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EEG-Based Continuous Hand Movement
Decoding Using Improved

Center-Out Paradigm
Jiarong Wang , Luzheng Bi , Senior Member, IEEE, Weijie Fei , and Kun Tian

Abstract— The continuous decoding of human move-
ment intention based on electroencephalogram (EEG)
signals is valuable for developing a more natural motor
augmented or assistive system instead of its discrete classi-
fications. The classic center-out paradigm has been widely
used to study discrete and continuous hand movement
parameter decoding. However, when applying it in study-
ing continuous movement decoding, the classic paradigm
needs to be improved to increase the decoding perfor-
mance, especially generalizationperformance. In this paper,
we first discuss the limitations of the classic center-out
paradigm in exploring the hand movement’s continuous
decoding. Then, an improved paradigm is proposed to
enhance the continuous decoding performance. Besides,
an adaptive decoder-ensemble framework is developed for
continuous kinematic parameter decoding. Finally, with the
improved center-out paradigm and the ensemble decoding
framework, the average Pearson’s correlation coefficients
between the predicted and recorded movement kinematic
parameters improve significantly by about 75 percent for
the directional parameters and about 10 percent for the
non-directional parameters. Furthermore, its generalization
performance improves significantly by about 20 percent for
the directional parameters. This study indicates the advan-
tage of the improved paradigm in predicting the hand move-
ment’s kinematic information from low-frequency scalp EEG
signals. It can advance the applications of the noninvasive
motor brain-computer interface (BCI) in rehabilitation, daily
assistance, and human augmentation areas.

Index Terms— Electroencephalogram, brain-computer
interface, hand movement, continuous decoding.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is of utmost value
because it can translate human mind from neural signals
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to control devices directly without activating peripheral nerve
or muscles [1]. Brain signals can be recorded invasively
or non-invasively [2]. Considering the advantages of low-
cost, portability, less trauma, and not relying on medical and
surgical expertise, in the present work, we concentrate on the
non-invasive electroencephalogram (EEG) recording way [3].

Upon past decades, EEG-based BCIs have progressed
greatly covering application fields of communication [1],
teleoperation [4], rehabilitation [5], daily life assistance [6],
entertainment [7], and so on. Among various kinds of BCIs,
motor-BCIs can detect brain oscillations associated with
imagined, or executed, or attempted movements [8]. Thus,
motor-BCIs are valuable to be applied in combination with
neuroprosthetic devices, exoskeletons or robotic arms to assist,
restore and augment impaired motor abilities of patients
[9], [10]. Besides, motor-BCIs are also valuable for the healthy
people to develop an active human-machine interaction system
by decoding human movement intention [11], [12]. Compared
with motor imagery paradigms which induce EEG modalities
by imagining movements repetitively, detecting and recogniz-
ing movement intentions utilizing residual or intact movement
functions are more intuitive and natural.

It is known that human movement intentions are encoded
in movement-related cortical potentials (MRCPs), which can
be captured from low-frequency scalp EEG signals [13]. Over
past decades, numerous studies were dedicated to investigating
the neural correlates and decoding of hand movement intention
based on MRCPs. From neurophysiological aspect, several
studies tried to uncover the brain activity and neural response
associated with hand movement, and showed that the pri-
mary sensorimotor cortex and the mesial premotor areas were
activated during the hand movement, and movement-related
regional activation was predominant over the contralateral
premotor and primary sensorimotor cortex [14], [15]. From
decoding aspect, kinetic and kinematics movement parameters,
including force/torque [16], velocity/speed [17], trajectory/
distance [18], [19] and direction [20], were explored to
be decoded from MRCPs. Besides, hand movement types
extracted from actual application scenarios were also decoded
in [21] and movement onset were detected in [22]. In further,
studies [13], [22] exhibited the relation between the MRCPs
and movement parameters, and results in [13] indicated
that the magnitude and time course of bereitschaftspotential
(BP) can be influenced by various movement factors such
as movement torque-level, speed, precision and complexity.
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These studies showed the possibility of decoding hand move-
ment parameters from the low-frequency EEG signals and
correlated the physical hand movement with neural activity.

