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Abstract— Brain-computer interface (BCI) is a technol-1

ogy that connects the human brain and external devices.2

Many studies have shown the possibility of using it to3

restore motor control in stroke patients. One specific chal-4

lenge of such BCI is that the classification accuracy is not5

high enough for multi-class movements. In this study, by6

using Multivariate Empirical Mode Decomposition (MEMD)7

and Convolutional Neural Network (CNN), a novel algo-8

rithm (MECN) was proposed to decode EEG signals for9

four kinds of hand movements. Firstly, the MEMD was used10

to decompose the movement-relatedelectroencephalogram11

(EEG) signals to obtain the multivariate intrinsic empirical12

functions (MIMFs). Then, the optimal MIMFs fusion was13

performed based on sequential forward selection algorithm.14
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Finally, the selected MIMFs were input to the CNN model for 15

discriminating four kinds of hand movements. The average 16

classification accuracy of thirteen subjects over the six- 17

fold cross-validation reached 81.14% for 2s-data before the 18

movement onset and 81.08% for 2s-data after the movement 19

onset. The MECN method achieved statistically significant 20

improvement on the state-of-the-art methods. The results 21

showed that the algorithm proposed in this study can effec- 22

tively decode four kinds of hand movements based on EEG 23

signals. 24

Index Terms— Electroencephalogram, hand movement, 25

brain–computer interface, multivariate empirical mode 26

decomposition, convolutional neural network. 27

I. INTRODUCTION 28

BRAIN computer interface (BCI) is a technology that 29

establishes a communication system between the human 30

brain and external devices [1]. It has been applied in many 31

fields, such as stroke rehabilitation [2], [3], prosthetic con- 32

trol [4], quadcopter control [5], speech synthesis [6], and emo- 33

tion recognition [7]. The techniques aiming to reconstruct hand 34

motor function have been extensively studied [8], [9], [10] 35

and are expected to enable rehabilitation training for stroke 36

patients. It’s proved that the task variability can improve the 37

performance in the retention session of learned motor skills 38

and increase the generalization of learning to new skills [11]. 39

Hence, decoding fine hand movement intention is of great 40

value for rehabilitation training of hand function. 41

As is well-known, the recognition performance of hand 42

movements using surface electromyographic (sEMG) signals 43

or angle sensor data can achieve an accuracy of closed to 100% 44

in some previous studies [12], [13], [14], [15], [16], [17]. 45

However, for some severe stroke patients, they may not have 46

sufficiently high levels of muscle activity and are hard to 47

achieve normal hand movements of daily living. Then, the 48

sEMG signals or angle sensor data cannot provide the adequate 49

information to decode different hand movements. Hence, the 50

EEG signals were used to classify different hand movements 51

instead of sEMG signals and angle sensor data. 52
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Many EEG-based classification systems work by decoding53

