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Abstract— The practical functionalityof a brain-computer1

interface (BCI) is critically affected by the number of stimuli,2

especially for steady-state visual evoked potential based3

BCI (SSVEP-BCI), which shows promise for the implemen-4

tation of a multi-target system for real-world applications.5

Joint frequency-phase modulation (JFPM) is an effective6

and widely used method in modulating SSVEPs. However,7

the ability of JFPM to implement an SSVEP-BCI system with8

a large number of stimuli, e.g., over 100 stimuli, remains9

unclear. To address this issue, a spectrally-dense JPFM10

(sJFPM) method is proposed to encode a broad array of11

stimuli, which modulates the low- and medium-frequency12

SSVEPs with a frequency interval of 0.1 Hz and triples13

the number of stimuli in conventional SSVEP-BCI to 120.14

To validate the effectiveness of the proposed 120-target15

BCI system, an offline experiment and a subsequent online16

experiment testing 18 healthy subjects in total were con-17

ducted. The offline experiment verified the feasibility of18

using sJFPM in designing an SSVEP-BCI system with19

120 stimuli. Furthermore, the online experiment demon-20

strated that the proposed system achieved an average per-21

formance of 92.47 ± 1.83% in online accuracy and 213.23 ±22

6.60 bits/min in online information transfer rate (ITR), where23

more than 75% of the subjects attained the accuracy above24

90% and the ITR above 200 bits/min. This present study25
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demonstrates the effectiveness of sJFPM in elevating the 26

number of stimuli to more than 100 and extends our under- 27

standing of encoding a large number of stimuli by means of 28

finer frequency division. 29

Index Terms— Brain-computer interface (BCI), steady- 30

state visual evoked potential (SSVEP), electroencephalog- 31

raphy (EEG), joint frequency-phase modulation (JFPM), 32

frequency division multiple access (FDMA), large number 33

of stimuli. 34

I. INTRODUCTION 35

ABRAIN-COMPUTER interface (BCI) offers a direct 36

communication path between the brain and the out- 37

side world by translating the brain measurements associated 38

with sensation, perception and cognition into commands or 39

objective reports [1]. The BCI technology can be broadly 40

categorized into invasive and non-invasive paradigms; invasive 41

BCI is emerging in clinical applications and non-invasive 42

BCI expands the scope to non-clinical daily applications. 43

Among the non-invasive paradigms, steady-state visual evoked 44

potential based BCI (SSVEP-BCI) [2], [3] is widely used 45

in research along with its counterparts of P300-based BCI 46

and motor imagery BCI. Compared with its counterparts, 47

the SSVEP-BCI usually has a lower BCI-illiterate rate [4] 48

and a higher information transfer rate (ITR) [3], which are 49

attributed to the high signal-to-noise ratio (SNR) of SSVEP. 50

Physiologically, SSVEP is a time-locked and frequency-tagged 51

brain response elicited by flickers or checkerboards alternating 52

at a certain stimulus frequency. The frequency-tagged attribute 53

of SSVEP makes it a prime candidate for channel encoding, 54

where the stimulus of each target can be efficiently encoded 55

by the widely used joint frequency-phase modulation (JFPM) 56

[3], [5], [6], [7], [8], [9], [10], [11]. 57

The encoding approach of JFPM is critical in implementing 58

a high-speed SSVEP-BCI and has significant implications 59

in the development of the technology as well. Inspired by 60

frequency-division multiple access (FDMA) in the commu- 61

nication system [12], JFPM configures each stimulus with 62

a stimulation frequency that is equally spaced within a fre- 63

quency interval. To further increase the separation ability 64

between stimuli, an initial phase is added in the modulation 65

and usually adjacent stimuli have distinct phase information. 66

This joint modulation offers a high discriminability between 67

stimuli for a short data length, which is a major advantage 68
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and critically important to implementing a high-performance69

