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Abstract— Electroencephalography-based Brain Com-
puter Interfaces (BCIs) invariably have a degenerate per-
formance due to the considerable individual variability.
To address this problem, we develop a novel domain adap-
tation method with optimal transport and frequency mixup
for cross-subject transfer learning in motor imagery BCls.
Specifically, the preprocessed EEG signals from source
and target domain are mapped into latent space with
an embedding module, where the representation distri-
butions and label distributions across domains have a
large discrepancy. We assume that there exists a non-
linear coupling matrix between both domains, which can
be utilized to estimate the distance of joint distributions for
different domains. Depending on the optimal transport, the
Wasserstein distance between source and target domains
is minimized, yielding the alignment of joint distributions.
Moreover, a new mixup strategy is also introduced to gen-
eralize the model, where the inputs trials are mixed in
frequency domain rather than in raw space. The exten-
sive experiments on three evaluation benchmarks are con-
ducted to validate the proposed framework. All the results
demonstrate that our method achieves a superior perfor-
mance than previous state-of-the-art domain adaptation
approaches.

brain-
optimal

Index Terms— Electroencephalogram (EEG),
computer interface (BCIl), transfer learning,
transportation.

|. INTRODUCTION

RAIN-COMPUTER interface (BCI) based on electroen-
cephalography (EEG) is capable of establishing an inter-
active pathway between human brains and electronic devices,
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which is promising for a wide range of applications, such
as rehabilitation, smart house systems, entertainments, and so
forth [1], [2], [3], [4], [5], [6]. In general, a complete and
robust EEG-based BCI system requires a calibration phase
and a testing phase [7]. In calibration phase, a decoding
model is learned with some labelled EEG signals, aiming to
predict each input with low risk. In testing phase, the learned
model is applied to those unseen signals and outputs their
predictions, which can be served as the control instructions
for external devices [2], [3]. However, there are still remaining
much challenges in the application of BCIs, which are majorly
contributed in the characteristics of EEG signals. On one
hand, EEG signals are non-stationary, non-Gaussian and have
a low signal-to-noise ratio [8], leading to the difficulty of
discriminative features extraction and signal analysis, despite
the numerous available methods, like Common Spatial Pat-
tern (CSP), Short-time Fourier Transform (STFT), Differential
Entropy (DE) and complex network theory [9], [10], [11], [12],
[13], [14], [15]. On the other hand, large individual difference
of EEG signals makes it difficult to learn a robust model across
subjects, which can bridge the data distributions shift between
different subjects [16], [17]. The above dilemma calls for more
powerful and effective approaches to be developed in further
studies.

Transfer learning provides an effective solution to bridge
the data shift in EEG-based BCIs. Over the past few years,
numerous transfer learning approaches based on Unsupervised
Domain Adaptation (UDA) have been investigated and applied
to EEG classification [18], [19], [20], [21], [22], [23]. Accord-
ing to the standard setting of UDA, the domain with enough
labeled samples refers to source domain, while the domain
with only unlabeled samples is regarded as target domain [24].
A major issue of UDA is to adapt/align the distribution and
reduce distribution discrepancy between different domains.
To this effect, the earlier works aim at transforming the
target domain onto source domain, like Euclidean space data
Alignment (EA) [18], Transfer Component Analysis (TCA)
[20], [25] and Joint distribution adaptation (JDA) [26], [27].
Recently, most studies majorly focus on the shared repre-
sentations space construction on both domains, like Domain
Adversarial Neural Network (DANN) [19], [28], Joint Adap-
tation Network (JAN) [29], Conditional Adversarial Domain
Adaptation Neural Network (CDAN) [21], [30] and Dynamic

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-8636-526X
https://orcid.org/0000-0002-5269-0029
https://orcid.org/0000-0002-5257-6285
https://orcid.org/0000-0002-9811-4617
https://orcid.org/0000-0002-9551-202X

CHEN et al.: TRANSFER LEARNING WITH OPTIMAL TRANSPORTATION AND FREQUENCY MIXUP

2867

Source Domain

Lo sl g Ak
| TTURITTIPATY)
v
A Ao M AM v s ki
W WA

W

[T T
WY

Ul
I Ak A
YWY

EE====

=3

WW“(A LA ot
VY

S |

] Optimal Transport

ource Labels l

Target Domain

| T
Ly o)

iAot by
W im

Solver

Fig. 1. The pipeline of the proposed domain adaptation framework. The samples from source and target domain are mapped into latent space with
a shared embedding block F. Then both the representations and labels are employed to estimate the domain distance across domains, which helps
guide the alignment of domain joint distributions. To further generalize the model, the signals from each domain are mixed in the frequency domain
of temporal space, those new mixed samples are also fed to embedding block F and classifier G for prediction. Note that the predictions for target

signals are utilized as their pseudo labels.