motor imagery (MI) signals from different parts of human54

body, such as right/left hand, feet, and tongue [18], [19], [20],55

regardless of the actual output command [21], because these56

tasks activate various areas of the cerebral cortex which are57

distant enough to be well distinguished [22], [23], [24]. Nev-58

ertheless, these tasks are inconsistent with actual instructions59

in most cases, and sustained motor imagery is not natural60

neither comfortable for the user. By contrast, the motor exe-61

cution (ME) tasks are consistent with the rehabilitation device62

feedback, and the BCI can better restore motor function of63

patients by inducing activity-dependent brain plasticity [25].64

What’s more, comparing with MI, the ME produces high65

movement-related brain activity to accurately classify different66

hand movements. References [26], [27] Therefore, the EEG of67

ME tasks were used to decode the movement intentions in this68

study.69

The typical application scenarios of decoding multi-class70

EEG signals of hand movements is the rehabilitation training71

of hand function. However, since the stroke patients have72

insufficient motor capability to perform normal hand move-73

ments in daily life, they are unable to successfully achieve74

the ME experiment paradigm. On the other hand, because the75

motor cortex of stroke patients has suffered from injuries, the76

strength of EEG signals related to hand movements becomes77

weak and the EEG pattern of brain activities among dif-78

ferent hand movements is also difficult to be discriminated.79

Thus, the neurologically healthy subjects with ME tasks80

were used to verify the feasibility of decoding multi-class81

movements from same hand. Besides, the EEG classification82

algorithm based on healthy subjects with ME tasks would be83

applied to the hand movement decoding of stroke patients84

by transfer learning in the future. In order to accomplish85

the objective of multi-class movement pattern recognition of86

same hand with stroke patients, many attempts have been87

firstly made to focus on the EEG classification of healthy88

subjects [28], [29], [30], [31]. Consequently, the neurologically89

healthy subjects were tested for our proposed method in this90

study.91

Most studies have attempted to extract different movement-92

related features, such as kinds of temporal and spectral93

features [32], [33], [34], [35], [36], [37], [38], phase-lock-94

based features [39], time-frequency (TF) map features of each95

source signal in the motor cortex [40]. Some other studies96

proposed to use different neural network structures for feature97

extraction and classifying, such as compact convolutional98

neural network named EEGNet [41], deep ConvNets [42].99

Previous studies have achieved good results in distinguishing100

2-class hand movement of one hand, with a classification101

accuracy of around 80%. However, the accuracy of multi-102

class hand movements of one hand was between 50% and103

70%, which was not high enough to satisfy the application104

of rehabilitation training at present [43]. Therefore, in this105

study, a novel algorithm (MECN) using Multivariate Empirical106

Mode Decomposition (MEMD) and Convolutional Neural107

Network (CNN) was proposed to classify four kinds of hand108

movement. The algorithm was performed on the recorded109

signals before and after movement onset to decode the EEG110

signals. The remainder of this paper is organized as follows: 111

Section II introduces the experiment and the proposed algo- 112

rithm in detail. Section III presents the results of the proposed 113

algorithm on the collected data. Section IV describes the 114

discussions. Section V concludes this paper. 115

II. METHODS 116

A. Experimental Protocol and Data Acquisition 117

Sixteen subjects (1 female and 15 males: 23.1 ± 2.6 years 118

old) participated in this experiment. They are neurologi- 119

cally healthy and right-handed. Written informed consent was 120

obtained from all subjects before the experiments and the study 121

was approved the 26 March 2020 by the Institutional Review 122

Board at Xi’an Jiaotong University, China, ref. 2020-620. 123

Due to the poor quality of EEG or EMG, the data of three 124

subjects were excluded from further analysis (1 female and 125

2 males). 126

EEG experiments were carried out in a quiet room. The 127

subjects were seated in a comfortable chair with their right 128

arm resting on the table in front of them and they were approx- 129

imately 0.5 m distance from the screen. The experimental 130

