing rate across trials is shown in solid line.

from two subjects. Then, we embed this intermediate guid-
ance from the mPFC activity into an RL framework for
the multi-step task. We compare the decoding performance
and reconstructed trajectory of the proposed method using
the intermediate reward with the case only using the final
reward. To further validate the decoding ability of the proposed
method, we compare it with the other TD-RL methods given
the same reward information.

First, we visualize the neural modulation of M1 activity
when the subject completes the position-reaching task. The top
part shows the trajectory of each trial and averaged trajectory
(thick blue and red curves) in Fig. 4. The x-axis is the time,
and the y-axis is the position. As the length of each trial is
different, we pick the same length of data (1 second) from
the event onset (start and success). The bottom part shows the
raster plot and corresponding histogram (blue and red solid
curves) of three typical M1 neurons, respectively. We can see
the neural patterns are changing distinctly from the event onset
(start and success), which reveals that animals modulate their
M1 neural activities when they try to complete the task. In our
experiment, the RL decoder fed with only M1 information
can already achieve a decoding accuracy of over 90.3%, and
adding the mPFC activity can improve by 1.6% [29]. Thus, the
brain control trajectory is mainly completed using M1 instead
of mPFC neural activities. Then we also validate whether
mPFC neurons respond to the sensory feedback. We plot the
raster and histogram of two typical mPFC neurons under two
circumstances: when trying vs. after successfully trigger the
start tone, as shown in Fig. 5. The trying stage includes the
periods that the subjects have not obtained the reward (e.g.,
the audio cursor did not move towards the desired trajectory).
Scales on the x-axis represent the time, and units on the y-axis
indicate the behavioral trials and occurrence of spikes per
second for raster and histogram plots, respectively. The zero
point represents the onset of the triggered start tone. Note
that no water reward is given after the presence of the audio
tone. This setting is different from the cases in [31] and [36],
where the water reward is given right after the audio tone that
indicates success. It is clearly seen that the neural patterns
of mPFC activities change significantly after the start tone is
presented to the subject.
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Fig. 5. The raster plots of two typical mPFC neurons in the duration
of trying and successfully trigger the start tone. The average firing rate
across trials is shown in red.

Given such observations, we build a classification model
using mPFC data from two periods (trying vs. successfully
trigger the start tone) during training. For testing, neural
activities after the triggered audio tones are put into this model
to indicate the intermediate evaluation at each time instance.

Here, we implement a kernel SVM to obtain the single-trial
evaluation information via four-fold cross-validation. Specifi-
cally, the mPFC neural activities (500 ms in the trying stage
vs. successful trigger stage) are put into SVM to distinguish
whether the mPFC has interpreted that a part of the task
has been accomplished, i.e., the successful trigger of start
in our experiment. The average classification accuracy by the
SVM reaches 85.5% across subjects. The high classification
accuracy ensures that mPFC activities can be an intermediate
evaluation of the external sensory feedback.

After obtaining the intermediate evaluation information
from the mPFC activities, we train the RL decoder with the
real data collected from the brain control position reaching
task. The online recording involves the neural data when
subjects are not fully engaged in the task, which leads to
a long response time. Thus, we cluster the trajectory and
segment the neural activity corresponding to the large veloc-
ity, which characterizes the duration that the subjects are
engaged. In the task, we observe that the subjects need at
least 0.7 seconds to complete one subtask (i.e., going up to
the success area). In this case, considering a 300 ms history,
we segment 400 ms M1 neural activities from going up
and down trajectory clusters, respectively. The segmented M1
neural data are reconnected as a trial with a shorter response
time for TD-RL training. The output of the decoder is the
action sequence. Moreover, we adopt a confidence metric to
generate intermediate guidance with high confidence to update
decoder parameters [34]. The threshold of confidence metric
is set by choosing 90% of the total SVM results far from the
hyperplane. Such an intermediate guidance is treated with high
confidence and will be used to update the decoder parameters
when the subject receives sensory feedback in the multi-step
task.

Fig. 6. Learning curves of two subjects using five TD-RL models. The
solid line represents the mean value across 10 initializations and shaded
areas show the standard deviation. The dashed black represents the
Q(λ)-learning, which is commonly used in the one-step BMI decoding
task.