Joint Domain Adaptation Network (DJDAN) [22]. These
works adapt the distribution across domains with either Max-
imum Mean Discrepancy (MMD) or domain discriminator,
only a few concentrate on the domain adaptation with optimal
transport [31], a more general framework with geometric
interpretability. As a consequence, we develop the domain
adaptation approach based on optimal transport for cross-
subject transfer learning task in EEG-based BClIs.

Another prevalent challenge in EEG-based BClIs is the
problem of data scarcity [8], [32], leading to model overfitting
and performance degradation. A direct and simple solution is
to utilize the data from different subjects to train a subject-
specific model, which is found to be effective in cross-
session classification [33]. Nevertheless, this strategy does not
address the above problem in cross-subject classification task.
Data augmentation is a popular strategy to generalize the
model in computer vision [34], [35], [36], [37], [38], [39],
[40], [41]. To date, there are many augmentation methods
have been developed and applied to image data, includ-
ing geometric transformations [34], [35], random erasing
[36], [37], GAN-based augmentations [35], [38], Mixup-based
augmentations [39], [40], [41] and so on. Reassuringly, most
of augmentation approaches in vision have been transferred
to BCI [42], [43], [44] and achieved considerable perfor-
mance improvement. However, few studies concentrate on the
application of Mixup-based augmentations in EEG signals.
Therefore, we introduce a novel mixup strategy for EEG
augmentation, which would be detailed in Section III.

In this work, we develop an offline transfer learning frame-
work, namely Joint Distribution Adaptation with Optimal
Transportation and frequency Mixup (JDAOT-Mix), to address
the above limitations in cross-subject classification of BCI.
The overview of the proposed framework is presented in
Figure 1. Specifically, the joint distributions across domain
is adapted by employing the optimal transportation theory,

where the optimal transport plan between source and target
domains is calculated. In addition, a novel Mixup in Fre-
quency Domain (MFD) strategy is introduced to generalize
the model. Compared to other mixup strategies, new mixup
samples are created in the frequency domain of input space,
instead of raw space. Specially, a fixed mixup ratio is adopted
in our mixup scheme, which is different from the random
mixup ratio in previous methods. During training, the pro-
posed mixup strategy is applied to both domains, utilizing
the ground truths and pseudo labels from source and target
domains.

Our major contributions can be highlighted as follows:

e A novel transfer learning framework called joint distribu-
tion adaptation with optimal transportation and frequency
mixup (JDAOT-Mix) is developed for the cross-subject
classification task in EEG-based motor imagery.

e A Mixup in Frequency Domain (MFD) method is intro-
duced as a new data augmentation for EEG-based BCI,
where the new samples is created in the frequency domain
of input space by taking a pair of samples and their
corresponding labels.

The remainder of this paper is organized as follows.
Section II mainly review the previous works on domain
adaptation, data augmentation and their applications for BCL
Section IIT details the components of the proposed frame-
work. Section IV describes the experimental setting and
section V presents their results on two evaluation datasets.
Next, section VI discusses the related ablation studies. Finally,
Section VII concludes this work.

