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Abstract— Brain-computer interface (BCI) is a technol-
ogy that connects the human brain and external devices.
Many studies have shown the possibility of using it to
restore motor control in stroke patients. One specific chal-
lenge of such BCI is that the classification accuracy is not
high enough for multi-class movements. In this study, by
using Multivariate Empirical Mode Decomposition (MVEMD)
and Convolutional Neural Network (CNN), a novel algo-
rithm (MECN) was proposed to decode EEG signals for
four kinds of hand movements. Firstly, the MEMD was used
to decompose the movement-related electroencephalogram
(EEG) signals to obtain the multivariate intrinsic empirical
functions (MIMFs). Then, the optimal MIMFs fusion was
performed based on sequential forward selection algorithm.
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Finally, the selected MIMFs were input to the CNN model for
discriminating four kinds of hand movements. The average
classification accuracy of thirteen subjects over the six-
fold cross-validation reached 81.14% for 2s-data before the
movement onset and 81.08% for 2s-data after the movement
onset. The MECN method achieved statistically significant
improvement on the state-of-the-art methods. The results
showed that the algorithm proposed in this study can effec-
tively decode four kinds of hand movements based on EEG
signals.

Index Terms— Electroencephalogram, hand movement,
brain—-computer interface, multivariate empirical mode
decomposition, convolutional neural network.

I. INTRODUCTION

RAIN computer interface (BCI) is a technology that

establishes a communication system between the human
brain and external devices [1]. It has been applied in many
fields, such as stroke rehabilitation [2], [3], prosthetic con-
trol [4], quadcopter control [5], speech synthesis [6], and emo-
tion recognition [7]. The techniques aiming to reconstruct hand
motor function have been extensively studied [8], [9], [10]
and are expected to enable rehabilitation training for stroke
patients. It’s proved that the task variability can improve the
performance in the retention session of learned motor skills
and increase the generalization of learning to new skills [11].
Hence, decoding fine hand movement intention is of great
value for rehabilitation training of hand function.

As is well-known, the recognition performance of hand
movements using surface electromyographic (SEMG) signals
or angle sensor data can achieve an accuracy of closed to 100%
in some previous studies [12], [13], [14], [15], [16], [17].
However, for some severe stroke patients, they may not have
sufficiently high levels of muscle activity and are hard to
achieve normal hand movements of daily living. Then, the
SEMG signals or angle sensor data cannot provide the adequate
information to decode different hand movements. Hence, the
EEG signals were used to classify different hand movements
instead of SEMG signals and angle sensor data.

For more information, see https://creativecommons.org/licenses/by/4.0/
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Many EEG-based classification systems work by decoding
motor imagery (MI) signals from different parts of human
body, such as right/left hand, feet, and tongue [18], [19], [20],
regardless of the actual output command [21], because these
tasks activate various areas of the cerebral cortex which are
distant enough to be well distinguished [22], [23], [24]. Nev-
ertheless, these tasks are inconsistent with actual instructions
in most cases, and sustained motor imagery is not natural
neither comfortable for the user. By contrast, the motor exe-
cution (ME) tasks are consistent with the rehabilitation device
feedback, and the BCI can better restore motor function of
patients by inducing activity-dependent brain plasticity [25].
What’s more, comparing with MI, the ME produces high
movement-related brain activity to accurately classify different
hand movements. References [26], [27] Therefore, the EEG of
ME tasks were used to decode the movement intentions in this
study.

The typical application scenarios of decoding multi-class
EEG signals of hand movements is the rehabilitation training
of hand function. However, since the stroke patients have
insufficient motor capability to perform normal hand move-
ments in daily life, they are unable to successfully achieve
the ME experiment paradigm. On the other hand, because the
motor cortex of stroke patients has suffered from injuries, the
strength of EEG signals related to hand movements becomes
weak and the EEG pattern of brain activities among dif-
ferent hand movements is also difficult to be discriminated.
Thus, the neurologically healthy subjects with ME tasks
were used to verify the feasibility of decoding multi-class
movements from same hand. Besides, the EEG classification
algorithm based on healthy subjects with ME tasks would be
applied to the hand movement decoding of stroke patients
by transfer learning in the future. In order to accomplish
the objective of multi-class movement pattern recognition of
same hand with stroke patients, many attempts have been
firstly made to focus on the EEG classification of healthy
subjects [28], [29], [30], [31]. Consequently, the neurologically
healthy subjects were tested for our proposed method in this
study.