To validate whether incorporating the extra intermedi-
ate guidance from the mPFC activity into the decoder
improves decoding performance, we compare our method
(TD-QAGKRL with intermediate guidance) with the model
using the final reward only (TD-QAGKRL). We explore the
optimal parameters by picking the values that lead to the
highest performance in validation data. In each initialization,
60% of the data is selected for decoder training, 20% for
validation, and the rest for testing. We shuffle the data 10
times for each method. Note that the test data has never
used in the training phase for each shuffle. With optimal
parameters (e.g., we select kernel width h = 1.6, quantization
threshold ξu = 0.6, learning rate η = 0.3, discount factor
γ = 0.9, and eligibility trace rate λ = 0.99 for TD-QAGKRL),
the learning curves of the four models are shown in Fig. 6
for the two subjects, respectively. The x-axis represents the
training epochs (each contains 20 trials), and the y-axis is
the correct rate. The solid curve shows the mean performance
value across 20 data shuffles. The shadow represents the
standard deviation of the success rate. We can see that the
TD-QAGRKL (yellow curve) has a slower convergence speed
(15 epochs late on Subject-01 and 5 epochs late on Subject-
02) and lower convergence rate compared with using the
extra intermediate guidance (red curve). This result reveals
that using the intermediate evaluation as the additional reward
information for the decoder can significantly improve the
performance.

Moreover, we want to verify that the proposed
TD-QAGKRL provides a better decoding ability than
existing algorithms given the same reward information.
In Fig. 6, Q(λ)-learning [9] is selected as the benchmark
of RL decoder and is represented by the black dashed
curve. The performance of Q(λ)-learning is poor due to
the network structure, which is prone to trap in the local
minima. This result is expected and concurred with the results
shown in [35], which demonstrated that Q(λ)-learning failed
in a multi-step obstacle avoidance task. One extension of
Q(λ)-learning is SAGREL, which shares the same structure.
Therefore, we use SAGRL as the baseline in the following
comparisons. We can see that SAGREL (blue curve) has a
large variance around the chance level, which means that it
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Fig. 7. The learning process of the trajectory reconstruction and the action values of the three decoders. The three columns represent the
beginning, middle, and end phases of the decoder training. (a) Trajectory reconstructions by SAGREL (blue dashed line), Q-KTD (green dashed
line), and TD-QAGKRL with intermediate guidance (red dashed line) in three stages. The solid black line is the ground truth brain state. The grey
dashed line means the manual reset of the position. The red area indicates the success range, the blue area indicates the rest range, the start
events are labelled with the yellow bars, and the success events are labelled with the brown bars. (b), (c) and (d) Corresponding output values of
two actions (up and down) of the three decoders during learning. The red curve represents the down action, and the blue curve represents the up
action.

can hardly find the correct mapping in the multi-step task as it
utilizes limited temporal information. TD-QAGKRL (yellow
curve) converges faster than the other two methods and
obtains a higher convergence rate. Note that Q-KTD (green
curve) can achieve similar performance to TD-QAGKRL with
good initiations, but it sometimes traps in the local minima
due to the time dynamics. Note that the simulation may
include more complex movement sequences to characterize
the performance across decoding methods. We simulate a
four-target center-out task, where the subjects need to take
several steps to reach the target as in [37]. The intermediate
reward is generated probabilistically based on the real mPFC
activity classification results. We find that the proposed
algorithms with intermediate guidance perform better than
the existing methods. Due to the page limit, here we show
the results on the real data only.

We further examine the reconstructed trajectory decoded
from the neural states using three models (Q-KTD, SAGREL,
and TD-QAGKRL with intermediate guidance). The trajectory
can be grouped into two subsets: going up to reach the success
area to get the reward and down to the rest area to trigger
the start, as indicated in Fig. 1(a). The step size of going up
(lu) and down (ld ) is obtained based on training trials. lu, ld

are calculated by the Euclidean distance between the start
and end position, divided by the average number of steps
within the two points, respectively. We present the adaptation
process to illustrate how the three decoding models learn the
brain control task over time, shown as the beginning, middle

and late phases in three columns in Fig. 7, respectively. The
trajectory input is the neural activity collected from M1 and
the mPFC in the brain control task, and the output is the
action sequence (up or down). The cursor position can be
calculated by the current action and step size (lu or ld).
As shown in Fig. 7(a), the grey line on the top covers the
events that occurred throughout the trials, including trial start
(yellow bar) and trial success (brown bar).