To sum up, for the hand movement parameters decoding,
it could be divided into two categories: discrete classifica-
tion (e.g., the movement directions/ types discrimination or
movement onset detection) and continuous regression (e.g., the
movement velocity/ trajectory reconstruction). For the hand
movement classification, the classic center-out paradigm was
used by various studies due to its fundamentality and gener-
alizability. Chouhan et al. [23] investigated the upper limb
movement directions decoding using the classic center-out
paradigm, and proposed a wavelet phase-locking value-based
method which achieved a mean binary classification accuracy
of 76.85%. Similar work was done in [24], and Robinson et
al. proposed a novel signal processing technique to extract
features from EEG signals, and the classification accuracy of
four-class center-out movement directions was 80.24 ± 9.41%.
Besides, in [17], Robinson et al. designed an experiment in
which the subjects were required to perform the center-out
right-hand movement at two speed levels, and they used the
Wavelet-Common Spatial Pattern algorithm to classify the
movement speed, which yielded a mean accuracy of 83.71%.
Considering that, in practice, people are often distracted by
other tasks or environmental factors, Bi et al. [25] first pro-
posed a hierarchical decoding model based on attention state
estimation to decode the hand movement onset intention in the
right-hand center-out paradigm. In [26], Fei et al. explored to
the robust decoding of movement directions to the cognitive
distraction in the center-out paradigm by using the Riemannian
Manifold-based method, and the simulation and experimen-
tal results showed that the Riemannian-based methods have
higher robustness to cognitive distraction. When exploring
the continuous movement decoding issues, several studies
followed the center-out paradigm. In these studies, hand
movement kinematic components projected onto the x and y
axes were decoded from low-frequency EEG signals. In [27],
Bradberry et al. explored the ability to continuously decode
3D hand velocity from EEG signals during natural, center-
out reaching movements. In [28], Robinson et al. adopted
the center-out paradigm and estimated movement trajectory
using a Kalman filter model with informative predictors subset
selection, and finally the correlation between recorded and esti-
mated data achieved 0.57±0.07. In [29], Jeong et al. involved
the center-out right-handed reaching movement in 3D space
and proposed a multi-directional deep learning framework.
Finally, the decoding performances for six directions in 3D
space reached the grand-averaged correlation coefficients of
0.47 and the normalized root mean square error below 0.2.
Besides, in [30], úbeda et al. used a multidimensional linear
regression to decode upper limb kinematics from EEG signals
in center-out reaching tasks and then classified the reaching
targets with the 8-class classification accuracy of 29%. In [31],
Lv et al. reconstructed the hand movement velocity using
EEG signals recorded during a self-routed drawing task, which
was improved from center-out reaching task, and the average
correlation coefficients between the measured and the decoded

velocities are 0.37 for the horizontal dimension and 0.24 for
the vertical dimension.

Though numerous studies have explored the EEG-based
continuous decoding of hand/ upper limb movement using the
center-out paradigm as mentioned above, there is a common
issue in these studies, which could deteriorate the decoding
performance. It was that, in the classic center-out paradigm,
the hand movement in each trial was either along the X-axis
directions or the Y-axis directions. In this case, the projected
component of each point-to-point movement was mostly cen-
tralized on one axis and was near zero on another axis.
In fact, to decode kinematic parameters, we have to build
regression models between kinematic parameters (dependent
variables) and EEG signals (independent variables). However,
for the classic center-out paradigm, trials associated with two
directions (left and right directions) on the X axis do not
generate training data for decoding vy /py . Likewise, trials on
the Y axis do not generate training data for decoding vx /px .
It means that only half of all trials contribute to building each
kinematic parameter decoding model. Furthermore, to guar-
antee the generalization of the decoding model in the whole
2-D plane, the more general scenarios (i.e., both vx /px and
vy /py are not equal to zero) need to be provided. In addition
to the mentioned-above disadvantages, other disadvantages of
the classic center-out paradigm, e.g., shorter upper limb move-
ment range, could limit its effectiveness in hand movement
decoding.

To address these weaknesses of the classic center-out para-
digm, in this study, we proposed an improved center-out para-
digm, where the subjects were required to move their hands in
four orthogonal directions at an angle of 45◦ from the cartesian
coordinate axes, and developed an adaptive decoder-ensemble
framework for the continuous hand movement decoding.

The contribution of this paper is that it is the first work to
explore how to increase the decoding performance, especially
generalization performance when predicting/ reconstructing
hand movement parameters from EEG signals by improving
the center-out paradigm. Specially, we design a new center-
out paradigm, and experimental results show that the new
paradigm has advantages in improving decoding performance
and generalization performance in the whole 2-D plane. Our
work can promote the application of the EEG-based motor-
BCIs for rehabilitation, assistance, and human augmentation.

II. EXPERIMENT AND METHODS

A. Participants and Equipment

The experiment was conducted at the IHMS laboratory,
Beijing Institute of Technology, Beijing, China. Eight sub-
jects (right-handed, aged from 22 to 26 at the measurement
time) were recruited to participate our experiment. All of
them confirmed having no brain disease and the vison was
corrected to be normal. Before formal experiments, all subjects
were informed of experimental purpose and requirements,
and sighed the consent to participate in the experiment. The
experimental procedure adhered to the Declaration of Helsinki
and was approved by the ethics committee of Beijing Institute
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Fig. 1. The schematic diagram of the experiment system. The system
is coded based on VC++ 6.0 and MFC application framework and
implements data collection, data alignment and experimental stimulus
interface display.

of Technology. The number of subjects was evaluated by the
Power tables from Cohen [32] to justify that the number
of subjects involved in our experiment was sufficient for
statistical test. The effect size of F-ratios was calculated by
Equation (1), as follows:

f 2 = R2

1 − R2 , (1)

where R2 is the partial eta squared value and was calculated as
0.414 by ANOVA in IBM SPSS Statistics 25, and then f 2 is
calculated as 0.7065. According to the Power tables, when f 2

is 0.7065, the equivalent effect size d is 1.7. The calculation
of the number of subjects needed to obtain a significant result
was done in G∗ Power version 1.1.9.7 [33]. When selecting
Wilcoxon signed-rank test for statistical test, with the given
two-tailed α = 0.05 and the recommended power level of
80%, the recommended number of subjects was 6, which
justified the sufficiency of subjects in our experiment.

