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A Spectrally-Dense Encoding Method for
Designing a High-Speed SSVEP-BCI
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Abstract— The practical functionality of a brain-computer
interface (BCI) is critically affected by the number of stimuli,
especially for steady-state visual evoked potential based
BCI (SSVEP-BCI), which shows promise for the implemen-
tation of a multi-target system for real-world applications.
Joint frequency-phase modulation (JFPM) is an effective
and widely used method in modulating SSVEPs. However,
the ability of JFPM to implement an SSVEP-BCI system with
a large number of stimuli, e.g., over 100 stimuli, remains
unclear. To address this issue, a spectrally-dense JPFM
(sJFPM) method is proposed to encode a broad array of
stimuli, which modulates the low- and medium-frequency
SSVEPs with a frequency interval of 0.1 Hz and triples
the number of stimuli in conventional SSVEP-BCI to 120.
To validate the effectiveness of the proposed 120-target
BCI system, an offline experiment and a subsequent online
experiment testing 18 healthy subjects in total were con-
ducted. The offline experiment verified the feasibility of
using sJFPM in designing an SSVEP-BCI system with
120 stimuli. Furthermore, the online experiment demon-
strated that the proposed system achieved an average per-
formance of 92.47 + 1.83% in online accuracy and 213.23 +
6.60 bits/min in online information transfer rate (ITR), where
more than 75% of the subjects attained the accuracy above
90% and the ITR above 200 bits/min. This present study
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demonstrates the effectiveness of sUFPM in elevating the
number of stimuli to more than 100 and extends our under-
standing of encoding a large humber of stimuli by means of
finer frequency division.

Index Terms— Brain-computer interface (BCI), steady-
state visual evoked potential (SSVEP), electroencephalog-
raphy (EEG), joint frequency-phase modulation (JFPM),
frequency division multiple access (FDMA), large humber

of stimuli.

BRAIN-COMPUTER interface (BCI) offers a direct
Acommunication path between the brain and the out-
side world by translating the brain measurements associated
with sensation, perception and cognition into commands or
objective reports [1]. The BCI technology can be broadly
categorized into invasive and non-invasive paradigms; invasive
BCI is emerging in clinical applications and non-invasive
BCI expands the scope to non-clinical daily applications.
Among the non-invasive paradigms, steady-state visual evoked
potential based BCI (SSVEP-BCI) [2], [3] is widely used
in research along with its counterparts of P300-based BCI
and motor imagery BCI. Compared with its counterparts,
the SSVEP-BCI usually has a lower BCl-illiterate rate [4]
and a higher information transfer rate (ITR) [3], which are
attributed to the high signal-to-noise ratio (SNR) of SSVEP.
Physiologically, SSVEP is a time-locked and frequency-tagged
brain response elicited by flickers or checkerboards alternating
at a certain stimulus frequency. The frequency-tagged attribute
of SSVEP makes it a prime candidate for channel encoding,
where the stimulus of each target can be efficiently encoded
by the widely used joint frequency-phase modulation (JFPM)
(31, [51, [6], [7], [8], [9], [10], [11].

The encoding approach of JFPM is critical in implementing
a high-speed SSVEP-BCI and has significant implications
in the development of the technology as well. Inspired by
frequency-division multiple access (FDMA) in the commu-
nication system [12], JFPM configures each stimulus with
a stimulation frequency that is equally spaced within a fre-
quency interval. To further increase the separation ability
between stimuli, an initial phase is added in the modulation
and usually adjacent stimuli have distinct phase information.
This joint modulation offers a high discriminability between
stimuli for a short data length, which is a major advantage

I. INTRODUCTION
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and critically important to implementing a high-performance
BCI. Specifically, Chen et al. [3] reported a 40-target speller
based on JFPM with an online ITR of up to 5.32 bits per
second. Nakanishi et al. [6] developed an SSVEP-BCI system
with 0.3-s visual stimuli and achieved an average online ITR
of 325.33 £ 38.17 bits/min. Jiang et al. [8] incorporated a
dynamic stopping strategy into the BCI system and attained
an average ITR of 353.3 &£ 67.1 bits/min with a peak of
460 bits/min. The evolution of the BCI systems also enhances
our understanding of frequency recognition methods in
SSVEP-BCI. For the frequency recognition, continuous efforts
have been focused to improve the classification performance,
such as extended CCA [13], task-related component analysis
(TRCA) [6], multi-stimulus task-related component analy-
sis (msTRCA) [14], and task-discriminant component analy-
sis (TDCA) [15]. These efforts improved the ITR of the system
by enhancing the classification accuracy and reducing the
required selection time, both of which are important in the
calculation of ITR, apart from the number of stimuli.