Most studies have attempted to extract different movement-
related features, such as kinds of temporal and spectral
features [32], [33], [34], [35], [36], [37], [38], phase-lock-
based features [39], time-frequency (TF) map features of each
source signal in the motor cortex [40]. Some other studies
proposed to use different neural network structures for feature
extraction and classifying, such as compact convolutional
neural network named EEGNet [41], deep ConvNets [42].
Previous studies have achieved good results in distinguishing
2-class hand movement of one hand, with a classification
accuracy of around 80%. However, the accuracy of multi-
class hand movements of one hand was between 50% and
70%, which was not high enough to satisfy the application
of rehabilitation training at present [43]. Therefore, in this
study, a novel algorithm (MECN) using Multivariate Empirical
Mode Decomposition (MEMD) and Convolutional Neural
Network (CNN) was proposed to classify four kinds of hand
movement. The algorithm was performed on the recorded
signals before and after movement onset to decode the EEG

signals. The remainder of this paper is organized as follows:
Section II introduces the experiment and the proposed algo-
rithm in detail. Section III presents the results of the proposed
algorithm on the collected data. Section IV describes the
discussions. Section V concludes this paper.

Il. METHODS
A. Experimental Protocol and Data Acquisition

Sixteen subjects (1 female and 15 males: 23.1 £ 2.6 years
old) participated in this experiment. They are neurologi-
cally healthy and right-handed. Written informed consent was
obtained from all subjects before the experiments and the study
was approved the 26 March 2020 by the Institutional Review
Board at Xi’an Jiaotong University, China, ref. 2020-620.
Due to the poor quality of EEG or EMG, the data of three
subjects were excluded from further analysis (1 female and
2 males).

EEG experiments were carried out in a quiet room. The
subjects were seated in a comfortable chair with their right
arm resting on the table in front of them and they were approx-
imately 0.5 m distance from the screen. The experimental
session of each movement task consisted of 3 blocks, as shown
in Fig. 1. At the beginning of each block, a five-second
window on the computer screen with words Start indicated
that this block was about to begin, and subjects were reminded
to prepare for the coming trials. One trial included a four-
second cue part with words Ready for Tip Pinch (or Multiple
Tip Pinch, Hand Close, Hand Open), a four-second execution
part instructed subjects to execute the movement displayed on
the screen and a six-second rest part in which subjects were
allowed to relax, blink, and swallow. Each subject performed
60 trials in a session, with a 5-min rest between each block
of 20 trials.

EEG signals were recorded from 30 scalp electrodes and
EMG signals were recorded simultaneously from 4 Ag/AgCl
electrodes (Neuroscan Systems, Compumedics, Charlotte, NC,
USA). The EEG electrodes were placed at FP1, FP2, F7, F3,
FZ, F4, F8, FT7, FC3, FCZ, FC4, FTS8, T7, C3, CZ, C4,
T8, TP7, CP3, CPZ, CP4, TP8, P7, P3, PZ, P4, P8, Ol,
0Z, 02 locations according to international 10-20 system.
The reference electrode was placed on right mastoid and
ground on AFz. The EMG electrodes were set at extensor
digitorum, extensor carpi radialis, flexor carpi ulnaris, and
palmaris longus. The reference was placed at the bone of the
wrist. The cue and the data acquisition were carried out on
MATLAB2015a and Curry8.0 of two computers respectively.
For synchronization, MATLAB called the parallel port to send
a trigger signal and it was recorded by Curry8.0 on another
computer, when the participant was prompted to execute an
action. Signals were sampled at 1000 Hz and filtered with a
passband of 0.1-100Hz with a notch filter at S0Hz to remove
power-line artifacts by EEGLAB toolbox in MATLAB. The
moving time window method [21] was applied for EMG
signals to determine the starting point of the movement.
According to this time point, EEG signals were segmented
to obtain the effective movement-related EEG data before and
after movement onset.
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Fig. 1. Experimental protocol of one session. There were 4 sessions in total, corresponding to Tip Pinch, Multiple Tip Pinch, Hand Close and Hand