A NeuSen.W64 Neuracle 64-channel EEG amplifier was
used for EEG signals recording. The sampling rate of the
amplifier was set to be 1000 Hz. A FASETRACK position
sensor was used to collect the hand movement positions. The
sampling rate of the sensor was 60 Hz. The data collection,
data alignment and experimental stimulus interface display
were accomplished by the system coded by us based on
the software VC++ 6.0 and Microsoft Foundation Classes
application framework, as shown in Fig. 1.

B. Experimental Paradigms

This study involved two experimental paradigms, i.e., the
classic center-out paradigm, namely as Paradigm 1, and
the improved center-out paradigm, namely as Paradigm 2.
The hand movement tasks involved in this study were in
horizontal 2D plane. There were four movement targets in
both paradigms, namely as 1, 2, 3, and 4. The illustration of
hand movement directions of two paradigms was shown in
Fig. 2 (b) and (c). For the Paradigm 1, the four movement
targets were located at the four axes of cartesian coordinate
and the starting paradigm 2, the four movement targets were
located at four straights who were at an angle of 45◦ from the
cartesian coordinate axes and the starting point of movement

Fig. 2. The experimental timeline and setup. (a) The experimental
timeline of one trial. (b) and (c) illustrate the hand movement directions of
Paradigms 1 and 2 in the coordination system, respectively. 1, 2, 3, and
4 correspond to four movement directions. (d) Real experimental scene
of hand movement and its corresponding coordination system.

was also the origin of the coordinate. The movement range for
each target in both paradigms was 20 cm. The projection scale
between the cursor movement distance on the screen and the
real hand movement distance was 1.5:1.

The timeline for each experiment trial is shown in Fig. 2(a).
Each experimental trial contained three periods: preparation
period (2 s), movement period (3 s), rest period (3 s). The
circle with a cross in the center position corresponded to
the home position. The gray solid circle corresponded to the
cursor to be moved by the subjects, and its positions were
the real-time positions of sensor. At the beginning of each
experimental block, the real-time hand position was re-aligned
to be the home position. At the 0 s, one trial started, and
the black solid circle appeared in one of four target positions
randomly as the target cue. At the 2 s, the black solid circle of
the target cue changed into the hollow circle as the movement
cue, and when it occurred, the subjects were asked to move
their hands from the home position to the target position
immediately. At the 5 s, the hollow circle of the target position
disappeared, indicating the subjects moved the hands back to
the initial home position. At the 8 s, one trial ended.

For each paradigm, there were 15 blocks, and each block
consisted of 16 trials. For each block, four movement targets
were shown randomly with equal appearance times (4 times
for each target). It meant that we would obtain 240 trials in
all for each paradigm. Two paradigms’ blocks were alternately
conducted for experimental order-balance.

C. Data Acquisition

EEG data was recorded from 61 active electrodes accord-
ing to the international 10-20 system, with the forehead
ground electrode positioned at AFz and the reference elec-
trode positioned at CPz. The locations of recorded electrodes
are illustrated in Supplementary Figure S1. Two additional
patch electrodes were positioned at the extraocular canthal
positions of both eyes to record electrooculogram (EOG)
signals. Electrode impedances were calibrated to be less
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than 5 K�. Hand movement kinematic data was recorded by
the position-detecting sensor fixed on the right hand.

D. Data Preprocessing

The data preprocessing in this study contained two pipelines
for EEG signals and kinematic data respectively (see Supple-
mentary Figure S2). All data pre-processing was implemented
by MATLAB 2021b (MathWorks, USA) and open source
toolbox EEGLAB version 14.1.1 [34].

For the kinematic data, a zero-phase, second-order, low-pass
Butterworth filter with a cutoff frequency of 4 Hz was applied.
Then, the kinematic data was down-sampled to 10 Hz. The
trajectory components ( px, py), distance (p), velocity compo-
nents (vx , vy) and speed (v) were extracted at each sample

point. Among which, p =
√

p2
x + p2

y and v =
√

v2
x + v2

y .
For the EEG signals preprocessing, to avoid signal contam-

ination from peripheral channels and reject the bad channels,
we checked each channel and finally selected 30 channels for
subsequent analysis, as reflected in Supplementary Figure S1.
We selected channels according to the principles of keeping
the channels associated with brain regions more related to
motor functions while removing channels associated with
brain regions less related to motor functions and rejecting
the abnormal channels [29], [35]. The human movement
information was mainly encoded in central motor regions,
and the movement preparation and planning were related to
the cognition and perception functions, which were mainly
encoded in frontal and parietal regions. Thus, the channels
involved in frontal-central-parietal regions were selected. The
peripheral channels contained a lot of eye artifacts and move-
ment artifacts, and thus were excluded. Abnormal channels
with abnormal signal noise were inspected by eyes and
rejected. EEG data was first down- sampled to 100 Hz. A zero-
phase, fourth-order, low-pass Butterworth filter with a cutoff
frequency of 40 Hz was applied to remove high band artifacts,
e.g. muscle artifacts. A sliding-window baseline correction
was. used to remove baseline drift. Next, an independent
component analysis was performed to remove eye movement
artifacts by rejecting the independent components whose cor-
relation coefficients with EOG signals were above 0.4 [36].
Artifact subspace reconstruction (ASR) was then applied to
remove movement artifacts arisen from hand movement [37].
In this study, the cutoff parameter of ASR was set to be 30 as
recommended in [37]. Next, the common average reference
was used to remove spatial noise, and a zero-phase, fourth-
order, low-pass Butterworth filter with a cutoff frequency
of 2 Hz was used to extract low-frequency information from
EEG signals [18] [19]. After that, bad trials with abnormal
kurtosis and amplitude exceeding +/−200 μV were rejected.
Finally, the EEG epochs of [2.5, 4.5] s in each trial, i.e., lasting
for 2 s after movement onset, were segmented for further
analysis.