The practical functionality of the BCI system is associated
with the number of stimuli. Therefore, compared with the
efforts on target recognition, the studies on the number of stim-
uli merit special attention. For instance, a BCI system with two
stimuli can be used for Yes/No answer selection [16]. A two-
dimensional navigation or wheelchair control [17], [18] could
be implemented with a small number of stimuli between four
and nine. A moderate number of stimuli, i.e., 13 and 40 could
be utilized to implement a BCI speller for digit [2] and
character input [3], respectively. Thus, the elevated number
of stimuli enables the BCI system to satisfy the need for more
intricate tasks in real-world applications. Recently, research
has focused on increasing the number of stimuli beyond one
hundred in the BCI system to further augment the functional-
ity. For example, Xu et al. [10] designed a hybrid BCI system
with 108 stimuli using concurrent P300 and SSVEP features.
By integrating 12 SSVEP stimuli with 3 x 3 P300 sub-spellers,
108 instruction sets were successfully encoded and were able
to correctly select a target in 1.7 s. Chen e al. [19] devised
an SSVEP-BCI system with 160 stimuli based on multiple
frequencies sequential coding (MFSC) [20] and implemented
a calibration-free system, by analyzing the combinations of the
stimulus frequencies from target recognition. Very recently,
Sun e al. [21] developed a code-modulated visual evoked
potentials c-VEP based BCI system with 120 stimuli. Using
four 31-bit pseudorandom codes, the proposed c-VEP based
BCI system outperformed other c-VEP based systems in the
number of stimuli and BCI performance. Although impressive
progress has been achieved, this area of research remains in its
infancy, with many issues that await further investigation. For
instance, the average performances reported in prior works
cannot simultaneously achieve high accuracy and high ITR.
Additionally, it remains poorly understood whether the widely
used JFPM is capable of implementing an SSVEP-BCI system
with over 100 stimuli.

To address these issues, this study utilized JFPM to encode
a large number of stimuli and validate a 120-target SSVEP-
BCI system. Since SSVEP has a high SNR and the stimulus
frequency of SSVEP has a wide frequency band [22], [23], it is
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Fig. 1. The number of stimuli as a function of frequency in JFPM. The
frequency denotes the lower limit of stimulus frequency. A frequency
interval of 0.2 Hz (blue) and 0.1 Hz (red) are plotted. The two dashed
lines denote the parameters of conventional 40-target SSVEP (40 stimuli)
and the present study (120 stimuli), respectively.

theoretically sound to encode such a high volume of stimuli
in the SSVEP spectrum. Under this assumption, a spectrally-
dense JFPM (sJFPM) is hereby proposed by efficiently tagging
a low- and medium-frequency band with a frequency interval
of 0.1 Hz. A state-of-the-art task-related component analysis
(TRCA) was then adopted in the target recognition. To the
knowledge of the authors, this is the first study that expands
the number of stimuli encoded by JFPM to over one hundred,
which is considered a challenging problem by the previous
study [19]. To validate the proposed system, an offline exper-
iment was designed at first to verify the effectiveness of the
proposed system and optimize the system parameters. In a
further attempt to identify the ground-truth performance of
the system, an online experiment testing 13 healthy subjects
was then performed.

[I. MATERIALS AND METHODS
A. Subjects

This study recruited 18 graduate students as healthy volun-
teers (eight males and ten females). The age of the subjects
ranged from 23 to 28 with an average of 23.9 & 1.6 years
(mean =+ standard deviation). Twelve of them participated in
the offline experiment and 13 participated in the online exper-
iment. Seven subjects participated in both experiments. All
subjects were right-handed and had normal or corrected to nor-
mal vision. This study was approved by the institutional review
board of Tsinghua University (NO. 20200020), and informed
consent was signed by subjects before experimentation.