Open four movements. One session consisted of three blocks, each of which comprised one start stage lasting 5 seconds and twenty trials lasting
14 seconds. A trial was consisted of a 4s-cue which indicated subject the movement they were going to perform, a 4s-execution which required
subject only execute the specific movement and a 6s-rest which allowed subject to relax, blink, and swallow. There was a 5-min rest existed between
the continuous blocks to prevent fatigue of the subject. The movement onset was finally determined by EMG using the sliding window method.
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Fig. 2. Flowchart of the proposed algorithm.

B. Multi-Class EEG Recognition Algorithm

The flowchart of the proposed algorithm is shown in Fig.2.
Raw EEG signals were divided into training set, validation
set and test set. First, EEG signals were decomposed by
MEMD into multiple multivariate intrinsic mode functions
(MIMFs). Second, one MIMF was input to one CNN, and
the CNN features would be concatenated after flattened [44].
The optimal MIMFs fusion was selected by SFS strategy
on training and validation set. Finally, the selected MIMFs
were input to the CNN for discriminating four kinds of hand
movements. The average classification accuracy of six-fold
cross-validation on test set were regarded as the performance
evaluation of the algorithm.

Results

1) Multivariate Empirical Mode Decomposition (MEMD):
MEMD [45] is proposed based on empirical mode decom-
position (EMD) [46] which overcomes the single-channel
limitation of EMD by mapping low-dimensional multi-
channel signals to higher dimensions. The MIMF component
obtained by MEMD is an oscillating function with time-
varying frequency, which reflect the local characteris-
tics of non-stationary signals. The algorithm is essentially
a smoothing process for non-stationary signals, and the
n-dimension signals, {X (t)}tTZ] ={x1(®),x20),...,x, (@)},
where T represents the length of the signals and t
represents the time points of the signal, were grad-
ually decomposed into several MIMFs, ({h; (t)};—l»



TAO et al.. DECODING MULTI-CLASS EEG SIGNALS OF HAND MOVEMENT USING MEMD AND CNN

2757

TABLE |
MECN ARCHITECTURE

Layer Filters Size  Activation Output Parameters
Shape
Input (30,1000,1) 0
Conv2D 25 (1,100  Linear  (30,991,25) 275
Conv2D 25 (30,1) Linear (1,991,25) 18775
BatchNorm (1,991,25) 100
Actication ELU (1,991,25) 0
MaxPool2D (1,3) (1,330,25) 0
Conv2D 50 (1,10) Linear (1,321,50) 12550
BatchNorm (1,321,50) 200
Actication ELU (1,321,50) 0
MaxPool2D (1,3) (1,107,50) 0
Conv2D 100 (1,10) Linear (1,98,100) 50100
BatchNorm (1,98,100) 400
Actication (1,98,100) 0
MaxPool2D (1,3) (1,32,100) 0
Flatten (3200) 0
Dense 1024 Relu (1024) 3277824
Dropout (1024) 0
Dense 512 Relu (512) 524800
Dropout (512) 0
Dense 4 Softmax 4) 2052
residue, r (¢), as in
q
X0 => hi@)+r@, (1)

i=1

where g represents the number of MIMF decomposed. The
specific calculation process is shown in literature [47]. Since
data of different trials would be decomposed into different
numbers of MIMF, the first seven MIMFs of each trial
were selected as the output of MEMD, which were named
MIMF1, MIMF2, MIMF3, ..., MIMF6 and MIMF7 from high
frequency to low frequency.

2) CNN Model: Convolutional neural network (CNN) is a
feed-forward network which is inspired by the visual cortex
of the human brain. It usually includes convolutional layer,
pooling layer, and fully connected layer [48]. CNN can
extract features automatically and it has been proven that a
shallow CNN with large filter size can learn specific temporal
and spatial features, while the deep model extracts general
features [42].