E. Decoding Model

The six kinematic movement parameters to be decoded were
generated as a response matrix Y , as follows:

Y = [px , py, vx , vy, p, v], ∈ �(T ·N)×6, (2)

Fig. 3. The flowchart of our proposed adaptive decoder-ensemble
framework.

where T is the number of trials, which is 240 for each
paradigm, and N is the number of decoded sample points in
each trial, which is 20 for a 2-s decoding window with the
sampling rate of 10 Hz of the kinematic data. Corresponding
to each kinematic data sample, the potential amplitudes of
EEG signals from C electrodes and K time lags were first
extracted and then re-shaped to a one-dimension vector as
one EEG observation, which was used to predict the kinematic
information. Time lags referred to the time points before each
sample point. In this study, C = 30, and K = 11, which was
with respect to the time lags from -100 ms to 0 ms with a
time interval of 10 ms. Thus, an EEG observation matrix X
was generated with a shape of (T · N) × (C·K ).

Given a pair of EEG and kinematic datasets, we proposed an
adaptive decoder-ensemble framework for the continuous hand
movement decoding, as shown in Fig. 3. This framework fused
the linear and nonlinear regressors at a decision level. The
inspiration of proposing this framework originated from the
un-balance of decoding results between trials across decoders.
In some trials, the linear regressors could have better decoding
performance than the nonlinear regressors, and vice versa.
Besides, we found that the kinematic parameter decoding
results were usually near zero for the trials with mediocre
decoding performance. Thus, we tried to ensemble the decod-
ing results of both linear and nonlinear regressors at the
decision level. The predicted results of the two regressors were
adaptively combined according to their training performance.

For the linear regressor, we adopted the partial least-
squares (PLS) regression, which integrates the multiple linear
regression (mLR), principle component analysis (PCA) and
canonical correlation analysis, and it is suitable to deal with
the predictor variables with strong collinearity. The general
multivariate model of PLS could be written as follows:

X = W PT + E

Y = U QT + F, (3)
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where W is the projection matrix of observation matrix X
in the component latent space, U is the projection matrix of
response matrix Y in the component latent space, P and Q are
the component loading matrixes, E and F are the error terms
subject to independent identically distribution. In Equation (3),
the matrixes P and Q could be combined into a weight
matrix R, and we could reconstruct the kinematic response
matrix Y from the observation matrix X in the component
latent space by Y = X ·R. Besides, after our tests, the PLS
regression showed better performance on our datasets than
other common-used linear regressors, including mLR, least
absolute shrinkage and selection operator (LASSO) regression,
and ridge regression.

For the non-linear regressor, we applied the neural network
(NN) for regression, which could capture the complex rela-
tionships between the predictors and responses by numerous
neuron units. Specifically, the NN was designed to comprise
one Sequential Input layer, one fully connected layer with
the neuron size of 200, one ReLU activation layer, and one
Output layer. After our tests, the NN outperformed other
common-used non-linear regressors on our datasets, including
support vector machine regression, random forest regression
and Gaussian process regression. Before the NN was used to
decode the EEG data, the PCA was applied to reduce the
feature dimension into 60.

In the training period, the training results of both the PLS
and NN regressors could be obtained. Then, the weighting
coefficients of two models, which were used to ensem-
ble the two regressors, were calculated adaptively accord-
ing to their training performance. The training performance
was evaluated by the average Person correlation coefficient
(r) between the recorded and the predicted kinematic data
across all training trials and six kinematic parameters. The
weighting coefficients of two regressors were calculated as
follows:

c1 = r1

r1 + r2

c2 = r2

r1 + r2
, (4)

where r1 is the average r value of the PLS regressor on the
training dataset, and r2 is the average r value of the NN regres-
sor on the training dataset. In the testing period, the predicted
kinematic data of two regressors was linearly combined by
two weighting coefficients, and the testing performance of the
decoder-ensemble model was evaluated by calculating the r
value between the recorded and the fused predicted kinematic
data across all testing trials.

For each subject, the adaptive decoder-ensemble framework
was tested with a 5 × 5 cross-validation procedure until each
fold of the testing data was exhausted. The decoded kinematic
data was smoothed with a zero-phase, second-order, low-pass
Butterworth filter with a cutoff frequency of 4 Hz. Besides,
to estimate the chance level correlation coefficients rchance,
we randomly shuffled the response data Y by 100 times
to break the association between the observations and the
responses. Then, rchance was calculated by applying the same
decoding procedure as above.