session of each movement task consisted of 3 blocks, as shown 131

in Fig. 1. At the beginning of each block, a five-second 132

window on the computer screen with words Start indicated 133

that this block was about to begin, and subjects were reminded 134

to prepare for the coming trials. One trial included a four- 135

second cue part with words Ready for Tip Pinch (or Multiple 136

Tip Pinch, Hand Close, Hand Open), a four-second execution 137

part instructed subjects to execute the movement displayed on 138

the screen and a six-second rest part in which subjects were 139

allowed to relax, blink, and swallow. Each subject performed 140

60 trials in a session, with a 5-min rest between each block 141

of 20 trials. 142

EEG signals were recorded from 30 scalp electrodes and 143

EMG signals were recorded simultaneously from 4 Ag/AgCl 144

electrodes (Neuroscan Systems, Compumedics, Charlotte, NC, 145

USA). The EEG electrodes were placed at FP1, FP2, F7, F3, 146

FZ, F4, F8, FT7, FC3, FCZ, FC4, FT8, T7, C3, CZ, C4, 147

T8, TP7, CP3, CPZ, CP4, TP8, P7, P3, PZ, P4, P8, O1, 148

OZ, O2 locations according to international 10-20 system. 149

The reference electrode was placed on right mastoid and 150

ground on AFz. The EMG electrodes were set at extensor 151

digitorum, extensor carpi radialis, flexor carpi ulnaris, and 152

palmaris longus. The reference was placed at the bone of the 153

wrist. The cue and the data acquisition were carried out on 154

MATLAB2015a and Curry8.0 of two computers respectively. 155

For synchronization, MATLAB called the parallel port to send 156

a trigger signal and it was recorded by Curry8.0 on another 157

computer, when the participant was prompted to execute an 158

action. Signals were sampled at 1000 Hz and filtered with a 159

passband of 0.1-100Hz with a notch filter at 50Hz to remove 160

power-line artifacts by EEGLAB toolbox in MATLAB. The 161

moving time window method [21] was applied for EMG 162

signals to determine the starting point of the movement. 163

According to this time point, EEG signals were segmented 164

to obtain the effective movement-related EEG data before and 165

after movement onset. 166
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Fig. 1. Experimental protocol of one session. There were 4 sessions in total, corresponding to Tip Pinch, Multiple Tip Pinch, Hand Close and Hand
Open four movements. One session consisted of three blocks, each of which comprised one start stage lasting 5 seconds and twenty trials lasting
14 seconds. A trial was consisted of a 4s-cue which indicated subject the movement they were going to perform, a 4s-execution which required
subject only execute the specific movement and a 6s-rest which allowed subject to relax, blink, and swallow. There was a 5-min rest existed between
the continuous blocks to prevent fatigue of the subject. The movement onset was finally determined by EMG using the sliding window method.

Fig. 2. Flowchart of the proposed algorithm.

B. Multi-Class EEG Recognition Algorithm167

The flowchart of the proposed algorithm is shown in Fig.2.168

Raw EEG signals were divided into training set, validation169

set and test set. First, EEG signals were decomposed by170

MEMD into multiple multivariate intrinsic mode functions171

(MIMFs). Second, one MIMF was input to one CNN, and172

the CNN features would be concatenated after flattened [44].173

The optimal MIMFs fusion was selected by SFS strategy174

on training and validation set. Finally, the selected MIMFs175

were input to the CNN for discriminating four kinds of hand176

movements. The average classification accuracy of six-fold177

cross-validation on test set were regarded as the performance178

evaluation of the algorithm.179

1) Multivariate Empirical Mode Decomposition (MEMD): 180

MEMD [45] is proposed based on empirical mode decom- 181

position (EMD) [46] which overcomes the single-channel 182

limitation of EMD by mapping low-dimensional multi- 183

channel signals to higher dimensions. The MIMF component 184

obtained by MEMD is an oscillating function with time- 185

varying frequency, which reflect the local characteris- 186

tics of non-stationary signals. The algorithm is essentially 187

a smoothing process for non-stationary signals, and the 188

n-dimension signals, {X (t)}T
t=1 = {x1 (t) , x2 (t) , . . . , xn (t)}, 189

where T represents the length of the signals and t 190

represents the time points of the signal, were grad- 191

ually decomposed into several MIMFs, {hi (t)}q
i=1, and 192
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TABLE I
MECN ARCHITECTURE