The specific network structure is presented as Table I. In the
first convolutional layer, there were 25 2D-convolutional ker-
nels with size of 1 x 10. The second convolutional layer con-
tained 25 2D-convolutional kernels with size of 30 x 1. Note
that there was no activation function between the two layers
so that the two layers could be seen as a temporal convolution
and a spatial filter to achieve implicit regularization and reduce
the amount of calculation. Then, a pooling layer (maximum
pooling) was added behind the two convolutional layers. The
size of the pool was 1 x 3, and the step stride was 1 x 3.
The number of 2D-convolutional kernels of the third, fourth
and fifth layers were set to 50, 100 and 200 with an identical
pooling layer behind respectively. Next, the features extracted

were flattened into one-dimension and the flattened data were
fused by concatenation layer. In the subsequent selection of
the optimal MIMFs fusion, the number of MIMF selected
would be the number of constructed CNN. The CNN contained
3 fully connected layer with nodes 1024, 512, and 4. Softmax
function was used in the last fully connected layer as the
activation function to output the results of 4-class movement
classification, and the Rectified Linear Unit (Relu, f(x) =
max(x, 0)) was used as the activation function of other fully
connected layers. Considering that over-fitting occurs due to
small sample size, the batch normalization layers were added
between the convolution layer and the activation function [49].
Additionally, the dropout probability of the first two fully
connected layers was set at 0.5 [50]. The batch size was set
to 64. The exponential linear unit function (ELU,f(x) = x
for x>0 and f(x) =¢* —1 for x < 0) was selected as the
activation function of the convolutional layer to fit nonlinear
problems. The cross-entropy loss function was selected as the
loss function. The adaptive moment estimation (Adam) was
chosen to upgrade the parameters of CNN, and the learning
rate was 0.001, Betal was 0.9, and Beta2 was 0.999 according
to the literature [51]. The early stopping method was set in
the algorithm. The criterion for determining the optimal model
was such that when the accuracy of the validation set data did
not increase within 20 epochs, the model at this epoch was
saved as the optimal model.

3) Optimal MIMFs Fusion Based on Sequential Forward
Selection: After the original data were decomposed by
MEMD, seven MIMFs were obtained and input to CNN-1,
CNN-2, ..., CNN-7. Features obtained after convolution and
pooling were concatenated. But the feature concatenation
brought some problems, such as the decline of generalization
ability, the increase of training time and so on. Therefore,
the MIMF selection algorithm was applied to select the
proper MIMF and determine the optimal MIMFs fusion. The
selection process consists of four parts: generation proce-
dure, evaluation function, stopping criterion and validation
procedure [52]. Sequential forward selection (SFS), sequen-
tial backward selection (SBS), and bidirectional search are
commonly used strategies in generation procedure [53] and
SFS was determined for the optimal MIMF combination
selection in this study. The evaluation function is particularly
important during the search process and classification accuracy
was chosen. The stopping criterion was such that when the
accuracy of the MIMF combination in the validation set was
the highest, the MIMFs fusion was regarded as the optimal
combination and the search stopped. Otherwise, next MIMF
(from MIMF1 to MIMF7) would be added to calculate the
accuracy.

4) Performance Assessment: In order to improve the gener-
alization ability of the model, the pre-processed data were first
divided into training set, validation set, and test set randomly
of rate 3:2:1. The training set data were used to train the
CNN and the validation set data were used for determining the
optimal MIMFs fusion and the optimal model. The algorithm
was tested on the test set and the final accuracy was averaged
over the six-fold cross-validation.
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Since the amount of data were too small for deep learning
(data with a size of 60 x 30 x 2000 [trials x channels x
sampling points] of one movement per subject after
pre-processed), data augmentation was performed then to
obtain data with a size of 1260 x 30 x 1000. The data
were cropped with a one-second window, and the cropped step
was set to 50 ms. The original 2-second-long EEG signals
were cropped into twenty-one 1-second-long EEG signals
finally. Since the training set, validation set, and test set
had been divided before cropping, the crops with overlapping
information would not affect the results. Overall, this resulted
in 5040 (4 x 21 x 60) crops as CNN input, each of size 30 x
1000 per subject.