BCI. Specifically, Chen et al. [3] reported a 40-target speller70

based on JFPM with an online ITR of up to 5.32 bits per71

second. Nakanishi et al. [6] developed an SSVEP-BCI system72

with 0.3-s visual stimuli and achieved an average online ITR73

of 325.33 ± 38.17 bits/min. Jiang et al. [8] incorporated a74

dynamic stopping strategy into the BCI system and attained75

an average ITR of 353.3 ± 67.1 bits/min with a peak of76

460 bits/min. The evolution of the BCI systems also enhances77

our understanding of frequency recognition methods in78

SSVEP-BCI. For the frequency recognition, continuous efforts79

have been focused to improve the classification performance,80

such as extended CCA [13], task-related component analysis81

(TRCA) [6], multi-stimulus task-related component analy-82

sis (msTRCA) [14], and task-discriminant component analy-83

sis (TDCA) [15]. These efforts improved the ITR of the system84

by enhancing the classification accuracy and reducing the85

required selection time, both of which are important in the86

calculation of ITR, apart from the number of stimuli.87

The practical functionality of the BCI system is associated88

with the number of stimuli. Therefore, compared with the89

efforts on target recognition, the studies on the number of stim-90

uli merit special attention. For instance, a BCI system with two91

stimuli can be used for Yes/No answer selection [16]. A two-92

dimensional navigation or wheelchair control [17], [18] could93

be implemented with a small number of stimuli between four94

and nine. A moderate number of stimuli, i.e., 13 and 40 could95

be utilized to implement a BCI speller for digit [2] and96

character input [3], respectively. Thus, the elevated number97

of stimuli enables the BCI system to satisfy the need for more98

intricate tasks in real-world applications. Recently, research99

has focused on increasing the number of stimuli beyond one100

hundred in the BCI system to further augment the functional-101

ity. For example, Xu et al. [10] designed a hybrid BCI system102

with 108 stimuli using concurrent P300 and SSVEP features.103

By integrating 12 SSVEP stimuli with 3×3 P300 sub-spellers,104

108 instruction sets were successfully encoded and were able105

to correctly select a target in 1.7 s. Chen e al. [19] devised106

an SSVEP-BCI system with 160 stimuli based on multiple107

frequencies sequential coding (MFSC) [20] and implemented108

a calibration-free system, by analyzing the combinations of the109

stimulus frequencies from target recognition. Very recently,110

Sun e al. [21] developed a code-modulated visual evoked111

potentials c-VEP based BCI system with 120 stimuli. Using112

four 31-bit pseudorandom codes, the proposed c-VEP based113

BCI system outperformed other c-VEP based systems in the114

number of stimuli and BCI performance. Although impressive115

progress has been achieved, this area of research remains in its116

infancy, with many issues that await further investigation. For117

instance, the average performances reported in prior works118

cannot simultaneously achieve high accuracy and high ITR.119

Additionally, it remains poorly understood whether the widely120

used JFPM is capable of implementing an SSVEP-BCI system121

with over 100 stimuli.122

To address these issues, this study utilized JFPM to encode123

a large number of stimuli and validate a 120-target SSVEP-124

BCI system. Since SSVEP has a high SNR and the stimulus125

frequency of SSVEP has a wide frequency band [22], [23], it is126

Fig. 1. The number of stimuli as a function of frequency in JFPM. The
frequency denotes the lower limit of stimulus frequency. A frequency
interval of 0.2 Hz (blue) and 0.1 Hz (red) are plotted. The two dashed
lines denote the parameters of conventional 40-target SSVEP (40 stimuli)
and the present study (120 stimuli), respectively.