F. Source Imaging

In order to estimate the brain activation patterns in the
source space, we applied the EEG source imaging technique
to map the sensor data at cortical level. The source imaging
contained two parts: forward modeling of the head model
and inverse estimation of the brain sources. The head model
was established by importing the ICBM152 boundary element
model (BEM) template and co-registering it with the recorded
electrodes’ positions using the open source software Brain-
storm version 11-Nov-2021. The BEM surface was generated
by 1922 vertices of scalp, outer skull and inner skull per layer
and with the thickness of the layers of 4 mm. The BEM
template contained the scalp, skull and brain layers with the
conductivities of 1, 0.0125 and 1, respectively. The electrodes’
positions were projected onto the scalp. The forward model
was estimated based on the OpenMEEG BEM method in
the source space of cortex surface. By the forward model,
we could obtain the propagation pattern of electrical fields
from the cortex layer to the scalp layer. The inverse model
was computed by using sLORETA with the normal-to-cortex
constrained dipole orientations and minimum norm imaging.

G. Questionnaire

After the experiments, all subjects were required to answer
one questionnaire to make an evaluation on the experiments
experience. The questionnaire included six questions and
was presented in Supplementary Table S1. The aim of this
questionnaire was to make one comparison between two
experimental paradigms on the task difficulty, physical effort
and mental effort.

III. RESULTS AND DISCUSSION

A. Behavior Analysis

Fig. 4 shows the behavior analysis results of the hand move-
ment during the experimental periods of [2], [5] s. Fig. 4(a)
depicts the grand-average profiles of six kinematic parame-
ters of four movement directions during the experiments of
Paradigms 1 and 2, respectively. It could be seen that, for
the Paradigm 2, there were obvious amplitude changes of all
directional parameters for all four movement directions, while
for the Paradigm 1, there were only half of trials who had
obvious amplitude changes of directional kinematic parameters
along with the X-axis and the remained half of trials had
obvious amplitude changes of directional kinematic parameters
along with the Y-axis. It demonstrated the effectiveness of
Paradigm 2 to make each single trial contribute valid compo-
nents on both axes, which could eventually contribute to the
continuous hand movement decoding performance.

Fig. 4(b) shows the average movement onset time, move-
ment ending time and movement duration time during the
experimental movement periods of Paradigms 1 and 2. The
movement onset time was detected by finding the first time
point whose speed exceeded 0.01 m/s in one trial, and the
movement ending time was detected by finding the last
time point whose speed exceeded 0.01 m/s in one trial.
The movement duration time of one trial was calculating
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Fig. 4. Behavior analysis results. (a) Grand-average movement parameters profiles for Paradigms 1 and 2, respectively. The red, yellow, green and
blue lines correspond to the profiles of hand movement in directions 1, 2, 3, and 4, respectively. The shadow areas are the standard error bands.
(b) Grand-average movement onset time, movement ending time and movement duration time for Paradigms 1 and 2, respectively. The bubbles
correspond to the average results for each subject.

TABLE I
THE QUESTIONNAIRE RESULTS FOR TWO EXPERIMENTAL

PARADIGMS (P. 1 AND P. 2)

from the ending time minus the onset time. The movement
onset time of Paradigms 1 and 2 were 0.5752±0.0374 s
and 0.5718±0.0453 s, respectively, the movement ending
time of Paradigms 1 and 2 were 2.2722±0.4898 s and
2.2422±0.4577 s, respectively, and the movement duration
time of Paradigms 1 and 2 were 1.6970±0.4914 s and
1.6705±0.4446 s, respectively.

The questionnaire results of two experimental paradigms on
the task difficulty, physical effort and mental effort are shown
in Table I. The average scores of Paradigms 1 and 2 were
2.9± 0.8 and 2.5±0.9 for the task difficulty (Wilcoxon signed-
rank test, p = 0.2500), respectively, 3.1±0.6 and 2.4±0.5 for
the physical effort (Wilcoxon signed-rank test, p = 0.0312),

respectively, and 2.9±0.8 and 2.5±0.9 for the mental effort
(Wilcoxon signed-rank test, p = 1.0), respectively. Close
scores between two paradigms were obtained for the task
difficulty and mental effort, and the significantly lower score
of Paradigm 2 was obtained for the physical effort. This could
be because the target movement distance in a single trial was
20 cm, which was a little hard for forward and backward
movements, and it was easier to move the same distance
diagonally. In other words, the single-trial movable range in
the 2-D plane increased using the improved center-to-target
paradigm.