The average classification accuracy over six-fold cross-
validation was used to evaluate the performance of the pro-
posed algorithm in python 3.5. The Wilcoxon signed-rank
tests were employed to check for statistical significance of
accuracies between different data or methods.

I1l. RESULTS

As we all know, the sensorimotor cortex area of the brain
is activated during ME, so it is possible to classify hand
motions by [29], [40], and [54] analyzing the EEG signals
during ME. However, in recent years, studies [55] have shown
that the action intention-related signals before ME also contain
task-related information. Early decoding of motor states can
reduce latency in practical applications, so as to provide stroke
patients with more natural and active rehabilitation. In order to
verify that the algorithm proposed in this paper can not only
decode the EEG signals of ME, but also has a comparable
classification performance for the EEG signals in the stage of
movement preparation, the data before and after the movement
were analyzed in the following parts: determination of CNN
structure (Section III.A), algorithm performance verification
(Section III.B), and different channel results (Section IV.
Discussion).

A. Determination of CNN Structure

Considering that the main factors of the CNN structure
are the size of the convolution kernel and the number of
convolution layer, the two parameters were set to different
values to explore the optimal network structure [56]. The
size of the convolution kernel was set to 1 x 5, 1 x 10,
1 x 20, while the number of convolutional layers was set
to 3, 4, and 5. That is, nine kinds of network structures were
considered in total. The results of CNN network structure
selection are shown in Fig. 3. The accuracy referred to the
average result of 13 subjects over the six-fold cross-validation.
BM in Fig. 3(a) meant that the accuracy was calculated by
2s-data before movement onset and AM in Fig. 3(b) was
related to 2s-data after movement onset. From this figure,
it could be observed that when the number of convolution
kernel was 4 and the convolution kernel was selected as
1 x 10 (“4-10” in abscissa, Fig. 3(a)), the average accuracy
(75.21£9.79%) was the highest among the nine network
structures using data before movement onset. The accuracy
of “4-10” (77.474£8.66%) in Fig. 3(b) was only 0.8% lower

100
7521+ 74.98+
7152¢ 979 10.77 24704
+ 66.74x 936 go3 6994+ g5 66+
61.17¢ 83292
80 A 12— 76_ 11.35 10.78
X 60
=
(3]
]
3
‘g 40 4
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35 310 320 45 410 420 55 510 520
Network Structure (BM)
(a)
100
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=
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[
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20 1
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Fig. 3. CNN network structure selection before (a) and after (b) move-
ment onset. The abscissa represents the network structure. The number

before “-” represents the number of convolution layers and the number

“«»

after “-” indicates the convolution core size. For instance, “4-10” repre-
sents a CNN with four convolution layers and each convolution core size
is 1 x 10. BM stands for before movement onset and AM stands for after
movement onset.

than that of “4-20” (78.29£8.95%). Considering that the
computation time increased as convolution ernel became large,
the network structure was confirmed to be “4-10” in this study.

B. Classification Accuracy of Movements Using Data
Before and After Movement Onset

The decoding results of multi-class hand movements for
13 subjects are shown in Table II. The classification accuracies
of different EEG signals were compared, including 2s data
before the movement onset (BM-2s), 1s data before the
movement onset (BM-1s), 1s data after the movement onset
(AM-1s), and 2s data after movement onset (AM-2s). It could
be seen that the accuracy of the four-class hand movements of
BM-2s achieved 81.14%=6.76%, and the accuracy of AM-2s
reached 81.08%+7.83%, which was slightly lower than that
of BM-2s but there was no significant difference between
them. The accuracies were 73.64+£8.62% and 73.85+8.78%
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for BM-1s and AM-1s respectively. The highest classification
accuracy for single subject exceeded 90% and the lowest one
was more than 65% when using 2s-long data, while the subject
with the best classification performance had accuracies of
nearly 90% and the worst accuracies were more than 55%
using Is-long data.