residue, r (t), as in193

X (t) =
q∑

i=1

hi (t) + r (t) , (1)194

where q represents the number of MIMF decomposed. The195

specific calculation process is shown in literature [47]. Since196

data of different trials would be decomposed into different197

numbers of MIMF, the first seven MIMFs of each trial198

were selected as the output of MEMD, which were named199

MIMF1, MIMF2, MIMF3, …, MIMF6 and MIMF7 from high200

frequency to low frequency.201

2) CNN Model: Convolutional neural network (CNN) is a202

feed-forward network which is inspired by the visual cortex203

of the human brain. It usually includes convolutional layer,204

pooling layer, and fully connected layer [48]. CNN can205

extract features automatically and it has been proven that a206

shallow CNN with large filter size can learn specific temporal207

and spatial features, while the deep model extracts general208

features [42].209

The specific network structure is presented as Table I. In the210

first convolutional layer, there were 25 2D-convolutional ker-211

nels with size of 1 × 10. The second convolutional layer con-212

tained 25 2D-convolutional kernels with size of 30 × 1. Note213

that there was no activation function between the two layers214

so that the two layers could be seen as a temporal convolution215

and a spatial filter to achieve implicit regularization and reduce216

the amount of calculation. Then, a pooling layer (maximum217

pooling) was added behind the two convolutional layers. The218

size of the pool was 1 × 3, and the step stride was 1 × 3.219

The number of 2D-convolutional kernels of the third, fourth220

and fifth layers were set to 50, 100 and 200 with an identical221

pooling layer behind respectively. Next, the features extracted222

were flattened into one-dimension and the flattened data were 223

fused by concatenation layer. In the subsequent selection of 224

the optimal MIMFs fusion, the number of MIMF selected 225

would be the number of constructed CNN. The CNN contained 226

3 fully connected layer with nodes 1024, 512, and 4. Softmax 227

function was used in the last fully connected layer as the 228

activation function to output the results of 4-class movement 229

classification, and the Rectified Linear Unit (Relu, f (x) = 230

max(x, 0)) was used as the activation function of other fully 231

connected layers. Considering that over-fitting occurs due to 232

small sample size, the batch normalization layers were added 233

between the convolution layer and the activation function [49]. 234

Additionally, the dropout probability of the first two fully 235

connected layers was set at 0.5 [50]. The batch size was set 236

to 64. The exponential linear unit function (ELU, f (x) = x 237

f or x>0 and f (x) = ex − 1 f or x ≤ 0) was selected as the 238

activation function of the convolutional layer to fit nonlinear 239

problems. The cross-entropy loss function was selected as the 240

loss function. The adaptive moment estimation (Adam) was 241

chosen to upgrade the parameters of CNN, and the learning 242

rate was 0.001, Beta1 was 0.9, and Beta2 was 0.999 according 243

to the literature [51]. The early stopping method was set in 244

the algorithm. The criterion for determining the optimal model 245

was such that when the accuracy of the validation set data did 246

not increase within 20 epochs, the model at this epoch was 247

saved as the optimal model. 248

3) Optimal MIMFs Fusion Based on Sequential Forward 249

Selection: After the original data were decomposed by 250

MEMD, seven MIMFs were obtained and input to CNN-1, 251

CNN-2, …, CNN-7. Features obtained after convolution and 252

pooling were concatenated. But the feature concatenation 253

brought some problems, such as the decline of generalization 254

ability, the increase of training time and so on. Therefore, 255

the MIMF selection algorithm was applied to select the 256

proper MIMF and determine the optimal MIMFs fusion. The 257

selection process consists of four parts: generation proce- 258

dure, evaluation function, stopping criterion and validation 259

procedure [52]. Sequential forward selection (SFS), sequen- 260

tial backward selection (SBS), and bidirectional search are 261

commonly used strategies in generation procedure [53] and 262

SFS was determined for the optimal MIMF combination 263

selection in this study. The evaluation function is particularly 264

important during the search process and classification accuracy 265

was chosen. The stopping criterion was such that when the 266

accuracy of the MIMF combination in the validation set was 267

the highest, the MIMFs fusion was regarded as the optimal 268

combination and the search stopped. Otherwise, next MIMF 269

(from MIMF1 to MIMF7) would be added to calculate the 270

accuracy. 271

4) Performance Assessment: In order to improve the gener- 272

alization ability of the model, the pre-processed data were first 273

divided into training set, validation set, and test set randomly 274

of rate 3:2:1. The training set data were used to train the 275

CNN and the validation set data were used for determining the 276

optimal MIMFs fusion and the optimal model. The algorithm 277

was tested on the test set and the final accuracy was averaged 278

over the six-fold cross-validation. 279
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Since the amount of data were too small for deep learning280