Il. RELATED WORKS
A. Unsupervised Domain Adaptation
Denote D* = {(x}, )}’ the set of EEG signals from
source domain, where xf e REXT represents a EEG trial with
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C electrodes and the length of T, y{ is the corresponding
label, and m is the number of all EEG trials. Similarly, D' =
{(xlf)}l’.’:1 denotes the unlabeled target domain with n EEG
trials. The ultimate goal of unsupervised domain adaptation
is to generalize the model from source domain D° to target
domain D!, with the adequate labeled source samples and
unlabeled target samples. In BCIs, knowledge transfer across
different subjects is the promising research topic, yet with a
great challenge. Recently, many interesting domain adaptation
approaches have been proposed to address this issue. Earlier
searchers concentrate on subspace-based methods, where the
low-dimensional subspace preserves the data properties and
intrinsic distributions across domains. For example, transfer
component analysis (TCA) method [25] aims to learn the
transfer components across domains in a reproducing kernel
Hilbert space with maximum mean discrepancy. Joint distri-
bution adaptation (JDA) method [26] tries to jointly align
both the marginal distribution and conditional distribution in a
principled dimensionality reduction procedure. As the efficacy
of GAN networks have been proved in visual domain, most
recent works gradually exploit the domain-shared space learn-
ing with adversarial-based frameworks, such as DANN [19],
[23], [28], CDAN [21], [30] and DJDAN [22]. For domain-
invariant representations learning, these approaches always
play a minimax game between the shared feature extractor and
domain discriminator, where the feature extractor is utilized
to map source and target samples into a latent space, the
domain discriminator tries to distinguish the representations
from source domain to target domain. Most recently, a few
methods based on optimal transportation are proposed to
domain adaptation. In [45], a novel framework based on
regularized discrete optimal transport is applied to cross-
subject transfer learning for the P300-Speller paradigm, where
a transport plan is estimated to map the target features onto
source domain. In [7], a backward optimal transport for
domain adaptation (BOTDA) is proposed for cross-session
MlI-based BCI, where the target samples are transformed by
a transport mapping to modify the trained classifier. Despite
these recent developments for domain adaptation and their
successful applications in EEG-based BCIs, much challenges
are still remained in cross-subject transfer learning, especially
in the case of multiple categories classification. Therefore,
we develop a novel framework, namely joint distribution
adaptation with optimal transportation and frequency mixup
(JDAOT-Mix), inspired by the previous works in computer
vision [31], [46]. In the proposed JDAOT-Mix, the joint
distributions across domains are aligned by optimal transport
estimation, and a frequency mixup strategy is introduced
to train a more robust classifier. Compared with BOTDA,
JDAOT-Mix is a deep domain adaptation method using optimal
transport loss to reduce domain shift, without transform target
features to source domain by transport matrix.

B. Mixup-Based Methods for Data Augmentation

In the field of computer vision, the Mixup-based augmen-
tation is a popular and effective strategy for generalizing
models [39], [40], [41]. The original mixup method [39] takes

a pair of samples and their labels to create a new sample and
corresponding label, via the convex combination of training
samples. Another mixup strategy, called CutMix [40], using
a patch from input image to replace the removed regions of
another image, their labels are mixed proportionally to their
number of pixels. But the above methods may disregard the
local saliency information embedded in the underlying data
structure. To address this issue, a Puzzle Mix method, lever-
aging the saliency information and the underlying regional sta-
tistics of input samples, is proposed for vision tasks. Recently,
many works on BCI have investigated the mixup augmentation
and applied it to training procedure [47], [48], [49]. These
works apply mixup to training samples in raw input space;
however, few studies concentrate on creating new samples
in frequency domain using mixup. Specially, we introduce a
Mixup in Frequency Domain (MFD) augmentation to gener-
alize the models. In our MFD, new samples are the linear
interpolation of the FFT series from two randomly selected
samples, with a fixed mixup ratio instead of random ratio.
From the following empirical experiments, we find that the
introduced MFD strategy is more suitable for EEG-based BCI
systems.

I1l. METHODS

In this section, we will present our proposition for cross-
subject transfer learning in details.

A. Representations Learning With Neural Network

To extract representations from input EEG signals,
we design a lightweight architecture as baseline network,
which comprises the Embedding Block F and the Classifier G
(as shown in Figure 2). The parameters of network is presented
in Table I.