IV. DISCUSSION

This study systematically evaluated the performance of the
proposed algorithm MECN and showed that the MECN was
able to decode the EEG signals of multi-class hand move-
ments. The novelty and advantage of the proposed method
are as follows: 1) MEMD was used firstly to decompose
the EEG signals into several MIMFs with different frequency
bands. Instead of reconstructing the signals by 2-3 MIMFs
within a specific frequency band according to the experience in
previous studies, different MIMFs were regarded as features in
this paper; 2) The sequential forward selection (SFS) strategy
was used to select MIMFs with the best result and inputting
them into parallel CNNs, which can adaptively select the data
of the best frequency band; 3) The first convolution layer of
the CNN model works on the time dimension, then the second
convolution layer performs a spatial filtering for all electrodes.
Hence, the model extracts temporal and spatial features. The
results show that the algorithm achieved good performance.

The complexity of model could be further analyzed from
model framework, model size, optimization process, and data
complexity [57]. The MECN model had only 4 convolu-
tion layers, each with 25, 25, 50, 100 convolution ker-
nels, respectively. Adam optimizer was used to train the
model because of the efficient computing and less memory
required [51]. What’s more, compared with inputting EEG
signals as an image, we represented the input as a 2D-array
while rows indicate channel and columns indicate time step,
which reduced the input dimensionality. The MECN algorithm
was performed on GeForce RTX 2080 GPUs with 8 GB
memory. The machines had Intel(R) Xeon(R) E5-1650 v4
CPUs @ 3.60 GHz with 6 cores and 64 GB RAM. A subject-
dependent model was trained on each subject, and the average
time to train the model for 13 subjects was 3000.3 seconds.
The training time mainly depended on the number of the
optimal MIMF combinations selected. By contrast, the test
time is much shorter, which has the potential for decoding in
real-time BCI applications.

As shown in Table II, the average accuracies of 2s

data achieved 81% (BM-2s: 81.14%+6.76%, AM-2s:
81.08%+7.83%), while the average accuracies of 1s
data reached 70% (BM-1s: 73.64%+8.62%, AM-1s:

73.85%=+8.77%). In order to compare the data of the same
length in different time periods, the accuracies of the data
of windows [—2s —1s] (71.99%=410.08%) and [ls 2s]
(72.47%=+8.09%) were additionally calculated (Os is regarded
as the starting point of the action, the negative sign means
the time before movement onset and the positive indicates
the time after movement onset). The results show that the
performance of windows [—2s —1s] and [Is 2s] were not
significantly different from that of BM-1s (window [—1s 0Os]
vs [—2s —1s], p = 0.13) and AM-1s (window [0Os 1s] vs

TABLE Il
CLASSIFICATION ACCURACIES OF 1-SECOND AND 2-SECOND EEG
SIGNALS BEFORE AND AFTER MOVEMENT ONSET

Subject BM-2s BM-1s AM-1s AM-2s

1 81.17% 72.36% 74.33% 82.26%

2 82.74% 79.58% 78.63% 83.43%

3 67.42% 60.24% 56.73% 65.46%

4 73.85% 59.84% 64.80% 70.46%

5 79.33% 74.21% 71.03% 82.42%

6 79.35% 72.44% 73.35% 84.74%

7 82.44% 76.21% 76.03% 84.50%

8 93.00% 88.29% 89.94% 92.02%

9 80.81% 69.68% 69.52% 80.16%

10 82.62% 76.53% 76.01% 85.18%

11 82.38% 72.14% 69.78% 70.77%

12 94.07% 87.86% 88.31% 91.13%

13 75.62% 67.96% 71.61% 81.55%

Mean 81.14% 73.64% 73.85% 81.08%

Std 6.76% 8.62% 8.78% 7.83%
P-value 0.0015 0.0015

[1s 2s], p = 0.07). All results of 1s data were significantly
inferior to that of the 2s data. These show that the data in
window [—2s —1s], [—1s Os], [0s 1s], and [1s 2s] contain
movement-related EEG information, and there is no doubt that
more information useful for classification is contained within
the [—2s Os] and [Os 2s] signals. In addition, comparing
the results before and after movement onset, there was little
difference between these two kinds of data with the same
length of time, indicating that the EEG signals prior to the
movement onset already contained information that could be
specifically classified. This is meaningful for the development
of a low-latency prosthetic control or hand rehabilitation
system in future research.