B. Brain Activity

Fig. 5 shows the grand-average movement-related cortical
potentials (MRCPs) at electrode Cz associated with Para-
digms1 and 2 across all subjects. The time point 0 s referred to
the movement cue time, i.e., the time point 2 s of one trial’s
timeline (as shown in Fig. 2). It could be seen that, for the
MRCPs of both paradigms, the potentials kept stable after 0 s,
and there was a slight positive offset at around 0.4 s, fol-
lowed by a drastic negative offset which peaked negatively at
around 0.6 s. After peaking at around 0.6 s, a larger potentials’
positive rebound was observed. Note that the negative peak
time of both paradigms was almost consistent with the average
movement onset time (as shown in Fig. 4). The negative peak
amplitudes of Paradigms 1 and 2 were -2.720±1.221 μV
and -2.392±1.407 μV, respectively. Wilcoxon signed-rank
test showed that there was statistical difference between the
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Fig. 5. The grand-averaged MRCPs across all subjects at electrode
Cz. Note that time 0 s refers to the movement cue time, i.e., the time
point 2 s of one trial’s timeline. The shadows of curves represent the
standard deviation of the MRCPs across all subjects. The asterisk marks
the significant difference between the MRCPs of Paradigms 1 and 2 at
epochs [0, 1] s.

MRCPs of Paradigms 1 and 2 in the time periods of [0, 1] s
(p = 0.0391).

Fig. 6 depicts the grand-average source imaging results
in the source space of Paradigms 1 and 2. Time = 0 s
corresponded to the movement cue time, i.e., the time point 2 s
of one trial’s timeline (as shown in Fig. 2). For both Para-
digms 1 and 2, similar brain patterns were activated. Before
0.3 s, no obvious brain activity was observed. From the
0.4 s, the patterns of brain activation became apparent with
gradually active brain activity and incremental activated brain
regions. At the 0.6 s, the brain pattern in the source space
was the most active, and the activated cortex covered the
primary sensorimotor cortex, supplementary motor cortex,
superior parietal lobule cortex, dorsomedial occipital cortex
and fronto-central cortex of both hemispheres, in accordance
with the findings in [19] and [38]. Besides, the activated
brain pattern was mostly centralized in the sensorimotor area,
and showed a prominent contralateral distribution. It should
be noted that, in this area, we also captured the MRCPs
from the low-frequency scalp potentials, as shown in Fig. 5.
After the 0.6 s, the state of brain activation declined and
tended to be stable with most of energy centralized in the
sensorimotor area. To further compare the difference of source
patterns between two experimental paradigms, we analyzed
the source imaging results obtained by subtracting Paradigm
1 and Paradigm 2. It could be seen that the difference of
activation pattern between two paradigms mainly lasted from
0.4 s to 0.8 s and was mainly located at the SM1 area. Besides,
the positive brain activity difference indicated that the brain
activation during the Paradigm 1 was more active.

The neural coherence between brain activity and behavior
could be found. On the one hand, by analyzing the recorded
position data, we found that the movement onset time was
detected at 0.5752±0.0374 s and 0.5718±0.0453 s for Para-
digms 1 and 2, respectively. In the neurophysiological analysis,
we observed that the MRCPs peaked negatively at around
0.6 s, and the most active brain pattern was also activated at
around 0.6 s. On the other hand, the neural signature results
indicated the less physical effort needed for the improved
paradigm, which was in accordance with the questionnaire

results. As shown in Fig. 5, the average negative peak value
of MRCPs was larger in Paradigm 1 (the classic paradigm)
than that in Paradigm 2 (the improved paradigm). According
to the results in [39], the negative peak value of MRCPs
might be related to the torque level, and the negative peak
value of MRCPs was larger in the task with the higher
torque than in the same task with the lower torque. Similarly,
in the source space, when we mapped the activation pattern
of Paradigm 1 minus that of Paradigm 2, all activated energy
was positive, as shown in Fig. 6. It indicated that brain activity
was more active during the experiment of Paradigm 1 than
that of Paradigm 2, especially during the movement periods
of [0.4, 0.8] s. To sum up, the improved paradigm was less
physical effort-demanded for users.

C. Decoding Performance Comparison

One objective of this study was to decode (predict) con-
tinuous hand movement kinematic parameter from EEG sig-
nals. We quantified the decoding performance by calculating
the average Pearson correlation coefficient r between the
recorded and decoded kinematic data. Fig. 7 illustrates the
decoding performance comparison between different decoding
models and two experimental paradigms. Fig. 7(a) compares
the correlation coefficient results of using the PLS regressor
alone, using the NN regressor alone, and using the decoder-
ensemble framework for six decoded kinematic parameters
and two paradigms. We applied the two-factor analysis of
variance (ANOVA) for the statistical test of decoding results,
and the two factors were the decoding models and the decoded
parameters. For the Paradigm 1, the two-factor ANOVA
showed that there were statistical differences on the decoding
results between the decoded parameters (F(5,125) = 180.34,
p < 0.001) and no statistical difference between the decoding
models (F(2,125) = 2.12, p = 0.1244). For the Paradigm 2,
the two-factor ANOVA showed that there were statistical
differences on the decoding results between the decoded para-
meters (F(5,125) = 98.31, p < 0.001) and no statistical dif-
ference between the decoding models (F(2,125) = 2.15, p =
0.1211). From the whole, with using the ensemble framework,
the correlation coefficient results were superior to other two
models among all six decoded kinematic parameters and both
paradigms though it is not significant. The advantage of the
ensemble framework lay in that, compared with the common-
used models in the existing studies of continuous movement
decoding [27], [30], [38], it integrates both the linear and
non-linear models for the decoding performance improvement,
though it could increase the computation complexity slightly.