Given an input signal x € R*T the Embedding Block
is responsible for mapping it into the latent space. Firstly,
the input signal is fed into two cascaded convolutional blocks
(denoted Temporal Conv and Spatial Conv in Figure 2) fol-
lowed by a BatchNorm layer for temporal-spatial dependencies
extraction. Then the output of Spatial Conv is transformed
with a EPD block (combining ELU, Average Pooling and
Dropout layers), which employs an Average Pooling layer
for computation efficiency and a Dropout layer for alleviating
the overfitting problem. Next, one Separable Conv [50] and
another EPD block are sequentially applied to aggregate high-
level representations. Finally, the representations f € R?
output from the Embedding Block is taken by the classifier
(a Dense layer with Softmax activation function) to predict
final classification score ¥ € R€, where d and ¢ are the
dimension of representation and the number of the cate-
gories for classification, respectively. To avoid the performance
degradation in source domain, the objective of representations
learning is defined as follows:

1 m
Lar =2 D L1 G (F (). 0

where L(-, -) is the cross-entropy function.
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Fig. 2. The architecture of baseline model for given an input of 22 x 448, which consists of an Embedding Block Fand a Classifier G. The embedding
block Fis utilized to map input signals to high-level feature space, and outputs discriminative representations to classifier G for predictions.

TABLE |
MODEL PARAMETERS OF BASELINE

Module Layer Kernel Option

Input - -
6x1x32 SAME
24 xCx1 VALID
Batch Norm - -
ELU - -

Temporal Conv

Spatial Conv

Embedding Block | Average Pooling 1x38 -
Dropout - 0.25
24 x1x16 SAME
ELU - -

I x12 -

Dropout -

Separable Conv

Average Pooling

Flatten - -

Dense
Classifier
Softmax - -

B. Representations Adaptation With
Optimal Transportation

Denote u and u; as the empirical probability measures for
source and target domains, respectively. Optimal transportation
provides us a geometrical solution to measure the distance
between two different domains, by solving the discrete version
of Monge-Kantorovich problem [51] as follows:

min
y €(ps, 1)

m n
2 t
Z yl’jc(xf’xj) ’
i

W(I“S, luf) = ‘COZ‘ s (2)

Loy = 3)

where y € R™*" is a probabilistic coupling between source
and target domains, where each element y;; represents the
coupling coefficient between source sample x} and target
sample xz.. IT(us, 1y) denotes a collection of joint probability

distributions with marginals u; and x;, and ¢ (xf, x?) is the
cost function for measuring the dissimilarity between samples
x{ and x".

In this work, the underlying idea of our proposition is to
jointly adapt the marginal and conditional distributions across
domains in latent space. To this end, ¢ (xf, x;) of Eq. (3) is
replaced by a generalized joint cost measure as follows, which
is inspired by previous works [31], [46]:

¢ (FO, 35 F(x), 35)
= hie (FO, F&) + L (31 5) . @)

where F(x}) is the source representation of sample x;, while
F (x;.) is the target representation. The hyperparameters 11 and
A2 are two positive factors to scale the different distance terms.
Considering the true label of target sample x’. is unavailable
in UDA, its prediction )7; =G(F (x;)) generated by classifier
is utilized to replace the ground truth, as described in Eq. (4).
Finally, the original problem can be depicted as follows:

W' (s, ur) min

y €us, pe)

m n

> e (FO, 3 F&D, ) - ©)
i

In our case, c(-, ) is the {’% norm, the solution of the above
optimization problem can be considered as the Wasserstein
distance. Interestingly, the shared latent space and label space
across domains could be matched by minimizing their Wasser-
stein distance, which is proven in [51].

Lo, (5)

’
ﬁot:

C. Mixup in Frequency Domain

In this work, we introduce a new Mixup-based approach to
transform the trials within domains, as a data augmentation
technique. Different from the previous mixup-based augmen-
tation methods [39], [40], [41], the proposed method mixes
up the input signals in Frequency domain, with a fixed mixup
ratio.
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1) Mixup in Source Domain: Given a pair of inputs (X}, y)
and (X}, yj) from source domain, each of them is converted
into frequency domain with Fast Fourier Transform (FFT) as
following:

T-1
Ff = e k=0,1,...,T - 1, )
j=0

where st is the k-th FFT coefficient of signal x*. Next, the
fixed mixup method is applied to two FFT coefficients series
{fo,k}kT;ol and {Fzsz’,k}kT;ol:

(FV ) = A AFL iz + =D {Fy sy, (8
V=24-yi+0A =21 yp, )

where 1 denotes the fixed mixup ratio. Finally, the derived
mixup coefficients series {F,f},{;ol is transformed with inverse
FFT (iFFT) to obtain a new mixed signals X°, which is
taken as input by embedding block. Formally, the optimization
objective of our mixup approach in source domain can be
defined as:

m
Lon==> 5110 (p (v1%)), (10
j=1
where p (y | X) is the prediction generated from classifier for
an input mixup trial X, m is the number of mixed trials in
source domain.