Modern neurophysiological research had shown that the
movement of human limbs could lead to the enhancement
of brain signals activity in the corresponding areas of the
sensorimotor cortex, which are mainly located in the parietal
region [58]. In the EEG signal acquisition stage, we collected
30-channel EEG data of the whole brain. To investigate the
influence of EEG channels on movement classification, Fig. 4
shows the comparison results of different number of channels
before and after the movement onset. Fifteen-channel data
from the fronto-parietal area (F3, FZ, F4, FC3, FCZ, FC4,
C3, CZ, C4, CP3, CPZ, CP4, P3, PZ, P4), and nine-channel
data from frontal area (FC3, FCZ, FC4, C3, CZ, C4, CP3,
CPZ, CP4) were analyzed in this comparison task. The average
accuracy of 15 channels (BM: 66.904+7.83%, p=0.0024; AM:
66.77£14.16%, p=0.0030) and 9 channels EEG signals (BM:
61.094+12.43%, p=0.0015; AM: 61.20+13.97%, p=0.0015),
regardless BM or AM, were statistically lower than that
of thirty channels EEG signals (BM: 81.14%=6.76%, AM:
81.08+7.83%). Moreover, the accuracy of 15 channels EEG
signals was higher than that of 9 channels EEG signals (BM:
p=0.0015; AM: p=0.0107). These results suggested that more
EEG channels contained more information, and the informa-
tion related to the execution of hand movements was not



2760 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022
TABLE Il
BN 30ch  WEW 15ch  WWW Sch NUMBER OF TIMES EACH MIMF WAS SELECTED AS THE OPTIMAL
* *
T — MIMF COMBINATION IN THE SiX-FOLD CROSS-VALIDATION (EACH
W - = MIMF WAS SELECTED UP TO 6 TIMES EACH SUBJECT)
81.1416.76 * 81.08+7.83 *
+ 66.77£14.16
80+ S s 61.20£13.97 e U I 2 3 4 5 6 7
—_ ubject
£ I 5 1 0 0 2 2 1
& 60 2 6 0 0 0 0 1 2
3 3 5 1 1 0 3 0 0
< 4 5 1 0 1 1 1 3
40 5 6 1 1 0 0 0 0
6 5 3 0 0 0 1 1
7 2 6 0 1 0 0 0
201 8 6 0 0 0 1 1 1
9 6 0 0 2 2 0 2
10 6 0 0 0 0 0 0
o BM AM 11 6 1 2 0 0 0 1
12 5 2 3 0 0 0 1
Fig. 4. Results of different channels before and after movement onset. 13 6 1 0 0 1 1 4
Stars indicate statistically significant differences (p<0.05). Bars indicate Total 69 17 7 4 10 7 16

standard deviation.

100
81.1416.76

80
20

MECN

68.02+10.93 67.06+9.78 66.86+10.17
60.35+10.08
55.6748.92

il

EEGNet DeepNetConv deepCNN MEMD-CSP FBCSP

56.34+11.05

GCB-Net

Accuracy(%)
@
=}

'S
=]

=]

o

Fig. 5. Comparison of multi-class hand movement recognition using the
proposed MECN method, GCB-Net, EEGNet, DeepNetConv, deepCNN,
MEMD-CSP and FBCSP.

only comprised in the motor functional area. Fig. 3 shows the
accuracy of inputting the raw data before and after the move-
ment onset to different structure CNNs. The network structure
of 4 convolutional layers and 1 x 10 convolution kernels
were determined and the accuracy was 75.214+9.79%, and
77.47+8.66% before and after movement onset, respectively,
which were significantly lower than that of data processed by
the MECN algorithm (BM: p=0.0071; AM: p=0.0277). This
indicated that MEMD and MIMFs fusion played an important
role in classifying multi-class hand movements.