theoretically sound to encode such a high volume of stimuli 127

in the SSVEP spectrum. Under this assumption, a spectrally- 128

dense JFPM (sJFPM) is hereby proposed by efficiently tagging 129

a low- and medium-frequency band with a frequency interval 130

of 0.1 Hz. A state-of-the-art task-related component analysis 131

(TRCA) was then adopted in the target recognition. To the 132

knowledge of the authors, this is the first study that expands 133

the number of stimuli encoded by JFPM to over one hundred, 134

which is considered a challenging problem by the previous 135

study [19]. To validate the proposed system, an offline exper- 136

iment was designed at first to verify the effectiveness of the 137

proposed system and optimize the system parameters. In a 138

further attempt to identify the ground-truth performance of 139

the system, an online experiment testing 13 healthy subjects 140

was then performed. 141

II. MATERIALS AND METHODS 142

A. Subjects 143

This study recruited 18 graduate students as healthy volun- 144

teers (eight males and ten females). The age of the subjects 145

ranged from 23 to 28 with an average of 23.9 ± 1.6 years 146

(mean ± standard deviation). Twelve of them participated in 147

the offline experiment and 13 participated in the online exper- 148

iment. Seven subjects participated in both experiments. All 149

subjects were right-handed and had normal or corrected to nor- 150

mal vision. This study was approved by the institutional review 151

board of Tsinghua University (NO. 20200020), and informed 152

consent was signed by subjects before experimentation. 153

B. Spectrally-Dense Joint Frequency-Phase Modulation 154

An SSVEP-BCI brain speller was designed in this study 155

with 120 stimuli, which were aligned in a 6 × 20 matrix. 156

Based on JFPM, the frequency and initial phase information 157

was encoded as follows: 158

fi, j = f0 + [6( j − 1) + i − 1] · � f 159

�i, j = �0 + [6( j − 1) + i − 1] · �� (1) 160

where i ( j ) is the row (column) index of the stimuli, and � f 161

(��) is the frequency (initial phase) interval that starts with 162

the lower limit f0 (�0). 163



2766 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

In conventional JFPM, the lower limit f0 is configured to164

approximate the range of the stimulus frequencies fr ( fr =165

f0 − � f ), which prevents the spectral overlap between the166

fundamental and harmonic frequencies. For instance, a widely167

used configuration, where f0 = 8 Hz and � f = 0.2 Hz,168

is forming a 40-target SSVEP-BCI speller [3], [6], [24]. The169

lower limit f0 can be increased and the frequency interval170

� f can be decreased in JFPM to expand the number of171

stimuli Figure 1. To ensure a large number of encoded stimuli,172

a spectrally-dense JFPM (sJFPM) configuration was employed173

in this study by setting � f and f0 to 0.1 Hz and 12 Hz,174

respectively. In this fashion, the spectral band encoded for175

the stimulus consisted of 120 stimuli, ranging from 12 Hz to176

23.9 Hz, The phase information was set as �0 = 0,�� =177

0.35π [3]. The details of the sJFPM configuration are sum-178

marized in Figure 2(A).179

Figure 2(B) illustrates the user interface of the brain speller180

which was presented on the screen of a 48.9-inch LCD181

monitor (SAMSUNG; refresh rate: 120 Hz; resolution: 3840×182

1080 pixels). Each stimulus or target in the speller had a183

dimension of 173×129 pixels with a digit character from 1 to184

120 at its center. The spacings between two adjacent stimuli185

were vertically 15 pixels and horizontally 19 pixels. The186

topmost black rectangle was set for result feedback.187

A sampled sinusoidal stimulation method [25] was used to188

implement the sJFPM. In a stimulus sequence, the grayscale189

value of the i -th frame for the stimulus frequency f can be190

obtained by191

s( f, φ, i) = 1

2
{1 + sin[2π f (i/ fm) + φ]} (2)192

where fm is the refresh rate of the monitor, i.e., 120 Hz in the193

study. Thus, a visual flicker was generated with a grayscale194

between 0 (dark) and 1 (highest luminance) in a sinusoidal195

manner. The visual stimuli were presented by Psychophysics196

Toolbox [26] in MATLAB (MathWorks, Inc.).197

C. Offline Experiment198

Six blocks of offline experiments were designed for system199

optimization. Each block comprised 120 trials in which the200

order was randomized, and there was one trial for each201

stimulus. Each trial lasted 4 s, including 1-s cue, 2-s visual202

stimulation and 1-s rest. In particular, trials started with a red203

square on top of a stimulus prompting for 1 s, and subjects204

were instructed to direct their attention to the prompted stimu-205

lus. Then all stimuli began to flicker simultaneously. Subjects206

were asked to look at the center of the prompted stimulus207

and avoid movement as well as eye blinking during the 2-s208

flickering. Finally, the speller paused for 1 s and subjects rested209

briefly. To avoid visual fatigue, there was a break of 5 min210

between two consecutive blocks. EEG data from the offline211

experiment were used for parameter selection to optimize the212

BCI system.213

D. Online Experiment214

An online experiment was conducted on a separate day after215

the offline experiment to validate the performance of the BCI216

system. Different from the offline experiment, in the online 217

experiment the duration of visual stimulation was 0.7 s and 218

gaze shift time for each stimulus was 1 s. In other words, 219