B. Spectrally-Dense Joint Frequency-Phase Modulation

An SSVEP-BCI brain speller was designed in this study
with 120 stimuli, which were aligned in a 6 x 20 matrix.
Based on JFPM, the frequency and initial phase information
was encoded as follows:

fij = fo+l6G—D+i—1]-Af
D, ;=D +[6(j—1)+i—1]-AD )
where i (j) is the row (column) index of the stimuli, and Af

(A®) is the frequency (initial phase) interval that starts with
the lower limit fy (®g).
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In conventional JFPM, the lower limit fy is configured to
approximate the range of the stimulus frequencies f. (f, =
fo — Af), which prevents the spectral overlap between the
fundamental and harmonic frequencies. For instance, a widely
used configuration, where fo = 8 Hz and Af = 0.2 Hz,
is forming a 40-target SSVEP-BCI speller [3], [6], [24]. The
lower limit fy can be increased and the frequency interval
Af can be decreased in JFPM to expand the number of
stimuli Figure 1. To ensure a large number of encoded stimuli,
a spectrally-dense JFPM (sJFPM) configuration was employed
in this study by setting Af and fp to 0.1 Hz and 12 Hz,
respectively. In this fashion, the spectral band encoded for
the stimulus consisted of 120 stimuli, ranging from 12 Hz to
23.9 Hz, The phase information was set as @9 = 0, AD =
0.357 [3]. The details of the sJFPM configuration are sum-
marized in Figure 2(A).

Figure 2(B) illustrates the user interface of the brain speller
which was presented on the screen of a 48.9-inch LCD
monitor (SAMSUNG; refresh rate: 120 Hz; resolution: 3840 x
1080 pixels). Each stimulus or target in the speller had a
dimension of 173 x 129 pixels with a digit character from 1 to
120 at its center. The spacings between two adjacent stimuli
were vertically 15 pixels and horizontally 19 pixels. The
topmost black rectangle was set for result feedback.

A sampled sinusoidal stimulation method [25] was used to
implement the sJFPM. In a stimulus sequence, the grayscale
value of the i-th frame for the stimulus frequency f can be
obtained by

1
s(f¢,0) = {1 +sin272 £ i/ fm) + S1} )

where f;, is the refresh rate of the monitor, i.e., 120 Hz in the
study. Thus, a visual flicker was generated with a grayscale
between 0 (dark) and 1 (highest luminance) in a sinusoidal
manner. The visual stimuli were presented by Psychophysics
Toolbox [26] in MATLAB (MathWorks, Inc.).

C. Offline Experiment

Six blocks of offline experiments were designed for system
optimization. Each block comprised 120 trials in which the
order was randomized, and there was one trial for each
stimulus. Each trial lasted 4 s, including 1-s cue, 2-s visual
stimulation and 1-s rest. In particular, trials started with a red
square on top of a stimulus prompting for 1 s, and subjects
were instructed to direct their attention to the prompted stimu-
lus. Then all stimuli began to flicker simultaneously. Subjects
were asked to look at the center of the prompted stimulus
and avoid movement as well as eye blinking during the 2-s
flickering. Finally, the speller paused for 1 s and subjects rested
briefly. To avoid visual fatigue, there was a break of 5 min
between two consecutive blocks. EEG data from the offline
experiment were used for parameter selection to optimize the
BCI system.

D. Online Experiment

An online experiment was conducted on a separate day after
the offline experiment to validate the performance of the BCI

system. Different from the offline experiment, in the online
experiment the duration of visual stimulation was 0.7 s and
gaze shift time for each stimulus was 1 s. In other words,
the BCI system output a command in 1.7 s. The online
experiment comprised nine blocks, including seven blocks for
a training session and two blocks for a test session. No result
feedback was provided in the training session as in the offline
experiment. However, in the test session, an auditory feedback
of a short beep was provided to the subject at the end of
flickering if the SSVEP was correctly recognized by the target
recognition algorithm. SSVEPs from the training session were
used to train a model for target recognition in the test session.