Fig. 5 presents the classification accuracy of the pro-
posed method MECN and other advanced methods, such
as GCB-Net [7], EEGNet [41], DeepNetConv [42], deep-
CNN [59], Filter Bank Common Spatial Pattern (FBCSP) [60],
and MEMD-CSP [61]. These results were calculated using
2s-long data before movement onset. In the MEMD-CSP algo-
rithm, the signals were first decomposed by MEMD. Second,
the median frequency of MIMF was used to automatically
find the subject specific MIMFs providing major contribution
to mu and beta rhythms. Third, the selected MIMFs were
summed to reconstruct the EEG signals. Fourth, CSP was

used to extract the features of the reconstructed signals and
the number of spatial filters was set at 5 (m=5). Finally,
the features were classified by SVM classifier [62]. In the
method of FBCSP, the signals were extracted features by CSP
with filter band 0.1-10Hz, 10-20Hz, 20-30Hz, ..., 80-90Hz,
90-100Hz, and classified by SVM. The average accuracies of
the six compared methods were significantly lower than that
of MECN (p<0.05). These results illustrated that the proposed
method MECN was able to extract more suitable features
and obtain higher classification accuracy than the state-of-the-
art deep learning methods and traditional MEMD-CSP and
FBCSP approach.

The number of selected MIMFs was counted during optimal
MIMFs fusion when using the 2s data before the movement
onset. The number of times each subject’s 7 MIMFs were
selected are summarized in Table III. Since six-fold cross-
validation was performed in the algorithm and one MIMF
could be selected at most once in each fold cross-validation,
each MIMF could be selected up to 6 times in total. It could
be observed from this table that MIMF1 was selected the
most times, followed by MIMF2. MIMF1 and MIMF2 of
per subject were selected at least 5 times in the 6-fold cross-
validation, which implied that MIMF1 and MIMF2 contained
a lot of useful information which facilitated feature extrac-
tion and classification. However, MIMF7 had been selected
16 times, second only to the number of times MIMF2 had
been selected. In order to explore the contribution of different
MIMF to the results, single MIMF was input to CNN to
get the corresponding classification accuracy. As shown in
Fig. 6(a), MIMF1 reached the highest accuracy (79.4£7.05%)
and MIMF7 reached the lowest accuracy (31.53£1.62%).
Furthermore, as shown in Table III, except for S4 and S13,
MIMF7 was selected only 1 or 2 times for other subjects.
These indicated that there may be some information in the
frequency band where MIMF7 was located on some sub-
jects, but the information contained in MIMF7 was not very
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Fig. 6. (a) The accuracy of BM-2s using single MIMF with the algorithm
proposed. Bars indicate standard deviation. (b) Average PSD of 60 trials
by one subject (Hand Close) of seven MIMFs.

important for all subjects. Fig. 6(b) shows the power spectral
density (PSD) of different MIMF frequency bands from one
movement of one subject. MIMF1 contained high-gamma
band information of 50-100Hz and MIMF2 contained low-
gamma band information of about 30-45Hz. MIMF3, 4, 5, 6,
7 contained lower frequency band information than MIMF1
and MIMF2, while the classification accuracy got lower and
lower. These demonstrated that the information of hand move-
ments would be more contained in the gamma frequency
band, which was consistent with previous literatures [63], [64],
[65], [66], [67].

Furthermore, one limitation of the study was that the
algorithm proposed in this paper was performed on healthy
subjects, and this algorithm may not be equally applicable to
stroke patients. In order to apply hand movement intention
decoding to the rehabilitation training, we are going to collect
the EEG signals from stroke patients and transfer learning
would be considered to generalize the results to patient groups
in the following study.

V. CONCLUSION

This study proposes a novel MECN algorithm to decode
multi-class EEG signals of hand movement. The results
showed that the accuracy obtained by the CNN with different
layers and different convolution kernels were different. For
the data collected in this experiment, the CNN with 4 con-
volution layers and 1 x 10 convolution kernel reached the
best accuracy. The more the channels of EEG signals were,
the more the useful information would be contained. The
longer the length of EEG signals, the better the classification
accuracy. The best accuracy of 81.14%=+6.76% was achieved
for 30 channels, 2s data before movement onset, which
was significantly better than that of the traditional MEMD-
CSP and FBCSP method. In addition, MIMF1 and MIMF2
were selected in a high percentage in MIMFs fusion, and
they mainly referred to frequency band of 30-100Hz. This
demonstrates that the movement-related EEG signals may be
contained in the gamma band and the features of this band
can be more considered in future research.
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