the BCI system output a command in 1.7 s. The online 220

experiment comprised nine blocks, including seven blocks for 221

a training session and two blocks for a test session. No result 222

feedback was provided in the training session as in the offline 223

experiment. However, in the test session, an auditory feedback 224

of a short beep was provided to the subject at the end of 225

flickering if the SSVEP was correctly recognized by the target 226

recognition algorithm. SSVEPs from the training session were 227

used to train a model for target recognition in the test session. 228

E. Data Acquisition 229

This study recorded nine channels of EEG data using 230

SynAmps2 (Neuroscan Inc., Charlotte, USA) for both offline 231

and online experiments. The nine channels were from the 232

classical occipital montage [24] in the international 10-20 233

system, i.e., Pz, POz/Oz, PO3/4, PO5/6 and O1/O2, which 234

were also used for online analysis in target recognition. The 235

impedances of the channels were maintained below 20 k� 236

and the reference channel was set at Cz. The sampling rate 237

was set at 1000 Hz, and EEG data were synchronized to the 238

event triggers of the visual stimuli via a parallel port. EEG 239

data were acquired in an electromagnetic shielding room to 240

reduce environmental noise, and the power-line interference 241

was removed by a hardware notch filter. The data were then 242

downsampled to 250 Hz for offline and online analysis. 243

F. Data Analysis 244

This study used a state-of-the-art task-related component 245

analysis (TRCA) [6] for target recognition. The performance 246

of the proposed BCI system in target recognition was evaluated 247

using classification accuracy and information transfer rate 248

(ITR). The metric of ITR in bits per min (bits/min) is defined 249

as [27]: 250

I T R = 60/T · ([log2 M + Plog2 P 251

+ (1 − P)log2[(1 − P)/(M − 1)]) (3) 252

where M is the number of stimuli, P the classification 253

accuracy, and T (s) the overall time for target selection and 254

gaze shift. A gaze shift time of 1 s was used to calculate the 255

ITR in both offline and online analyses. 256

1) Offline Analysis: First, parameter selection was conducted 257

to determine the optimal number of sub-bands (Nsb) and stim- 258

ulation duration (Ts). Based on the sJFPM scheme, the filter 259

bank was designed with sub-bands ranging from m × 12 Hz 260

to 90 Hz, where m is the index of sub-band that ranged from 261

1 to Nsb . The stimulation duration Ts can be determined by a 262

sliding window, in which the onset was set at ts + d , where 263

ts is the starting time point of the stimulation. Note that d is 264

the latency including the visual delay and system delay and it 265

was set to 140 ms [3]. A parameter selection was performed 266

for Nsb and Ts that varied between 1 and 7 and ranged from 267

0.2 s to 2 s with a step of 0.1 s, respectively. The parameters 268

that yielded the best BCI performance were used in the online 269

experiment. 270
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Fig. 2. Virtual keyboard for the 120-target SSVEP-BCI speller. (A) Frequency (blue) and initial phase (red) encoded by spectrally-dense joint
frequency-phase modulation (sJFPM) for each stimulus. (B) User interface of the speller comprising 120 stimuli, aligned in a 6 × 20 matrix.

The next step involved the investigation of BCI system271

performance under various calibration settings. Two settings272

were considered, i.e., different montage configuration and273

insufficient training data. A varying number of channels (Nch )274

was selected for the montage configuration sequentially from275

the list of {Oz, O1, O2, POz, PO3, PO4, Pz, PO5, PO6},276

where Nch = 3 − 9 and the corresponding montages are277

detailed in the Supplementary Material (Table SI). For the278

insufficient training data, the number of training blocks (Nb)279

varied from 1 to 5. Under these settings, the accuracy at a280

data length of 2 s and the maximum average ITR across data281

lengths were used as the performance metrics.282

To investigate the misclassification patterns in the target283

recognition, the output of the TRCA classifier, its intermediate284

features and the SNR of EEG trials were analyzed. The EEG285

trials with a 2 s data length were used for analysis. The286

confusion matrix was computed and the accuracy with respect287

to each stimulus was thereby obtained for all subjects. The288

R-squared statistic was used for intermediate features since it289

can well characterize the discrimination ability of stimuli in290

the feature space well [6], [28]. The R-squared feature was291

calculated from the correlation coefficients corresponding to292

the target class and nontarget classes. The SNR was calculated293

for each stimulus frequency using the following formula [9]:294

SN R = 10log10

∑k=Nh
k=1 P(k · fn)

∑ f = fs/2
f =0 P( f ) − ∑k=Nh

k=1 P(k · fn)
(4)295

where P( f ) is the spectral power for the frequency f , and296

fn the stimulus frequency and Nh the number of harmonics,297

which is usually set to 5 [9].298

Furthermore, the effect of the frequency interval on classi-299

fication performance was explored. The stimulus frequencies300

were sorted in ascending order and the associated stim-301

uli were sampled by an interval of δ Hz, where δ = 302

0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1 to simulate a variety of frequency 303