E. Data Acquisition

This study recorded nine channels of EEG data using
SynAmps2 (Neuroscan Inc., Charlotte, USA) for both offline
and online experiments. The nine channels were from the
classical occipital montage [24] in the international 10-20
system, i.e., Pz, POz/Oz, PO3/4, PO5/6 and O1/02, which
were also used for online analysis in target recognition. The
impedances of the channels were maintained below 20 kQ
and the reference channel was set at Cz. The sampling rate
was set at 1000 Hz, and EEG data were synchronized to the
event triggers of the visual stimuli via a parallel port. EEG
data were acquired in an electromagnetic shielding room to
reduce environmental noise, and the power-line interference
was removed by a hardware notch filter. The data were then
downsampled to 250 Hz for offline and online analysis.

F. Data Analysis

This study used a state-of-the-art task-related component
analysis (TRCA) [6] for target recognition. The performance
of the proposed BCI system in target recognition was evaluated
using classification accuracy and information transfer rate
(ITR). The metric of ITR in bits per min (bits/min) is defined
as [27]:

ITR = 60/T - ([log;M + Plog, P
+ (1 = P)logy[(1 — P)/(M — 1)]) 3)

where M is the number of stimuli, P the classification
accuracy, and 7 (s) the overall time for target selection and
gaze shift. A gaze shift time of 1 s was used to calculate the
ITR in both offline and online analyses.

1) Offline Analysis: First, parameter selection was conducted
to determine the optimal number of sub-bands (Nyp) and stim-
ulation duration (7). Based on the sJFPM scheme, the filter
bank was designed with sub-bands ranging from m x 12 Hz
to 90 Hz, where m is the index of sub-band that ranged from
1 to Ngp. The stimulation duration T can be determined by a
sliding window, in which the onset was set at ¢, + d, where
ty s the starting time point of the stimulation. Note that d is
the latency including the visual delay and system delay and it
was set to 140 ms [3]. A parameter selection was performed
for Ngp and Ty that varied between 1 and 7 and ranged from
0.2 s to 2 s with a step of 0.1 s, respectively. The parameters
that yielded the best BCI performance were used in the online
experiment.
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Fig. 2.

Virtual keyboard for the 120-target SSVEP-BCI speller. (A) Frequency (blue) and initial phase (red) encoded by spectrally-dense joint

frequency-phase modulation (sJFPM) for each stimulus. (B) User interface of the speller comprising 120 stimuli, aligned in a 6 x 20 matrix.

The next step involved the investigation of BCI system
performance under various calibration settings. Two settings
were considered, i.e., different montage configuration and
insufficient training data. A varying number of channels (N.,)
was selected for the montage configuration sequentially from
the list of {Oz, O1, 02, POz, PO3, PO4, Pz, POS5, PO6},
where N.; = 3 — 9 and the corresponding montages are
detailed in the Supplementary Material (Table SI). For the
insufficient training data, the number of training blocks (Np)
varied from 1 to 5. Under these settings, the accuracy at a
data length of 2 s and the maximum average ITR across data
lengths were used as the performance metrics.

To investigate the misclassification patterns in the target
recognition, the output of the TRCA classifier, its intermediate
features and the SNR of EEG trials were analyzed. The EEG
trials with a 2 s data length were used for analysis. The
confusion matrix was computed and the accuracy with respect
to each stimulus was thereby obtained for all subjects. The
R-squared statistic was used for intermediate features since it
can well characterize the discrimination ability of stimuli in
the feature space well [6], [28]. The R-squared feature was
calculated from the correlation coefficients corresponding to
the target class and nontarget classes. The SNR was calculated
for each stimulus frequency using the following formula [9]:

SV Pk f)
SR P - X2 Pk f)

where P(f) is the spectral power for the frequency f, and
fn the stimulus frequency and Nj, the number of harmonics,
which is usually set to 5 [9].

Furthermore, the effect of the frequency interval on classi-
fication performance was explored. The stimulus frequencies
were sorted in ascending order and the associated stim-

SNR = 1010g10

“)

uli were sampled by an interval of 6 Hz, where 6 =
0.1,0.2,0.3,0.4,0.6,0.8, 1 to simulate a variety of frequency
intervals assigned by JFPM. Specifically for each frequency
interval, there were 10 - 6 subsets that comprised N, stimuli,
and we performed a N.-target classification was performed
on each subject, where N, = 12 - o~ 1. The performance of
classification was then evaluated by the maximum average ITR
across subsets, blocks and subjects.