Compared with the classic center-out paradigm, in which
the hand was required to move in four orthogonal directions
along the coordinate axes, the improved center-out paradigm
proposed by us, in which the hand was required to move
in four orthogonal directions at an angle of 45◦ from the
cartesian coordinate axes, could make the single-trial hand
movement have valid projective components on both x and
y axes simultaneously. In this case, given the same amount
of experimental trials in each direction (in total, there are
four directions for both the classic and our paradigms), our
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Fig. 6. The grand-averaged activation pattern of two experimental paradigms in the source space. The source imaging results are displayed from
time lags 0.3 s to 1.3 s with the time interval of 0.1 s. For each time lag, the source-space activity was imaged from three projection angles: top view,
left view, and front view.

paradigm can provide two times amount of training data for
building each kinematic parameter decoding model as the
classic paradigm. This is because, for the classic paradigm,
trials associated with two directions (left and right directions)
on the X axis do not generate training data for decoding vy /py.
Likewise, trials on the Y axis do not generate training data for
decoding vx /px . That is, for a given amount of training data,
our paradigm only needs half amount of trials as the classic
paradigm. Finally, better continuous decoding performance
was obtained based on the improved paradigm.

Fig. 7(b) presents the decoding performance comparison of
six kinematic parameters between two paradigms using the
adaptive decoder-ensemble framework. Overall, better decod-
ing performance was obtained for the Paradigm 2, especially
of the directional kinematic parameters. For px , the r values
of Paradigms 1 and 2 were 0.14±0.09 and 0.21±0.08, respec-
tively, and Wilcoxon signed-rank test showed the significant
statistical difference ( p = 0.0078). For py , the r values of
Paradigms 1 and 2 were 0.27±0.09 and 0.38±0.12, respec-
tively, and Wilcoxon signed-rank test showed the significant
statistical difference ( p = 0.0156). For vx , the r values of Par-
adigms 1 and 2 were 0.13±0.10 and 0.18±0.10, respectively,
and Wilcoxon signed-rank test showed no significant statistical
difference ( p = 0.1484). For vy , the r values of Paradigms
1 and 2 were 0.21±0.07 and 0.32±0.11, respectively, and
Wilcoxon signed-rank test showed the significant statistical
difference ( p = 0.0156). For v, the r values of Paradigms
1 and 2 were 0.58±0.07 and 0.60±0.08, respectively, and
Wilcoxon signed-rank test showed no significant statistical

difference ( p = 0.3858). For p, the r values of Paradigms
1 and 2 were 0.69±0.07 and 0.70±0.07, respectively, and
Wilcoxon signed-rank test showed no significant statistical dif-
ference (p = 0.5469). Similar results with the better decoding
performance of the paradigm 2 could also be observed when
using the PLS or NN models (as reflected in Supplementary
Figure S3 and Figure S4). It should be noted that, for the
non-directional kinematic parameters, no statistical differences
in the decoding performance between the two paradigms
were observed. This could be because the non-directional
parameters were unrelated to the axis or direction and showed
similar profiles of two paradigms, as depicted in Fig. 4.

Furthermore, the chance levels of decoding results were
tested by randomly shuffling the testing responses 100 times
and testing the proposed model on the shuffled data. Finally,
the average rchance values across six kinematic parameters
were 0.0071 for Paradigms 1 and 0.0037 for paradigm 2. The
decoding results of randomly shuffled kinematic data were
significantly lower than those of unshuffled kinematic data
(Wilcoxon signed-rank test, p < 0.001). This indicated that
the adaptive decoder-ensemble model made use of the neural
information correlating with hand movement for continuous
kinematic parameter decoding instead of decoding by chance.

D. Components Selection

To justify the components number selected for decoding,
we compared the decoding performance associated with dif-
ferent number of components using the adaptive decoder-
ensemble framework. The number of components ranged
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Fig. 7. Decoding performance comparison. (a) The decoding performance comparisons between using the PLS regressor alone, using the NN
regressor alone, and using the adaptive decoder-ensemble framework. (b) The decoding performance comparisons of six decoded kinematic
parameters between the paradigms 1 and 2. ∗ marks the statistical difference with p < 0.05, ∗∗ marks the statistical difference with p < 0.0.

from 10 to 100, with the increment interval of 10. Specifically,
the number of components involved by the PLS and the
number of feature dimension reduced by the PCA were the
same. Fig. 8 plots the r values curves of different kinematic
parameters and two paradigms along with the components
number. With the increment of components number, the r
values first increased and then kept steady. Relatively higher
r values were obtained for the non-directional kinematic
parameters p and v. Besides, for each directional kinematic
parameter, higher r values were obtained for the paradigm 2 in
each components number.