2) Mixup in Target Domain: Similarly, the aforementioned
mixup pipeline in source domain can be applied to target
domain, with only a few modifications. Since the scarcity
of labels for target domain, we utilize the pseudo labels of
target samples generated from classifier as their supervision.
For more semantic mixup representations from target domain,
only those instances with high certainty would be performed
our mixup strategy. To this end, we randomly pick two samples
(x4, ¥'}) and (x7y, y%) from target domain, each of them should
satisfy the following criterion:

5t = argmax p(yIx)), max(p(yIx)) > o, (1)

where fzf denotes the pseudo label of xl’., o 1s a confidence
threshold to control the number of target samples performing
mixup strategy. In the following, a new mixup trial X’ and its
label §' are created by two selected target samples with Eq.
(7) ~ Eq. (9). Finally, the objective of our mixup strategy in
target domain is formulated as:

[ .
Lon == Filog (p (v 1K),
k=1

(12)
where n is the number of mixed trials in target domain.

D. Optimization of Network
The baseline network is jointly optimized by the final
objective as follows:

m®in (1— al)ﬁclf + a1 Lgm + 02 Lom + L o, (13)

where ® denotes the parameters of network, a; and a, are
the hyperparameters to balance different loss items.

IV. EXPERIMENTS

We evaluate our proposed framework on three public EEG-
based datasets, including BCI IV dataset IIb, BCI IV dataset
ITa and CLA MI. And compare their classification performance
with previous state-of-the-art transfer learning methods.

A. Datasets

1) BCIIV lIb [52]: This dataset records the EEG signals from
nine different subjects with 3 electrodes, at the sampling rate
of 250 Hz. It contains five sessions for each subject, each
session contains two categories of EEG signals, including
imagery movements of the left hand and right hand. Note that
the segment between 3.5 ~ 7 seconds of each trial is utilized
in our experiments.

2) BCI IV lla [63]: This dataset is more challenging than
BCI IV IIb. It records the 22-channel EEG signals from
nine different subjects at the sampling rate of 250 Hz. Each
subject performed four imagery movement experiments at two
session, and each session contains 288 trials of four categories,
including the left hand, the right hand, the feet and the tongue.
Note that the segment between 2.5 ~ 6 seconds of each trial
is utilized in our experiments.

3) CLA Ml [54]: In the work of [54], Kaya et al published
a large set of EEG data collected in four experiments of
motor imagery (MI), where CLA MI is one of interaction
paradigms. In CLA MI paradigm, three imageries from seven
subjects are recorded by a standard 10-20 EEG cap (with
21 channels) at sampling rate of 200 Hz, including left-hand
movement, right-hand movement and passive mental imagery.
Each imagery signal has the length of one second and thus
contains 200 sample points. In the following experiments, the
segment between 0.15 ~ 1 seconds of each trial after stimulus
onset time is extracted for classification.

B. Comparison Algorithms

In the following experiments, the previous state-of-the-art
algorithms are employed for comparison, including EA [18],
transfer component analysis (TCA) [25], joint distribution
adaptation (JDA) [26], BOTDA [7], DANN [28], CDAN [30]
and DJDAN [22] methods. For traditional transfer learning
methods, like EA, TCA, JDA and BOTDA, Common Spatial
Pattern (CSP) method [11] is utilized to extract features.
On binary classification task, two components decomposed by
CSP is selected, and Linear Discriminant Analysis (LDA) [18]
is employed as binary classifier. On multi-category classi-
fication task, we select 12 components and 6 components
extracted from CSP for datasets ITa and CLA MI, respectively.
Then a multi-class SVM classifier is trained to achieve robust
performance. For fair comparison, the introduced baseline
network in this work is selected as the backbone for all deep
adaptation methods.