A 6-fold leave-one-block-out cross validation was per-
formed in the offline analysis, where in each fold one block
was used as the test data and the remaining were used as
training data. For multiple comparisons in the offline analy-
sis, a repeated measures analysis of variance (ANOVA) was
applied. To account for the violation of sphericity, as assessed
by Mauchly’s test of sphericity, Greenhouse-Geisser correc-
tion was then employed. Post hoc comparisons using ¢-test
with Bonferroni correction were conducted when there was a
statistically significant main effect (p < .05). The statistical
analyses were performed in SPSS Statistics 26 (IBM, Armonk,
NY, USA). Unless otherwise stated, data were presented as
mean =+ standard error in this study.

2) Online Analysis: The number of sub-band Nj; in the
online TRCA model was determined by the parameters chosen
in the offline analysis, where N5, = 4. The model detected
online EEG data with a data length of 0.7 s after latency
correction (d = 140 ms) were recognized by the model to
provide real-time result feedback. The online classification
accuracy and ITR were then computed for each subject.

Ill. RESULTS
A. Offline Result

The average classification performance (A: accuracy, B:
ITR) for a varying Ny, and Ty in the parameter selection are
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Fig. 3. Change in classification performance with respect to two
parameters, i.e., the number of sub-band Ng, and data length Ts in
parameter selection. (A) Average accuracy. (B) Average ITR. Data
lengths from 0.2 s to 2 s with an interval of 0.1 s were used for the
evaluation.

illustrated in Figure 3. Visual inspection reveals a noticeable
difference in the classification performance can be observed
as the parameter changes. As assessed by two-way (sub-
band x data length) repeated measures ANOVA, there was
a statistically significant interaction between the sub-band and
data length on accuracy, F(3.182,35.001) = 7.322, p =
.001, and on ITR, F(3.356,36.912) = 15.078, p = .003.
An optimal 7y = 0.7 that achieved the highest ITR across
data lengths could be determined from the result of ITR in
Figure 3 B. To pinpoint the optimal number of sub-bands
Nsp, Ty was fixed and the change in accuracy was delineated,
as shown in Figure 4 A. One-way repeated measures ANOVA
revealed that there was a significant difference in accuracies
between sub-bands, F(1.119,12.306) = 13.371, p = .003.
A sub-band parameter of Ny, = 4 yielded the highest
accuracy, i.e., 81.02 £ 4.01%. Using the optimal parameter,
the average accuracy and ITR across data lengths together
with individual results are further illustrated in Figure 4 B
and Figure 4 C, respectively. Here, each dashed line repre-
sents a subject and the blue line is their average. The result
showed that the BCI performance exhibited an inter-subject
variation. For instance, the subject with excellent performance
(S5) achieved a maximum ITR of 253.53 bits/min, and the
subject with poor performance (S6) achieved a maximum ITR
of 132.68 bits/min. As for the average result, the average
accuracy at 2 s was 92.9941.99 %, and the maximum average
ITR was 176.17 &£ 12.99 bits/min at 0.7 s.

The effect of various occipital montages on the BCI perfor-
mance is illustrated in Figure 5 (A: accuracy, B: ITR). Here,
each dashed line represents a subject to show their individual
performance, and the solid line is their average. One-way
repeated measures ANOVA revealed a statistically significant
difference between montages in accuracy, F(2.145,23.592) =
24.809, p < .001, and in ITR, F(2.583,28.411) = 52.815,
p < .001. The BCI performance improved significantly by
increasing the number of channels in montages. The usage
of three channels (Oz, Ol and O2) achieved an accuracy of
97.08% for subjects with excellent BCI performance (S5),
which was above the average (96.25%) using nine channels.
The addition of a channel (e.g., Pz) decreased the performance
for some subjects, suggesting the individual difference in the
topography of SSVEP responses.