(data with a size of 60 × 30 × 2000 [trials × channels ×281

sampling points] of one movement per subject after282

pre-processed), data augmentation was performed then to283

obtain data with a size of 1260 × 30 × 1000. The data284

were cropped with a one-second window, and the cropped step285

was set to 50 ms. The original 2-second-long EEG signals286

were cropped into twenty-one 1-second-long EEG signals287

finally. Since the training set, validation set, and test set288

had been divided before cropping, the crops with overlapping289

information would not affect the results. Overall, this resulted290

in 5040 (4 × 21 × 60) crops as CNN input, each of size 30 ×291

1000 per subject.292

The average classification accuracy over six-fold cross-293

validation was used to evaluate the performance of the pro-294

posed algorithm in python 3.5. The Wilcoxon signed-rank295

tests were employed to check for statistical significance of296

accuracies between different data or methods.297

III. RESULTS298

As we all know, the sensorimotor cortex area of the brain299

is activated during ME, so it is possible to classify hand300

motions by [29], [40], and [54] analyzing the EEG signals301

during ME. However, in recent years, studies [55] have shown302

that the action intention-related signals before ME also contain303

task-related information. Early decoding of motor states can304

reduce latency in practical applications, so as to provide stroke305

patients with more natural and active rehabilitation. In order to306

verify that the algorithm proposed in this paper can not only307

decode the EEG signals of ME, but also has a comparable308

classification performance for the EEG signals in the stage of309

movement preparation, the data before and after the movement310

were analyzed in the following parts: determination of CNN311

structure (Section III.A), algorithm performance verification312

(Section III.B), and different channel results (Section IV.313

Discussion).314

A. Determination of CNN Structure315

Considering that the main factors of the CNN structure316

are the size of the convolution kernel and the number of317

convolution layer, the two parameters were set to different318

values to explore the optimal network structure [56]. The319

size of the convolution kernel was set to 1 × 5, 1 × 10,320

1 × 20, while the number of convolutional layers was set321

to 3, 4, and 5. That is, nine kinds of network structures were322

considered in total. The results of CNN network structure323

selection are shown in Fig. 3. The accuracy referred to the324

average result of 13 subjects over the six-fold cross-validation.325

BM in Fig. 3(a) meant that the accuracy was calculated by326

2s-data before movement onset and AM in Fig. 3(b) was327

related to 2s-data after movement onset. From this figure,328

it could be observed that when the number of convolution329

kernel was 4 and the convolution kernel was selected as330

1 × 10 (“4-10” in abscissa, Fig. 3(a)), the average accuracy331

(75.21±9.79%) was the highest among the nine network332

structures using data before movement onset. The accuracy333

of “4-10” (77.47±8.66%) in Fig. 3(b) was only 0.8% lower334

Fig. 3. CNN network structure selection before (a) and after (b) move-
ment onset. The abscissa represents the network structure. The number
before “-” represents the number of convolution layers and the number
after “-” indicates the convolution core size. For instance, “4-10” repre-
sents a CNN with four convolution layers and each convolution core size
is 1 × 10. BM stands for before movement onset and AM stands for after
movement onset.

than that of “4-20” (78.29±8.95%). Considering that the 335

computation time increased as convolution ernel became large, 336

the network structure was confirmed to be “4-10” in this study. 337

B. Classification Accuracy of Movements Using Data 338

Before and After Movement Onset 339

The decoding results of multi-class hand movements for 340

13 subjects are shown in Table II. The classification accuracies 341

of different EEG signals were compared, including 2s data 342

before the movement onset (BM-2s), 1s data before the 343

movement onset (BM-1s), 1s data after the movement onset 344

(AM-1s), and 2s data after movement onset (AM-2s). It could 345

be seen that the accuracy of the four-class hand movements of 346

BM-2s achieved 81.14%±6.76%, and the accuracy of AM-2s 347

reached 81.08%±7.83%, which was slightly lower than that 348

of BM-2s but there was no significant difference between 349

them. The accuracies were 73.64±8.62% and 73.85±8.78% 350
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for BM-1s and AM-1s respectively. The highest classification351