Successful trials are labelled with colored diamonds by
three decoders, respectively. At the beginning of training (first
column of Fig. 7(a)), the reconstructed trajectory using three
decoders cannot follow the ground truth and keep going up.
We can see that action values of up action are consistently
higher than the down action of all three decoders (first column
of Fig. 7(b), (c), and (d)) because of the random initializa-
tions. Therefore, we manually reset the position of each trial,
as indicated by the dashed grey line. In the middle stage
(second column of Fig. 7(a)), our proposed method begins to
track the trajectory while the other two still cannot follow.
The transitions among the output action values over time are
observed after the beginning phase, indicating that the weight
of decoders evolves in learning the state-action mapping to
take the correct action to complete the task. Specifically, action
values using our method begin to show the difference in the
correct sequence (second column in Fig. 7(d)), which means it
can distinguish between the two actions. However, SAGREL
cannot differentiate movements as the “up” action values are
still consistently higher than the down action (second column
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Fig. 8. The trajectory reconstruction on the testing data of three TD-RL
decoders.

Fig. 9. Box plot of the statistical testing result of four methods for two
subjects.

of Fig. 7(b)), and the Q-KTD method starts to learn action
policies (second column of Fig. 7(c)) as the action values
begin to fluctuate in the trial, but Q-KTD cannot classify
actions well. In the late stage (third column of Fig. 7(a)), our
method and Q-KTD track the ground truth while SAGREL still
fails and keeps going up. The transitions between action values
using our method and Q-KTD is almost the same as the ground
truth (third column in Fig. 7 (c) and (d)), while SAGREL
keeps the same with the previous phases (third column in
Fig. 7 (b)) since it is trapped in the local minima. Compared
with Q-KTD, our method has a faster convergence speed (learn
the mapping in the middle phase) and better reconstructs the
trajectory with more correct trials (4 red diamonds).

We observe the same phenomenon in the testing segments.
Here we show the reconstructed trajectory in Fig. 8. The
legends remain the same as in Fig. 7. For SAGREL, the
trajectory (blue color) fails to reach the target and keeps
going up in all trials. Even though Q-KTD (green color) can
also partially follow the ground truth trajectory (black color),
our method (red color) accomplishes more successful trials
(6 diamonds) than Q-KTD. When the decoding performance
reaches convergence in the training session, the models are
tested on the data that never appears in the respective training.
The trained parameters are fixed for the testing to assess how
the network retains the information it has learned in the past.
To understand how much the proposed method contributes to
the decoding other than the intermediate guidance, we also
add the performance of TD-QAGKRL with final reward for
comparison. Fig. 9 shows the box-plot distributions of four
methods’ total success rates across all the initializations using
the testing data from two subjects. The testing results are
shown in Table I. We can find that our proposed method

TABLE I
STATISTICAL TESTING PERFORMANCE OF FOUR DECODING

METHODS ACROSS SEGMENTS

with intermediate guidance (red) ranges much narrower with
shorter whiskers, while the Q-KTD ranges (green) have a
larger distribution, and SAGREL (blue) remains at the chance
level. The results indicate that the decoding performance of
Q-KTD is sensitive with the initialization and may trap in
the local minima during the search, whereas TD-QAGKRL
(yellow) greatly improves performance by 7.4% and 8.5%
for two subjects, respectively. With the intermediate guidance,
our approach further improves the performance by 19.3% and
2.5% for two subjects, respectively. For each subject, we also
perform the right tail paired-sample t-test on 10 test segments.
All the tests are performed using Bonferroni correction at
an α = 0.025 significance level. Under the null hypothesis,
the probability of observing an equal or higher value in the
test statistics is indicated by the p-value (SAGREL against
our method: p = 1.35e-11, and our method against Q-KTD:
p = 0.0034 for Subject-01; SAGREL against our method:
p = 0.0038, and our method against Q-KTD: p = 0.012 for
Subject-02).

In all, our proposed method outperforms the other two
algorithms in terms of speed and accuracy and maintains stable
performance when reconstructing the trajectory of prosthesis
control.

IV. CONCLUSION AND DISCUSSION

Reinforcement learning-based brain-machine interfaces
assist paralyzed people in controlling external devices without
real limb movement. In real BMI scenarios, the subjects need
to control the neural prosthesis with the brain neural activities
to accomplish a task. When the trajectory deviates from the
target, the subjects need to adjust their neural activities to
reach the target. Usually, the task consists of multiple steps
but only gives the reward at the final step. Current RL
decoder learns the state-action mapping by incorporating the
temporal difference method, but is not effective when the task
takes too many steps, and the reward is too sparse. In BMI
tasks, sensory feedback (visual, audio, etc.) is often given to
indicate the status of the prosthesis. Even though this feedback
can be observed by the subjects and revealed in the brain
cortical areas, this interpretation from the brain has not been
investigated and utilized in the RL decoders.