intervals assigned by JFPM. Specifically for each frequency 304

interval, there were 10 · δ subsets that comprised Nc stimuli, 305

and we performed a Nc-target classification was performed 306

on each subject, where Nc = 12 · δ−1. The performance of 307

classification was then evaluated by the maximum average ITR 308

across subsets, blocks and subjects. 309

A 6-fold leave-one-block-out cross validation was per- 310

formed in the offline analysis, where in each fold one block 311

was used as the test data and the remaining were used as 312

training data. For multiple comparisons in the offline analy- 313

sis, a repeated measures analysis of variance (ANOVA) was 314

applied. To account for the violation of sphericity, as assessed 315

by Mauchly’s test of sphericity, Greenhouse-Geisser correc- 316

tion was then employed. Post hoc comparisons using t-test 317

with Bonferroni correction were conducted when there was a 318

statistically significant main effect ( p < .05). The statistical 319

analyses were performed in SPSS Statistics 26 (IBM, Armonk, 320

NY, USA). Unless otherwise stated, data were presented as 321

mean ± standard error in this study. 322

2) Online Analysis: The number of sub-band Nsb in the 323

online TRCA model was determined by the parameters chosen 324

in the offline analysis, where Nsb = 4. The model detected 325

online EEG data with a data length of 0.7 s after latency 326

correction (d = 140 ms) were recognized by the model to 327

provide real-time result feedback. The online classification 328

accuracy and ITR were then computed for each subject. 329

III. RESULTS 330

A. Offline Result 331

The average classification performance (A: accuracy, B: 332

ITR) for a varying Nsb and Ts in the parameter selection are 333
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Fig. 3. Change in classification performance with respect to two
parameters, i.e., the number of sub-band Nsb and data length Ts in
parameter selection. (A) Average accuracy. (B) Average ITR. Data
lengths from 0.2 s to 2 s with an interval of 0.1 s were used for the
evaluation.