Figure 6 illustrates the change in performance with a vary-
ing number of training blocks. One-way repeated measures
ANOVA revealed a statistically significant difference between
different number of blocks in accuracy, F(1.34,14.743) =
43.127, p < .001, and in ITR, F(1.714,18.853) = 118.439,
p < .001. The result showed that the BCI performance
increased significantly as more training data were available.
By leveraging two blocks of training data, the average ITR
surpassed 100 bits/min, i.e., 141.48 £ 16.07 bits/min. Using
three blocks of training data, the average accuracy surpassed
80%, i.e., 83.67 £ 4.13%. Of note, with insufficient training
data of one block, three subjects achieved relatively higher
performance, i.e., S5 (97.64%), S8 (78.75%) and S7 (77.08%).

To investigate the misclassification pattern, the confusion
matrix was constructed as shown in Figure 7 A. The number
of trials greater than five, which were 72 in total, were colored
blue for contrast. A diagonal due to the high accuracy at 2 s
is clear, and errors in adjacent stimuli could also be identified.
On closer examinations of errors, Figure 7 B and C depict the
accuracy and R-squared maps for each stimulus, respectively.
Here, the accuracies and R-squared features were arranged
according to the user interface of the speller. For the accuracy
map, stimuli in the center left region of the speller were
recognized with higher accuracy (>90%), whereas the right
part had a higher error rate. A similar pattern was observed
in the R-squared map, where a higher value as an indicator
of better discrimination ability was detected in the left center
region. The distribution of the SNR was further delineated to
probe into the causal role. Figure 7 D illustrates the bar plot
of the SNR values with respect to each stimulus frequency,
indicating a decreasing tendency (r = —0.964, p < .001)
in SNR as the stimulus frequency increases. To reveal its
spatial distribution, the SNR map was illustrated in a similar
fashion in Figure 7 E. The result showed that the SSVEP trials
evoked by the stimuli in the left region of the speller (column
1 — 10) have a significantly higher SNR than that in the right
region (left: —10.433 +0.138 dB; right: —13.1094+0.127 dB;
p < .001).

The relationship between frequency interval and simulated
BCI performance is illustrated in Figure 8. One-way repeated
measures ANOVA revealed a statistically significant difference
in ITR between frequency intervals, F(1.445,15.890) =
80.303, p < .001. Post hoc pairwise comparisons with
Bonferroni correction revealed that there was a significant
difference between 6 = 0.1 and 6 = 0.3,0.4,0.6,0.8, 1, with
all p < .05. However, no significant difference was found
between 6 = 0.1 (ITR: 176.53 & 12.97 bits/min) and J = 0.2
(ITR: 177.05 £+ 12.40 bits/min), with p = 1, Bonferroni
corrected.

B. Online Result

Table I lists the individual and average classification accu-
racy and ITR recorded in the online experiment among 13 sub-
jects. The average accuracy achieved was 92.47 + 1.83%,
while the ITR for the BCI system was 213.23 4 6.60 bits/min.
As for the individual performance, over 75% of the subjects
(10/13) achieved an online accuracy above 90% and an online
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ITR above 200 bits/min. Four subjects (S4, S6, S8 and S11)
accomplished an online accuracy above 98% and an online
ITR above 230 bits/min. The subject with the highest perfor-
mance was S8, who attained an online accuracy of 98.75%
and an online ITR of 237.31 bits/min. A demo video of the
BCI system can be found at https://youtu.be/lAt2arWT9wo.

IV. DISCUSSION

In this study, a spectrally-dense joint frequency-phase mod-
ulation (sJFPM) was utilized to encode 120 stimuli with
a frequency interval of 0.1 Hz. First, a BCI system was
designed by sJFPM, and the parameters were optimized in an
offline experiment. Subsequently, an online experiment was
performed on 13 subjects to validate the proposed system.
The results demonstrated that the 120-target brain speller
could achieve an average classification accuracy above 90%

TABLE |
RESULTS OF THE ONLINE EXPERIMENT TESTING 13 SUBJECTS. THE
RESULTS FOR SUBJECTS WITH THE TOP FOUR ONLINE
PERFORMANCES ARE MARKED IN BOLD

Subject Accuracy (%) ITR (bits/min)
S1 94.58 219.87
S2 82.92 178.92
S3 90.42 204.37
S4 98.33 235.40
S5 96.25 226.50
S6 98.33 235.40
S7 77.92 163.15
S8 98.75 237.31
S9 92.92 213.51
S10 85.83 188.52
S11 98.33 235.40
S12 91.67 208.89
S13 95.83 224.81

Mean+sem 92.47+1.83 213.23+6.60

and an average ITR above 200 bits/min. The result of the
proposed system substantially outperformed the existing BCI
systems with over 100 stimuli in accuracy [10], [19], [21]
and in ITR [10], [19]. The superiority of the proposed system
in performance verifies the effectiveness of the sJFPM in
designing a high-speed SSVEP-BCI with a large number of
stimuli.