accuracy for single subject exceeded 90% and the lowest one352

was more than 65% when using 2s-long data, while the subject353

with the best classification performance had accuracies of354

nearly 90% and the worst accuracies were more than 55%355

using 1s-long data.356

IV. DISCUSSION357

This study systematically evaluated the performance of the358

proposed algorithm MECN and showed that the MECN was359

able to decode the EEG signals of multi-class hand move-360

ments. The novelty and advantage of the proposed method361

are as follows: 1) MEMD was used firstly to decompose362

the EEG signals into several MIMFs with different frequency363

bands. Instead of reconstructing the signals by 2-3 MIMFs364

within a specific frequency band according to the experience in365

previous studies, different MIMFs were regarded as features in366

this paper; 2) The sequential forward selection (SFS) strategy367

was used to select MIMFs with the best result and inputting368

them into parallel CNNs, which can adaptively select the data369

of the best frequency band; 3) The first convolution layer of370

the CNN model works on the time dimension, then the second371

convolution layer performs a spatial filtering for all electrodes.372

Hence, the model extracts temporal and spatial features. The373

results show that the algorithm achieved good performance.374

The complexity of model could be further analyzed from375

model framework, model size, optimization process, and data376

complexity [57]. The MECN model had only 4 convolu-377

tion layers, each with 25, 25, 50, 100 convolution ker-378

nels, respectively. Adam optimizer was used to train the379

model because of the efficient computing and less memory380

required [51]. What’s more, compared with inputting EEG381

signals as an image, we represented the input as a 2D-array382

while rows indicate channel and columns indicate time step,383

which reduced the input dimensionality. The MECN algorithm384

was performed on GeForce RTX 2080 GPUs with 8 GB385

memory. The machines had Intel(R) Xeon(R) E5-1650 v4386

CPUs @ 3.60 GHz with 6 cores and 64 GB RAM. A subject-387

dependent model was trained on each subject, and the average388

time to train the model for 13 subjects was 3000.3 seconds.389

The training time mainly depended on the number of the390

optimal MIMF combinations selected. By contrast, the test391

time is much shorter, which has the potential for decoding in392

real-time BCI applications.393

As shown in Table II, the average accuracies of 2s394

data achieved 81% (BM-2s: 81.14%±6.76%, AM-2s:395

81.08%±7.83%), while the average accuracies of 1s396

data reached 70% (BM-1s: 73.64%±8.62%, AM-1s:397

73.85%±8.77%). In order to compare the data of the same398

length in different time periods, the accuracies of the data399

of windows [−2s −1s] (71.99%±10.08%) and [1s 2s]400

(72.47%±8.09%) were additionally calculated (0s is regarded401

as the starting point of the action, the negative sign means402

the time before movement onset and the positive indicates403

the time after movement onset). The results show that the404

performance of windows [−2s −1s] and [1s 2s] were not405

significantly different from that of BM-1s (window [−1s 0s]406

vs [−2s −1s], p = 0.13) and AM-1s (window [0s 1s] vs407

TABLE II
CLASSIFICATION ACCURACIES OF 1-SECOND AND 2-SECOND EEG

SIGNALS BEFORE AND AFTER MOVEMENT ONSET

[1s 2s], p = 0.07). All results of 1s data were significantly 408

inferior to that of the 2s data. These show that the data in 409

window [−2s −1s], [−1s 0s], [0s 1s], and [1s 2s] contain 410

movement-related EEG information, and there is no doubt that 411

more information useful for classification is contained within 412