illustrated in Figure 3. Visual inspection reveals a noticeable334

difference in the classification performance can be observed335

as the parameter changes. As assessed by two-way (sub-336

band × data length) repeated measures ANOVA, there was337

a statistically significant interaction between the sub-band and338

data length on accuracy, F(3.182, 35.001) = 7.322, p =339

.001, and on ITR, F(3.356, 36.912) = 15.078, p = .003.340

An optimal Ts = 0.7 that achieved the highest ITR across341

data lengths could be determined from the result of ITR in342

Figure 3 B. To pinpoint the optimal number of sub-bands343

Nsb , Ts was fixed and the change in accuracy was delineated,344

as shown in Figure 4 A. One-way repeated measures ANOVA345

revealed that there was a significant difference in accuracies346

between sub-bands, F(1.119, 12.306) = 13.371, p = .003.347

A sub-band parameter of Nsb = 4 yielded the highest348

accuracy, i.e., 81.02 ± 4.01%. Using the optimal parameter,349

the average accuracy and ITR across data lengths together350

with individual results are further illustrated in Figure 4 B351

and Figure 4 C, respectively. Here, each dashed line repre-352

sents a subject and the blue line is their average. The result353

showed that the BCI performance exhibited an inter-subject354

variation. For instance, the subject with excellent performance355

(S5) achieved a maximum ITR of 253.53 bits/min, and the356

subject with poor performance (S6) achieved a maximum ITR357

of 132.68 bits/min. As for the average result, the average358

accuracy at 2 s was 92.99±1.99 %, and the maximum average359

ITR was 176.17 ± 12.99 bits/min at 0.7 s.360

The effect of various occipital montages on the BCI perfor-361

mance is illustrated in Figure 5 (A: accuracy, B: ITR). Here,362

each dashed line represents a subject to show their individual363

performance, and the solid line is their average. One-way364

repeated measures ANOVA revealed a statistically significant365

difference between montages in accuracy, F(2.145, 23.592) =366

24.809, p < .001, and in ITR, F(2.583, 28.411) = 52.815,367

p < .001. The BCI performance improved significantly by368

increasing the number of channels in montages. The usage369

of three channels (Oz, O1 and O2) achieved an accuracy of370

97.08% for subjects with excellent BCI performance (S5),371

which was above the average (96.25%) using nine channels.372

The addition of a channel (e.g., Pz) decreased the performance373

for some subjects, suggesting the individual difference in the374

topography of SSVEP responses.375

Figure 6 illustrates the change in performance with a vary- 376

ing number of training blocks. One-way repeated measures 377

ANOVA revealed a statistically significant difference between 378

different number of blocks in accuracy, F(1.34, 14.743) = 379

43.127, p < .001, and in ITR, F(1.714, 18.853) = 118.439, 380

p < .001. The result showed that the BCI performance 381

increased significantly as more training data were available. 382

By leveraging two blocks of training data, the average ITR 383

surpassed 100 bits/min, i.e., 141.48 ± 16.07 bits/min. Using 384

three blocks of training data, the average accuracy surpassed 385

80%, i.e., 83.67 ± 4.13%. Of note, with insufficient training 386

data of one block, three subjects achieved relatively higher 387

performance, i.e., S5 (97.64%), S8 (78.75%) and S7 (77.08%). 388

To investigate the misclassification pattern, the confusion 389

matrix was constructed as shown in Figure 7 A. The number 390

of trials greater than five, which were 72 in total, were colored 391

blue for contrast. A diagonal due to the high accuracy at 2 s 392

is clear, and errors in adjacent stimuli could also be identified. 393

On closer examinations of errors, Figure 7 B and C depict the 394

accuracy and R-squared maps for each stimulus, respectively. 395

Here, the accuracies and R-squared features were arranged 396

according to the user interface of the speller. For the accuracy 397

map, stimuli in the center left region of the speller were 398

recognized with higher accuracy (>90%), whereas the right 399

part had a higher error rate. A similar pattern was observed 400

in the R-squared map, where a higher value as an indicator 401

of better discrimination ability was detected in the left center 402

region. The distribution of the SNR was further delineated to 403

probe into the causal role. Figure 7 D illustrates the bar plot 404

of the SNR values with respect to each stimulus frequency, 405

indicating a decreasing tendency (r = −0.964, p < .001) 406

in SNR as the stimulus frequency increases. To reveal its 407

spatial distribution, the SNR map was illustrated in a similar 408

fashion in Figure 7 E. The result showed that the SSVEP trials 409

evoked by the stimuli in the left region of the speller (column 410

1 − 10) have a significantly higher SNR than that in the right 411

region (left: −10.433 ± 0.138 dB; right: −13.109 ± 0.127 dB; 412

p < .001). 413

The relationship between frequency interval and simulated 414

BCI performance is illustrated in Figure 8. One-way repeated 415

measures ANOVA revealed a statistically significant difference 416

in ITR between frequency intervals, F(1.445, 15.890) = 417

80.303, p < .001. Post hoc pairwise comparisons with 418

Bonferroni correction revealed that there was a significant 419

difference between δ = 0.1 and δ = 0.3, 0.4, 0.6, 0.8, 1, with 420

all p < .05. However, no significant difference was found 421

between δ = 0.1 (ITR: 176.53 ± 12.97 bits/min) and δ = 0.2 422

(ITR: 177.05 ± 12.40 bits/min), with p = 1, Bonferroni 423

corrected. 424

B. Online Result 425

Table I lists the individual and average classification accu- 426

racy and ITR recorded in the online experiment among 13 sub- 427

jects. The average accuracy achieved was 92.47 ± 1.83%, 428

while the ITR for the BCI system was 213.23±6.60 bits/min. 429

As for the individual performance, over 75% of the subjects 430

(10/13) achieved an online accuracy above 90% and an online 431
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Fig. 4. Change in classification performance with respect to one of the parameters, i.e., the number of sub-band Nsb (A) and data length Ts (B, C)
in parameter selection. (A) Average accuracy with a varying Nsb when the optimal parameter of Ts is fixed at Ts = 0.7. (B) Average accuracy with
a varying Ts when the optimal parameter of Nsb is fixed at Nsb = 4. (C) Average ITR with a varying Ts when the optimal parameter of Nsb is fixed
at Nsb = 4. In (B) and (C), the thin lines represent the subjects and the thick line is their average. The shaded area represents the standard error.
Data lengths from 0.2 s to 2 s with an interval of 0.1 s were used for the evaluation.

Fig. 5. Change in classification performance with a varying number of
channels. (A) Classification accuracy at 2 s. (B) Maximum average ITR
across data lengths. Each dashed line represents a subject and the solid
line is their average. The shaded area represents the standard error.

Fig. 6. Change in classification performance with a varying number of
training blocks. (A) Classification accuracy at 2 s. (B) Maximum average
ITR across data lengths. Each dashed line represents a subject and the
solid line is their average. The shaded area represents the standard error.