C. Implementation Details

Following the traditional protocol of unsupervised domain
adaptation for BCI, we adopt a Leave-One-Out principle to
delineate the source and target domains. Concretely, only one



CHEN et al.: TRANSFER LEARNING WITH OPTIMAL TRANSPORTATION AND FREQUENCY MIXUP

2871

Cross-Subject Classification Performance

36.21

80 75.97 76.11 76.24 76.65
68.81
70 [~ ]65.47 66.24 6653
60
e
S
<50
g 402
=
3 40 36.46
< e
30
20
10 BCI IV IIb
L1 EA[18] I JDA [27]
[CJ TCA[25] EEE BOTDA[7]

BCIIV Ila

68.01

60.69

58.98 59.11 59.04

53.20

48.46 48.77

38.53 37.31

35.44 3631

CLAMI

EEE DANN [28]
@ CDAN [30]

EEE DJDAN [22]
EEE JDAOT-Mix

Fig. 3. The average performance (%) of different algorithms on three evaluation datasets, including BCI IV lIb, lla and CLA MI datasets.

TABLE Il
THE SETTING OF HYPERPARAMETERS FOR EVALUATION DATASETS

Dataset A1 A A o | ap
1Ib 4e-4 04 08 06 02 02
IIa 4e-4 04 04 06 02 02

CLAMI 4e4 04 06 06 02 02

subject is selected as target domain, while other subjects are
source domain. Specially, we only utilize the training set
for each subject during training. For all evaluation datasets,
we apply a third-order Butterworth filter to pre-process the
raw EEG signals, where the filter band is set as 4-38 Hz as
previous works [55]. For computation efficiency, all the signals
are resampled to 128Hz. We train the model for 300 epochs,
using Adam optimizer with momentum and weight decay
set to 0.9 and 0.001, respectively. The learning rate for all
layers is set to 0.0015. CSP algorithm is implemented by
the MNE library [56], and deep methods are implemented by
PyTorch [57]. All the hyperparameters of Eq. (4) ~ (13) are
empirically set as in Table II.

V. RESULTS

The results of all evaluation datasets are exhibited in
Figure 3. On binary-category classification task, all the trans-
fer learning methods based on deep network show a significant

superior performance than traditional methods, like EA, TCA
and JDA. It is contributed to a powerful expressivity of the
neural network. Compared to adversarial domain adaptation
methods, our approach only shows the slightly improved
performance. This indicates that both JDAOT-Mix and those
adversarial-based approaches achieve the comparable perfor-
mance on simple motor imagery recognition task. However,
it can be observed that transfer knowledge across different
subjects is more difficult on the multi-class classification
task. On dataset Ila, traditional approaches only achieve the
average performance between 34.38% and 44.02%, while
adversarial-based methods achieve the accuracy below 55%.
In comparison of previous methods, JDAOT-Mix obtains an
average accuracy of 60.69%, which outperforms other methods
by a large margin between 7.49% and 26.31%. The classi-
fication performance is also greatly improved on CLA MI
dataset. It demonstrates that adapt joint distributions across
different domains with optimal transport are more effective
than subspace alignment and adversarial training, resulting in
improving the performance of cross-subject transfer learning
for EEG-based motor imagery. Moreover, the introduced MFD
strategy also helps to generalize the model.

We also investigate the average performance of three
condition-based domain adaptation methods (CDAN, DJIDAN
and JDAOT-Mix) on each category, as shown in Figure 4.
The value in the diagonal of each confusion matrix indicates
the average accuracy of each task among on all subjects. The
precision and recall evaluation metrics are also attached to
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Fig. 4. Confusion matrices for deep methods on different datasets. (a) BCI IV lIb; (b) BCI IV lla. (c) CLA MI. The Left Hand and Right Hand imagery

are denoted as 'LH’ and 'RH’, respectively.

the last row and last column of each confusion matrix,
respectively. On BCI IV IIb dataset, all deep methods perform
well on both motor imagery tasks, with the accuracy more
than 74%. Specially, our methods performs better on the
right hand (RH) imagery task, while CDAN and DJDAN do
the opposite. On the more challenging dataset Ila with four
motor imagery tasks, both adversarial-based approaches only
have a relative precise recognition ability on left hand, right
hand and tongue imagery tasks, but totally fail to differ feet
imagery from others. By contrast, the proposed method still
remains the better recognition performance on all imagery
tasks, despite it only achieves the average precision of 56.66%
and the recall rate of 51.23% on feet imagery task. It can be
explained by the same activate brain region of tongue and
feet imagery task, which making the decision to distinguish
them from each other become more difficult. On additional
multi-categories dataset CLA MI, JDAOT-Mix outperforms
the other comparison algorithms by significant margins in all
motor imagery tasks. In summary, the experimental results
on all datasets demonstrate the efficacy of the proposed
framework.