E. Generalization Performance Test of Two Paradigms

To put the EEG-based continuous hand movement decoding
forward into the practical application, realizing the decoding
of the users’ movement intentions in any arbitrary move-
ment direction, instead of being limited to the pre-defined
movement directions, is significant. To test the generalization
performance of the classic and improved paradigms in this
study, we trained the models using the training data from
four movement directions in each paradigm and tested them
with the testing data from eight movement directions in both
paradigms. It meant that, for both paradigms, we trained
their respective models using their respective training data
and tested them using the same testing data sets which

Fig. 8. The r values curves of different kinematic parameters and two
paradigms along with the components number. For each parameter, the
solid lines correspond to the results of Paradigms 1, and the dotted lines
correspond to the results of Paradigms 2.

mixed the testing data from two paradigms. The generalization
performance results of two paradigms are shown in Fig. 9.
Overall, better generalization performance was obtained using
the Paradigms 2. For px , the r values of Paradigms 1
and 2 were 0.12±0.08 and 0.15±0.07, respectively, and
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Fig. 9. Generalization performance test results comparisons of two
paradigms among six kinematic parameters. Solid bar charts correspond
to the results of Paradigms 1, and bar charts with diagonal lines corre-
spond to the results of Paradigms 2. ∗ marks the statistical difference with
p < 0.05, ∗∗ marks the statistical difference with p < 0.01, n. s. marks
no statistical difference.

Wilcoxon signed-rank test showed the significant statistical
difference ( p = 0.0078). For py, the r values of Paradigms
1 and 2 were 0.23±0.09 and 0.26±0.10, respectively, and
Wilcoxon signed-rank test showed the significant statistical
difference ( p = 0.0156). For vx , the r values of Paradigms
1 and 2 were 0.11±0.09 and 0.14±0.08, respectively, and
Wilcoxon signed-rank test showed the significant statistical
difference ( p = 0.0391). For vy , the r values of Paradigms
1 and 2 were 0.21±0.09 and 0.24±0.08, respectively, and
Wilcoxon signed-rank test showed the significant statistical
difference ( p = 0.0156). For v, the r values of Paradigms
1 and 2 were 0.47±0.11 and 0.47±0.12, respectively, and
Wilcoxon signed-rank test showed no significant statistical
difference ( p = 0.7422). For p, the r values of Paradigms
1 and 2 were 0.58±0.11 and 0.57±0.10, respectively, and
Wilcoxon signed-rank test showed no significant statistical dif-
ference (p = 0.6406). Similar results with the better general-
ization performance of the Paradigms 2 could also be observed
when using the PLS or NN models (as reflected in Supple-
mentary Figure S5 and Figure S6). The significant improved
results showed the advantage of extending the single-trial hand
movement from the one-dimension motion which was along
the coordinate axes to a two-dimensional plane when exploring
the continuous hand movement decoding.

F. Discussion of Paradigms Comparison

Common used paradigms for researching the EEG-based
continuous hand movement decoding could be divided into
three categories: the target-to-target movement task, the pursuit
tracking task (PTT), and the self-chosen continuous movement
task. In the experiments of PTT, the subjects were asked to
control the cursor by hand to track the target on the screen.
In this case, it was inevitable that the subjects’ eyes would also
be tracking the target. Thus, there would be a lot of eye move-
ment artifacts and visual components involved in brain signals.
In [19], though eye artifacts were attenuated from the brain
signals by using the sparse generalized eye artifact subspace
subtraction algorithm and by excluding the EOG and fronto-
temporal channels, the average r values achieved 0.36 during

observed movements (0.49 during executed movements). Thus,
the PTT paradigm was not suitable to reveal the intrinsic
correlations between the neural activities and hand movement.
In the experiments of self-chosen continuous movement task,
the subjects were required to move their hands freely and
aimlessly. However, in real rehabilitation training and daily
assistance scenarios, the movements of patients’ hands or
upper limbs were usually task-driven or target-driven. For the
target-to-target movement paradigm, on the one hand, it did
not rely on much eye movements and visual attention. On the
other hand, the target-to-target movements could cover most
of movement types involved in the rehabilitation and daily life
and it had well generalization performance.

IV. CONCLUSION AND FUTURE WORK

To overcome the limitations of using the classic center-
out paradigm to research EEG-based continuous hand move-
ment decoding, we proposed an improved center-out paradigm
and developed an adaptive decoder-ensemble framework to
continuously predict hand movement kinematic parameters.
As a result, neural coherence was observed between the neural
activity and behavior analysis on the movement onset and
physical effort. It showed that the improved paradigm had the
advantages of less physical effort-demanded. Besides, with the
improved paradigm and the ensemble decoding framework,
the decoding performance enhanced significantly by about
75 percent for the directional parameters and about 10 percent
for non-directional parameters. Furthermore, the generalization
performance was improved significantly by about 20 percent
for the directional parameters. In summary, these results
confirmed that our method could enhance the decoding perfor-
mance of continuous hand movement, especially its general-
ization performance, and revealed that the low-frequency EEG
signals carried the neural information about the continuous
hand movement. Applying the improved EEG paradigm allows
us to detect human’s continuous movement intention better
and promote the application of the EEG-based motor-BCIs
for rehabilitation, assistance, and human augmentation.

In future work, we hope to advance the continuous hand
movement decoding based on our proposed paradigm into
real application scenarios, including improving the decoding
performance, testing the decoding model by using the target
users, and building real BCI-based systems.
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