ITR above 200 bits/min. Four subjects (S4, S6, S8 and S11)432

accomplished an online accuracy above 98% and an online433

ITR above 230 bits/min. The subject with the highest perfor-434

mance was S8, who attained an online accuracy of 98.75%435

and an online ITR of 237.31 bits/min. A demo video of the436

BCI system can be found at https://youtu.be/lAt2arWT9wo.437

IV. DISCUSSION438

In this study, a spectrally-dense joint frequency-phase mod-439

ulation (sJFPM) was utilized to encode 120 stimuli with440

a frequency interval of 0.1 Hz. First, a BCI system was441

designed by sJFPM, and the parameters were optimized in an442

offline experiment. Subsequently, an online experiment was443

performed on 13 subjects to validate the proposed system.444

The results demonstrated that the 120-target brain speller445

could achieve an average classification accuracy above 90%446

TABLE I
RESULTS OF THE ONLINE EXPERIMENT TESTING 13 SUBJECTS. THE

RESULTS FOR SUBJECTS WITH THE TOP FOUR ONLINE

PERFORMANCES ARE MARKED IN BOLD

and an average ITR above 200 bits/min. The result of the 447

proposed system substantially outperformed the existing BCI 448

systems with over 100 stimuli in accuracy [10], [19], [21] 449

and in ITR [10], [19]. The superiority of the proposed system 450

in performance verifies the effectiveness of the sJFPM in 451

designing a high-speed SSVEP-BCI with a large number of 452

stimuli. 453

Three issues concerning sJFPM and target recognition are 454

further discussed in the following paragraph. First, as for 455

the frequency interval in sJFPM, the BCI performance was 456

measured by means of sampling from the stimuli, suggesting 457

that the traditional JFPM could be scaled to sJFPM to expand 458

the number of stimuli without inhibiting the performance in 459

ITR. The frequency interval of 0.2 Hz is widely used in the 460

implementation of high-speed SSVEP-BCI spellers [3], [6], 461

[9], [24], [29], whereas the frequency interval of 0.1 Hz has 462

received little attention [30]. The usage of 0.1-Hz frequency 463

interval enables the BCI system to configure a broad array of 464

stimuli, and as suggested by the result in Figure 8, the ITR of 465

the system does not suffer from a degradation. This phenom- 466

enon of ITR is attributable to the compromise between the 467

number of stimuli M and classification accuracy P in Eq. (3), 468

in which the greater number of stimuli would inevitably 469
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Fig. 7. Error analysis in classification. (A) Confusion matrix. There are 72 trials in total (12 subjects × 6 blocks) in this confusion matrix and the
number of trials greater than five was colored blue for illustrative purposes. (B) The accuracy map for each stimulus. (C) The R-squared map for
each stimulus. (D) Bar plot of the SNR values for each stimulus frequency. (E) The SNR map for each stimulus. EEG data with a data length of 2 s
were used for analysis, and the values of accuracy, R-squared, and SNR were arranged according to the user interface of the speller.

Fig. 8. Change in the maximum average ITR for various frequency inter-
vals. The asterisks indicate a pairwise statistically significant difference
(*p < .05, **p < .01, ***p < .001, Bonferroni corrected).

increase the error rate. For instance, the average accuracy470

corresponding to the maximum average ITR is 81.02 ±4.01%471

at 0.7 s and 83.88 ± 3.73% at 0.5 s for 0.1-Hz and 0.2-Hz472

frequency intervals, respectively. Second, the error analysis in473

Figure 7 suggests that the higher error rate in the right region474

of the speller is caused by the lower discrimination ability475

for these stimuli, which is in part further due in part to the476

associated lower SNRs. Specifically, the R-squared statistics in477

Figure 7 accounted for 56.0% of the variation in the accuracy478

with adjusted R2 = .556, F(1, 118) = 150.294, p < .001,479

and the SNRs accounted for 46.9% of the variation in the480

accuracy with adjusted R2 = .465, F(1, 118) = 104.257, 481

p < .001. The lower SNR value for the stimuli in the right 482

region originated from the property of high-frequency SSVEP, 483

in which SSVEPs with higher stimulus frequencies produce 484

lower SNRs [22], [23] (Figure 7 D). Third, as for the target 485

recognition, TRCA was used to validate the system validation, 486

and other state-of-the-art methods [15] could be applied to 487

further reduce the error rate. 488

Compared with the existing methods for a large number of 489

stimuli in BCI, the present study based on the JFPM encoding 490

is characterized by the following. In retrospect, the JFPM 491

encoding method has long demonstrated its excellence in the 492

implementation of a high-speed BCI. For the 40-target BCIs, 493

previous studies [3], [6], [8] reported that BCI systems based 494

on JFPM could achieve an average ITR of over 300 bits/min, 495

which is the state-of-the-art performance in non-invasive BCIs 496

to the knowledge of the authors. For the regime of a large 497

number of stimuli, the effectiveness of JFPM was further 498

demonstrated in the present study by implementing a high- 499

speed BCI, which resolves the doubt about the feasibility of a 500

high volume of stimulus frequencies for BCIs. The high-speed 501

performance of JFPM is attributable to the fact that JFPM 502

elicits a remarkably high SNR of brain signals (i.e., continuous 503

SSVEP) compared with other methods in visual BCIs. In con- 504

trast to the P300 [10] and c-VEP [21] signals, SSVEP boasts a 505

high single-trial SNR, which removes the hassle of repetition 506

of visual stimuli multiple times and thereby increases the ITR 507

of the system. In comparison with MFSC [19], JFPM provides 508

a continuous encoding of SSVEP and elevates the SNR as 509

the data length increases, whereas in MFSC the transition 510

of stimulus frequencies interrupts the steady state of VEP 511
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Fig. 9. A keyboard interface for one-keystroke Chinese character input.
Here each stimulus denotes 1−4 pinyin-based syllables, each of which
corresponds to Chinese characters for selection. The alphabet above the
first line of stimuli denotes the initial letter of the syllable for each column.