In this study, we propose an RL framework that effectively
learns a multi-step decoding task with the assistance of the
intermediate evaluation extracted from the mPFC upon the
sensory feedback. A new TD-QAGKRL decoder has been
proposed to speed up the learning of the neural-state mapping
by assigning credit both spatially over neural states spanned in
RKHS and over a temporal sequence of movements. We test
our framework on the neural data collected when the rats were
performing a brain control position reaching task. Sensory
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feedback is presented to the rats when they successfully
reach the start zone in the middle of the trial. We first model
the mPFC neural activities as an internal representation of
the sensory feedback by an SVM. The average classification
accuracy of distinguishing mPFC neural activities (trying vs.
successfully trigger the tone) was over 85% across multiple
segments from two subjects. This high classification result
indicates that the mPFC activities can be leveraged as the
intermediate guidance for the RL decoders in the multi-step
task. One thing we need to point out is that, in this work,
the time duration of the mPFC activity is different from the
work that used the internal neural presentation of the reward
(NAcc activity [34], [38], M1 activity [39]). We utilize the
mPFC neural response upon the sensory feedback, which
is not directly associated with the final reward, but as the
intermediate guidance to assist the training of the decoder.
In this way, we embed this intermediate guidance into the
TD-QAGKRL to split the long multi-step task into smaller
task segments upon sensory feedback to effectively learn
the state-action mapping. Compared with TD-QAGKRL only
using the final reward, leveraging extra intermediate guidance
outperforms it in accuracy, convergence speed, and stability.
This validates that using intermediate guidance evaluated from
the mPFC activities can significantly improve the decoding
performance.

Moreover, TD-QAGKRL is more advantageous than the
other existing TD-RL methods, given the same reward infor-
mation for delayed and instantaneous reward cases. First, the
sensory feedback or the external reward is provided at certain
points (e.g., finish the sub-task or reach the final target). All
the models share the same neural inputs and action ensembles.
SAGREL inherits a nonlinear neural network and incorporates
a Sarsa-style learning signal to update the network, which
makes SAGREL prone to trap in the local minima and
gain less from the sparse reward information since it only
considers information from the previous trial. Q-KTD utilizes
an ε-greedy policy to select actions based on the current
action values. This policy exploits current knowledge with a
high probability and seldom explores the other actions with
lower values. It would easily bias the state action policy and
limit exploration in the state space. Although it shares the
same structure as our method, the input-output mapping can
only achieve the optimal within the limited space that has
been explored. In comparison, our method explores spatial-
temporal optimization and adopts a softmax policy to select the
actions according to the probability distribution of all action
sequences. Even if the optimal action is not selected, the
suboptimal action could be chosen with a higher possibility
than the others, which possibly helps prevent the performance
from experiencing an abrupt change. Second, when the instan-
taneous reward is available at each time instance, our method
is equivalent to QAGREL [35]. Our method projects input
neural data into the RHKS feature space and reaches the global
optimum. Prins et al. used a fully connected neural network
structure as the actor to select actions [34]. This actor shares
the similarity with AGREL, which is also prone to trap in the
local minimum. Mahmoudi et al. used a time-delayed neural
network with a gamma memory structure to decode actions

[38]. This gamma memory structure is utilized to project the
input data into the hidden layer. However, a gamma filter is an
IIR filter with a restricted or adjustable memory depth [40].
In [41] and [42], it has been pointed out that ensuring stability
during IIR adaptation is complex, and the error surface is non-
convex. When the gamma filter is extended to the RKHS, it
can be generalized to other filters (AR, MR, ARMA) with
better performance. Our method (QAGKRL) is optimized in
the RHKS feature space. Theoretically, our approach has a
better computational capacity than the decoder with a gamma
memory structure.

Overall, our proposed method embeds additional intermedi-
ate guidance from the mPFC activity upon the sensory feed-
back to ensure better performance for the multi-step task. This
framework is designed in an online manner and can be applied
for closed-loop interaction when sensory feedback is available,
which has a great potential to improve the performance of
clinical BMI applications.
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