Three issues concerning sJFPM and target recognition are
further discussed in the following paragraph. First, as for
the frequency interval in sJFPM, the BCI performance was
measured by means of sampling from the stimuli, suggesting
that the traditional JFPM could be scaled to sJFPM to expand
the number of stimuli without inhibiting the performance in
ITR. The frequency interval of 0.2 Hz is widely used in the
implementation of high-speed SSVEP-BCI spellers [3], [6],
[9], [24], [29], whereas the frequency interval of 0.1 Hz has
received little attention [30]. The usage of 0.1-Hz frequency
interval enables the BCI system to configure a broad array of
stimuli, and as suggested by the result in Figure 8, the ITR of
the system does not suffer from a degradation. This phenom-
enon of ITR is attributable to the compromise between the
number of stimuli M and classification accuracy P in Eq. (3),
in which the greater number of stimuli would inevitably
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increase the error rate. For instance, the average accuracy
corresponding to the maximum average ITR is 81.02£4.01%
at 0.7 s and 83.88 £ 3.73% at 0.5 s for 0.1-Hz and 0.2-Hz
frequency intervals, respectively. Second, the error analysis in
Figure 7 suggests that the higher error rate in the right region
of the speller is caused by the lower discrimination ability
for these stimuli, which is in part further due in part to the
associated lower SNRs. Specifically, the R-squared statistics in
Figure 7 accounted for 56.0% of the variation in the accuracy
with adjusted R? = 556, F(1,118) = 150.294, p < .001,
and the SNRs accounted for 46.9% of the variation in the

accuracy with adjusted R?> = .465, F(1,118) = 104.257,
p < .001. The lower SNR value for the stimuli in the right
region originated from the property of high-frequency SSVEP,
in which SSVEPs with higher stimulus frequencies produce
lower SNRs [22], [23] (Figure 7 D). Third, as for the target
recognition, TRCA was used to validate the system validation,
and other state-of-the-art methods [15] could be applied to
further reduce the error rate.

Compared with the existing methods for a large number of
stimuli in BCI, the present study based on the JFPM encoding
is characterized by the following. In retrospect, the JFPM
encoding method has long demonstrated its excellence in the
implementation of a high-speed BCI. For the 40-target BCIs,
previous studies [3], [6], [8] reported that BCI systems based
on JFPM could achieve an average ITR of over 300 bits/min,
which is the state-of-the-art performance in non-invasive BCIs
to the knowledge of the authors. For the regime of a large
number of stimuli, the effectiveness of JFPM was further
demonstrated in the present study by implementing a high-
speed BCI, which resolves the doubt about the feasibility of a
high volume of stimulus frequencies for BCIs. The high-speed
performance of JFPM is attributable to the fact that JFPM
elicits a remarkably high SNR of brain signals (i.e., continuous
SSVEP) compared with other methods in visual BCIs. In con-
trast to the P300 [10] and c-VEP [21] signals, SSVEP boasts a
high single-trial SNR, which removes the hassle of repetition
of visual stimuli multiple times and thereby increases the ITR
of the system. In comparison with MFSC [19], JFPM provides
a continuous encoding of SSVEP and elevates the SNR as
the data length increases, whereas in MFSC the transition
of stimulus frequencies interrupts the steady state of VEP
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Fig. 9. A keyboard interface for one-keystroke Chinese character input.
Here each stimulus denotes 1—4 pinyin-based syllables, each of which
corresponds to Chinese characters for selection. The alphabet above the
first line of stimuli denotes the initial letter of the syllable for each column.

and possibly offsets the amplitude of brain response. Because
each stimulus in sJFPM is tagged by a stimulus frequency,
a wide range of existing target recognition methods [6], [13],
[14], [15], [24], [31] for SSVEP-BCI are applicable to the
sJFPM-based system, while in MFSC the majority of the target
recognition methods should be redesigned and custom adapted.