and possibly offsets the amplitude of brain response. Because512

each stimulus in sJFPM is tagged by a stimulus frequency,513

a wide range of existing target recognition methods [6], [13],514

[14], [15], [24], [31] for SSVEP-BCI are applicable to the515

sJFPM-based system, while in MFSC the majority of the target516

recognition methods should be redesigned and custom adapted.517

The combination of high-speed performance together with518

a large volume of stimuli make it possible for the BCI system519

to enable new applications. First, the large array of stimuli520

aligned densely in the plane would possibly expand the utility521

of BCI from selecting to locating. Since each target in the array522

corresponds to a spatial location or a coordinate, the coordinate523

information associated with the user intent could be decoded524

by the target recognition in SSVEP-BCI and then used for a525

wide range of applications, such as map location, spatial navi-526

gation, digital sandtable control. Second, the coordinates of the527

high-density array could be utilized to create the semantics of528

the stimuli, rather than character input from a single target. For529

instance, a hybrid BCI based on P300 and SSVEP was used to530

control a robotic arm with the coordinate of 108 stimuli and531

write a Chinese character by strokes [32]. Thus the BCI with532

a large number of stimuli can provide a means for people with533

motor disabilities to write, paint and create. Third, a syllable-534

based input method could be developed in the BCI system by535

leveraging a large number of stimuli, as an extension to the536

traditional brain speller for character input [3]. For example the537

Chinese language which has 416 syllables in total. With a large538

number of stimuli in BCIs, the syllables can be represented539

by the stimuli and users can enter a syllable in one keystroke.540

Figure 9 illustrates a keyboard interface tailored for Chinese541

character input and its designing procedure is provided in the542

Supplementary Material. Here each stimulus is mapped to 1−4543

syllables and an alphabet is presented above the first line of544

stimuli to indicate the initial letter of the syllables. Users can545

find an intended stimulus by first referring to the alphabet546

and then selecting from only a few stimuli (no more than547

7 stimuli). By taking advantage of the speller with 120 stimuli,548

the efficiency of Chinese character input could be significantly549

boosted.550

The contribution of the present study is three-fold. First,551

methodologically, we extended the conventional JFPM to the552

spectrally-dense regime that prevents spectral overlap and553

encodes a large number of stimuli in the low- and medium-554

frequency band. In system implementation, we successfully555

developed an SSVEP-BCI system with 120 stimuli using556

sJFPM and the proposed system can achieve a high-speed557

performance as validated in online experiment. For practical 558

applications, the proposed BCI system has the potential to 559

enable a variety of new applications, e.g., BCI systems for 560

one-keystroke Chinese character input. Nevertheless, this study 561

is proposed as a proof-of-principle demonstration, which has 562

its limitations, leaving room for its improvement in future 563

work. To improve the practical utility of the BCI system, its 564

ease of use can be improved in terms of EEG cap, standard 565

monitor and the effort in reducing calibration time. Dry EEG 566

cap [33] and pre-gelled EEG cap [34] are more practical and 567

can be used to replace the gel-based EEG cap in real-world 568

applications. A standard monitor can be employed for stimulus 569

presentation in our future work to make the proposed BCI 570

system more readily available. Cross-stimulus transfer learn- 571

ing [35] could be employed to overcome the calibration burden 572

brought about by the increased number of stimuli. Other 573

transfer learning approaches in SSVEP-BCI [36], [37], [38] 574

have the potential to further increase the system performance 575

by leveraging data from other subjects [36], [37] or other 576

sources [38]. Apart from the effort in reducing calibration 577

time, visual fatigue can be mitigated by designing a paradigm 578

with more visual comfort [39]. For the improvement of BCI 579

performance, more electrodes can be employed to further 580

enhance the ITR of the 120-target system [15]. Furthermore, 581

a dynamic stopping strategy [40] could be implemented to 582

tackle the individual difference in parameter selection and 583

thereby enhance the ITR of the system. 584

V. CONCLUSION 585

The present study proposed a spectrally-dense joint 586

frequency-phase modulation (sJFPM) encoding method to 587

design a high-speed steady-state visual evoked potential based 588

brain-computer interface (SSVEP-BCI) system with 120 stim- 589

uli. Two experiments, an offline and an online, involving 590

18 subjects were conducted to optimize and validate the sys- 591

tem performance. The results demonstrated that the proposed 592

120-target BCI system based on sJFPM could achieve an 593

online accuracy of 92.47 ± 1.83% and an online ITR of 594

213.23 ± 6.60 bits/min. By means of using finer frequency 595

division to encode a high volume of stimuli, the present 596

study provides insight into the JFPM method and offers an 597

opportunity for BCI to be involved in new BCI applications, 598

contributing to the effort for developing novel non-invasive 599

BCI systems. 600
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