the [−2s 0s] and [0s 2s] signals. In addition, comparing 413

the results before and after movement onset, there was little 414

difference between these two kinds of data with the same 415

length of time, indicating that the EEG signals prior to the 416

movement onset already contained information that could be 417

specifically classified. This is meaningful for the development 418

of a low-latency prosthetic control or hand rehabilitation 419

system in future research. 420

Modern neurophysiological research had shown that the 421

movement of human limbs could lead to the enhancement 422

of brain signals activity in the corresponding areas of the 423

sensorimotor cortex, which are mainly located in the parietal 424

region [58]. In the EEG signal acquisition stage, we collected 425

30-channel EEG data of the whole brain. To investigate the 426

influence of EEG channels on movement classification, Fig. 4 427

shows the comparison results of different number of channels 428

before and after the movement onset. Fifteen-channel data 429

from the fronto-parietal area (F3, FZ, F4, FC3, FCZ, FC4, 430

C3, CZ, C4, CP3, CPZ, CP4, P3, PZ, P4), and nine-channel 431

data from frontal area (FC3, FCZ, FC4, C3, CZ, C4, CP3, 432

CPZ, CP4) were analyzed in this comparison task. The average 433

accuracy of 15 channels (BM: 66.90±7.83%, p=0.0024; AM: 434

66.77±14.16%, p=0.0030) and 9 channels EEG signals (BM: 435

61.09±12.43%, p=0.0015; AM: 61.20±13.97%, p=0.0015), 436

regardless BM or AM, were statistically lower than that 437

of thirty channels EEG signals (BM: 81.14%±6.76%, AM: 438

81.08±7.83%). Moreover, the accuracy of 15 channels EEG 439

signals was higher than that of 9 channels EEG signals (BM: 440

p=0.0015; AM: p=0.0107). These results suggested that more 441

EEG channels contained more information, and the informa- 442

tion related to the execution of hand movements was not 443
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Fig. 4. Results of different channels before and after movement onset.
Stars indicate statistically significant differences (p<0.05). Bars indicate
standard deviation.

Fig. 5. Comparison of multi-class hand movement recognition using the
proposed MECN method, GCB-Net, EEGNet, DeepNetConv, deepCNN,
MEMD-CSP and FBCSP.

only comprised in the motor functional area. Fig. 3 shows the444

accuracy of inputting the raw data before and after the move-445

ment onset to different structure CNNs. The network structure446

of 4 convolutional layers and 1 × 10 convolution kernels447

were determined and the accuracy was 75.21±9.79%, and448

77.47±8.66% before and after movement onset, respectively,449

which were significantly lower than that of data processed by450

the MECN algorithm (BM: p=0.0071; AM: p=0.0277). This451

indicated that MEMD and MIMFs fusion played an important452

role in classifying multi-class hand movements.453

Fig. 5 presents the classification accuracy of the pro-454

posed method MECN and other advanced methods, such455

as GCB-Net [7], EEGNet [41], DeepNetConv [42], deep-456

CNN [59], Filter Bank Common Spatial Pattern (FBCSP) [60],457

and MEMD-CSP [61]. These results were calculated using458

2s-long data before movement onset. In the MEMD-CSP algo-459

rithm, the signals were first decomposed by MEMD. Second,460

the median frequency of MIMF was used to automatically461

find the subject specific MIMFs providing major contribution462

to mu and beta rhythms. Third, the selected MIMFs were463

summed to reconstruct the EEG signals. Fourth, CSP was464

TABLE III
NUMBER OF TIMES EACH MIMF WAS SELECTED AS THE OPTIMAL

MIMF COMBINATION IN THE SIX-FOLD CROSS-VALIDATION (EACH

MIMF WAS SELECTED UP TO 6 TIMES EACH SUBJECT)