The combination of high-speed performance together with
a large volume of stimuli make it possible for the BCI system
to enable new applications. First, the large array of stimuli
aligned densely in the plane would possibly expand the utility
of BCI from selecting to locating. Since each target in the array
corresponds to a spatial location or a coordinate, the coordinate
information associated with the user intent could be decoded
by the target recognition in SSVEP-BCI and then used for a
wide range of applications, such as map location, spatial navi-
gation, digital sandtable control. Second, the coordinates of the
high-density array could be utilized to create the semantics of
the stimuli, rather than character input from a single target. For
instance, a hybrid BCI based on P300 and SSVEP was used to
control a robotic arm with the coordinate of 108 stimuli and
write a Chinese character by strokes [32]. Thus the BCI with
a large number of stimuli can provide a means for people with
motor disabilities to write, paint and create. Third, a syllable-
based input method could be developed in the BCI system by
leveraging a large number of stimuli, as an extension to the
traditional brain speller for character input [3]. For example the
Chinese language which has 416 syllables in total. With a large
number of stimuli in BClIs, the syllables can be represented
by the stimuli and users can enter a syllable in one keystroke.
Figure 9 illustrates a keyboard interface tailored for Chinese
character input and its designing procedure is provided in the
Supplementary Material. Here each stimulus is mapped to 1—4
syllables and an alphabet is presented above the first line of
stimuli to indicate the initial letter of the syllables. Users can
find an intended stimulus by first referring to the alphabet
and then selecting from only a few stimuli (no more than
7 stimuli). By taking advantage of the speller with 120 stimuli,
the efficiency of Chinese character input could be significantly
boosted.

The contribution of the present study is three-fold. First,
methodologically, we extended the conventional JFPM to the
spectrally-dense regime that prevents spectral overlap and
encodes a large number of stimuli in the low- and medium-
frequency band. In system implementation, we successfully
developed an SSVEP-BCI system with 120 stimuli using
sJFPM and the proposed system can achieve a high-speed

performance as validated in online experiment. For practical
applications, the proposed BCI system has the potential to
enable a variety of new applications, e.g., BCI systems for
one-keystroke Chinese character input. Nevertheless, this study
is proposed as a proof-of-principle demonstration, which has
its limitations, leaving room for its improvement in future
work. To improve the practical utility of the BCI system, its
ease of use can be improved in terms of EEG cap, standard
monitor and the effort in reducing calibration time. Dry EEG
cap [33] and pre-gelled EEG cap [34] are more practical and
can be used to replace the gel-based EEG cap in real-world
applications. A standard monitor can be employed for stimulus
presentation in our future work to make the proposed BCI
system more readily available. Cross-stimulus transfer learn-
ing [35] could be employed to overcome the calibration burden
brought about by the increased number of stimuli. Other
transfer learning approaches in SSVEP-BCI [36], [37], [38]
have the potential to further increase the system performance
by leveraging data from other subjects [36], [37] or other
sources [38]. Apart from the effort in reducing calibration
time, visual fatigue can be mitigated by designing a paradigm
with more visual comfort [39]. For the improvement of BCI
performance, more electrodes can be employed to further
enhance the ITR of the 120-target system [15]. Furthermore,
a dynamic stopping strategy [40] could be implemented to
tackle the individual difference in parameter selection and
thereby enhance the ITR of the system.

V. CONCLUSION

The present study proposed a spectrally-dense joint
frequency-phase modulation (sJFPM) encoding method to
design a high-speed steady-state visual evoked potential based
brain-computer interface (SSVEP-BCI) system with 120 stim-
uli. Two experiments, an offline and an online, involving
18 subjects were conducted to optimize and validate the sys-
tem performance. The results demonstrated that the proposed
120-target BCI system based on sJFPM could achieve an
online accuracy of 92.47 £+ 1.83% and an online ITR of
213.23 £ 6.60 bits/min. By means of using finer frequency
division to encode a high volume of stimuli, the present
study provides insight into the JFPM method and offers an
opportunity for BCI to be involved in new BCI applications,
contributing to the effort for developing novel non-invasive
BCI systems.
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