TABLE IlI
THE RESULTS (%) OF INVESTIGATING THE EFFECTS OF OUR

COMPONENTS ON EVALUATION DATASETS

Lo Lom  Lim Log | Ma | m | cLami
v 5170 | 74.06 | 5874
v 5274 | 7476 | 6077
v v 53.05 | 75.00 | 60.86
v v | 5868 | 7586 | 66.05
v v v v | 6069 | 7665 | 6801

VI. ABLATION STUDIES

A. Relative Contribution of Each Component

We conduct ablation studies to investigate the relative con-
tribution of each component of the proposed approach. As can
be seen in Table I, our MFD strategy in source domain
slightly improve the baseline on average by 1.04% on dataset
Ila, while the MFD in both domains greatly improve the
baseline by 1.35%. In addition, the joint distribution alignment
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Fig. 5. Features visualization of JDAOT combined with different mixup strategies on dataset lla. (a) JDAOT with vanilla mixup; (b) JDAOT with MFD.
Each cross symbol represents a sample, while each square represents the centroid of the corresponding category.

based on optimal transportation also achieves the performance
improvement by 6.98%. By integrating all the components
together, our framework improves the baseline by average
accuracy of 8.99% on dataset Ila, outperforming other variants
and state-of-the-art methods. The similar conclusion can be
also drawn from datasets IIb and CLA MI. All these results
indicate that the components of our framework are effective
for performance improvement.

B. Comparison of Different Mixup Strategies

In this experiment, we show the difference of feature spaces
learned with vanilla mixup method [39] and proposed MFD
strategy. Specifically, we train JDAOT with different mixup
methods and fix other experimental conditions to be same,
then the learned features are visualized with t-SNE [58]. For
simplicity, the results of two subjects (subject 1 and 3) are
randomly picked from dataset Ila for visualization, which
are shown in Figure 5. The first row of Figure 5 exhibits
the results of JDAOT with vanilla mixup method, while the
second row exhibits JDAOT with MFD strategy. It can be
observed that the features learned with MFD strategy is more
discriminative than those learned with vanilla mixup method.
Compared with vanilla mixup method, the inter-class distances
of features learned with MFD strategy are larger (i.e., feet vs

TABLE IV
THE RESULTS (%) OF DIFFERENT MIXUP RATIOS
ON EVALUATION DATASETS

pl random 0.2 0.4 0.6 0.8
1Ib 76.07 76.32  76.18 76.54  76.65
Ila 60.10 58.68 60.69 6022 59.76

CLA MI 67.23 6724 67.87 68.01 66.96

tongue features of subject 1), while the intra-class distances
are smaller (i.e., left vs right hand features of subject 3). This
phenomenon explains the better classification performance
of JDAOT with MFD, indicating the effectiveness of MFD
strategy.

C. Comparison of Different Mixup Ratios

We further explore the effect of different mixup ratio
settings on classification performance, which is exhibited in
Table IV. The “random” represents the introduced mixup
method with random ratio sampled from the S distribution.
In comparison of mixing the input trials in frequency domain
with random ratio, fixed mixup ratios might reduce the ran-
domness the mixed samples and generate more distinguishable
representations. Consequently, the improved performance is
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observed on evaluation datasets, such as 4 = 0.8 for BCI IV
IIb, 2 = 0.4 for BCI IV IIa and A = 0.6 for CLA MI.

VIl. CONCLUSION

In this work, we develop a joint distribution adaptation
with optimal transportation and frequency mixup (JDAOT-
Mix) framework, aiming to improve the performance of
cross-subject transfer learning task in motor imagery BCls.
Our proposition jointly adapt the marginal distributions and
conditional distributions across domains with performing the
optimal transportation between source and target representa-
tions. In addition, a novel mixup-based augmentation, namely
mixup in frequency domain (MFD), is also designed for
EEG-based BCI systems. Empirical experiments on the public
EEG datasets demonstrate that our JDAOT-Mix exhibits a
competitive performance when compared to previous domain
adaptation methods. This indicates that the proposed JDAOT-
Mix provides a promising solution for cross-subject transfer
learning in BCI systems.
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