used to extract the features of the reconstructed signals and 465

the number of spatial filters was set at 5 (m=5). Finally, 466

the features were classified by SVM classifier [62]. In the 467

method of FBCSP, the signals were extracted features by CSP 468

with filter band 0.1-10Hz, 10-20Hz, 20-30Hz, …, 80-90Hz, 469

90-100Hz, and classified by SVM. The average accuracies of 470

the six compared methods were significantly lower than that 471

of MECN (p<0.05). These results illustrated that the proposed 472

method MECN was able to extract more suitable features 473

and obtain higher classification accuracy than the state-of-the- 474

art deep learning methods and traditional MEMD-CSP and 475

FBCSP approach. 476

The number of selected MIMFs was counted during optimal 477

MIMFs fusion when using the 2s data before the movement 478

onset. The number of times each subject’s 7 MIMFs were 479

selected are summarized in Table III. Since six-fold cross- 480

validation was performed in the algorithm and one MIMF 481

could be selected at most once in each fold cross-validation, 482

each MIMF could be selected up to 6 times in total. It could 483

be observed from this table that MIMF1 was selected the 484

most times, followed by MIMF2. MIMF1 and MIMF2 of 485

per subject were selected at least 5 times in the 6-fold cross- 486

validation, which implied that MIMF1 and MIMF2 contained 487

a lot of useful information which facilitated feature extrac- 488

tion and classification. However, MIMF7 had been selected 489

16 times, second only to the number of times MIMF2 had 490

been selected. In order to explore the contribution of different 491

MIMF to the results, single MIMF was input to CNN to 492

get the corresponding classification accuracy. As shown in 493

Fig. 6(a), MIMF1 reached the highest accuracy (79.4±7.05%) 494

and MIMF7 reached the lowest accuracy (31.53±1.62%). 495

Furthermore, as shown in Table III, except for S4 and S13, 496

MIMF7 was selected only 1 or 2 times for other subjects. 497

These indicated that there may be some information in the 498

frequency band where MIMF7 was located on some sub- 499

jects, but the information contained in MIMF7 was not very 500
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Fig. 6. (a) The accuracy of BM-2s using single MIMF with the algorithm
proposed. Bars indicate standard deviation. (b) Average PSD of 60 trials
by one subject (Hand Close) of seven MIMFs.

important for all subjects. Fig. 6(b) shows the power spectral501

density (PSD) of different MIMF frequency bands from one502

movement of one subject. MIMF1 contained high-gamma503

band information of 50-100Hz and MIMF2 contained low-504

gamma band information of about 30-45Hz. MIMF3, 4, 5, 6,505

7 contained lower frequency band information than MIMF1506

and MIMF2, while the classification accuracy got lower and507

lower. These demonstrated that the information of hand move-508

ments would be more contained in the gamma frequency509

band, which was consistent with previous literatures [63], [64],510

[65], [66], [67].511

Furthermore, one limitation of the study was that the512

algorithm proposed in this paper was performed on healthy513

subjects, and this algorithm may not be equally applicable to514

stroke patients. In order to apply hand movement intention515

decoding to the rehabilitation training, we are going to collect516

the EEG signals from stroke patients and transfer learning517

would be considered to generalize the results to patient groups518

in the following study.519

V. CONCLUSION 520

This study proposes a novel MECN algorithm to decode 521

multi-class EEG signals of hand movement. The results 522

showed that the accuracy obtained by the CNN with different 523

layers and different convolution kernels were different. For 524

the data collected in this experiment, the CNN with 4 con- 525

volution layers and 1 × 10 convolution kernel reached the 526

best accuracy. The more the channels of EEG signals were, 527

the more the useful information would be contained. The 528

longer the length of EEG signals, the better the classification 529

accuracy. The best accuracy of 81.14%±6.76% was achieved 530

for 30 channels, 2s data before movement onset, which 531

was significantly better than that of the traditional MEMD- 532

CSP and FBCSP method. In addition, MIMF1 and MIMF2 533

were selected in a high percentage in MIMFs fusion, and 534

they mainly referred to frequency band of 30-100Hz. This 535

demonstrates that the movement-related EEG signals may be 536

contained in the gamma band and the features of this band 537

can be more considered in future research. 538
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