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Reliability of EEG Measures in Driving Fatigue
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Abstract— Reliability investigation of measures is impor-
tant in studies of brain science and neuroengineering.
Measures’ reliability hasn’t been investigated across brain
states, leaving unknown how reliable the measures are in
the context of the change from alert state to fatigue state
during driving. To compensate for the lack, we performed
a comprehensive investigation. A two-session experiment
with an interval of approximately one week was designed
to evaluate the reliability of the measures at both sensor
and source levels. The results showed that the average
intraclass correlation coefficients (ICCs) of the measures
at the sensor level were generally higher than those at the
source level, except for the directed between-region mea-
sures. Single-region measures generally exhibited higher
average ICCs relative to between-region measures. The
exploration of brain network topology showed that nodal
metrics displayed highly varying ICCs across regions and
global metrics varied associated with nodal metrics. Single-
region measures displayed higher ICCs in the frontal and
occipital regions while the between-region measures exhib-
ited higher ICCs in the area involving frontal, central and
occipital regions. This study provides an appraisal for the
measures’ reliability over a long interval, which is informa-
tive for measure selection in practical mental monitoring.

Index Terms— Driving fatigue, EEG, brain network, func-
tional connectivity, graph metrics, sensor and source levels.

|. INTRODUCTION

RIVING fatigue has been considered as one of the fatal
causes of traffic accidents, accounting for 20% of all road
fatalities worldwide [1]. Prolonged driving on a monotonous
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road environment reduces driver’s vigilance, further resulting
in driving fatigue [2]. To date, various psychophysiological
signals have been used to assess fatigue and EEG is a relatively
reliable and easily-used indicator for fatigue [3], [4]. When
selecting a measure, its reliability over time is important as
high reliability ensures that driving fatigue can be correctly
and accurately assessed. Previous studies only investigated the
reliability of single-region measures during different episodes
of fatigue [5], while between-region measures have not yet
been investigated. This requires a comprehensive investigation
of all measures to address how reliable each measure is and
compare the reliability between each of them in terms of
identifying driving fatigue.

Early EEG studies utilized individual-region measures, such
as entropy [6] and spectral power [4], [7], [8], [9], [10], [11]
to assess driving fatigue. A study reported decreased sample
entropy in the occipital region during driving fatigue [6].
Similar decreases during fatigue were found in central, pari-
etal, occipital regions using entropy. Considering different
frequency bands relevant to driving fatigue, previous studies
using EEG spectral power reported distinct changes from alert
to fatigue. Spectral power in theta and alpha bands increased
during fatigue while spectral power in beta band decreased
[8], [9], [10]. Increases of spectral power in theta band
were found in frontal, central and occipital regions [4], [11].
Spectral power in alpha band increased in central, parietal,
occipital, and temporal regions during fatigue [4], [10], [11].
Decreases of beta band during fatigue were observed in frontal,
central, temporal, parietal, and occipital regions [4], [10], [11].
Although changes in delta and gamma bands during fatigue
have been reported, more prominent changes were frequently
reported in theta, alpha, and beta bands [12], [13].

Between-region measures have been increasingly used and
widely applied to diverse neuroimaging studies, such as motor
imagery performance prediction [14], schizophrenia identifi-
cation [15], and fatigue identification [16], [17], [18], [19],
[20], [21]. Increases of mean phase coherence in frontal and
parietal regions were found in the delta and alpha bands
under fatigue [17]. In another study, interhemispheric con-
nections in alpha band showed an increase while higher con-
nection strengths were observed for interhemispheric frontal
and occipital connections relative to interhemispheric cen-
tral, parietal, and temporal connections during fatigue [18].
Graph metrics have been utilized to capture the properties of
brain functional connectivity during fatigue [19], [20]. In a
study using ordinary coherence, total synchronization strengths
(in the frequency range of 0.5~30 Hz) in frontal, central,
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and temporal regions, mean degree in delta and theta, and
mean clustering coefficient in delta, theta, and alpha displayed
significant increases while characteristic path length signifi-
cantly decreased in delta, theta, alpha, and beta bands during
fatigue [19]. A study using phase lag index (PLI) reported
increases of connection strengths in delta band and changes
of minimum spanning tree metrics in delta and theta bands
towards star-like network configuration during fatigue [20].
Directed measures such as partial directed coherence and
directed transfer function have also been utilized to detect
driving fatigue [21]. Similar to the single-region measures,
between-region measures for fatigue assessment were more
commonly reported in theta, alpha, and beta bands [12], [13].

Previous studies have utilized various single-region and
between-region measures of EEG, capturing different proper-
ties of the brain regional and inter-regional activities. To deter-
mine their potential usefulness as biomarkers of particular
brain functions, we could estimate the reliability of the mea-
sures [22]. Most of the previous studies analyzed the relia-
bility of the measures during the resting condition [22], [23],
[24], [25]. A study using fMRI reported higher reliability of
the second order graph metrics than that of the first order graph
metrics [23]. In a MEG study comparing different connectivity
measures, higher reliability was observed for amplitude enve-
lope correlation and partial correlation measures while phase-
based measures and imaginary partial coherence displayed
lower reliability [24]. In a study using EEG at sensor level
and source level, the reliability of the graph metrics was higher
for within-day sessions relative to between-day recordings and
higher at sensor level compared to source level [22]. In the
other EEG study utilizing phase-based measures comprising
PLI and weighted PLI, the reliabilities of the two measures
were found to be similar and the measures in alpha band had
the highest reliability [25]. While wPLI exhibited lower global
metric reliabilities relative to PLI, wPLI displayed higher relia-
bilities of regional degree and inter-regional connections [25].
The other studies have also analyzed the reliability of EEG
measures using task-based protocol [5], [26]. In a study using
working memory tasks, the global metrics were more reliable
in the lower frequency bands and during the task compared
to during the rest [26]. In a study using single-region mea-
sures during different episodes of driving fatigue, mean EEG
amplitudes in delta, theta, alpha, and beta bands were generally
highly reliable (Pearson’s correlation, r > 0.6) with the highest
observed in delta and theta bands (r > 0.95) [5]. Although
these studies have discussed the reliability of measures, they
did not consider the changes of the measures between different
brain states. The studies also reported the reliability of single-
region or between-region measures separately, neglecting the
comparison between the two categories.

Since subjects may have different baseline values for mea-
sures, we proposed to estimate the reliability of the mea-
sure changes between alert and fatigue states in this study.
Investigating the reliability of measure changes across states,
instead of measure values, might be more useful for fatigue
detection because it enables the evaluation of the consistency
of measures capturing the changes of brain states over time.
In this study, we showed comparative results in terms of

reliability among measures for driving fatigue and explored
those measures at both sensor level and source level.

Il. METHODOLOGY
A. Experimental Protocol

Thirty healthy students, 18 males and 12 females (age:
23.17 + 2.72 years, mean =+ standard deviation), were
recruited from the National University of Singapore. All
subjects reported normal or corrected-to-normal vision, with
no history of substance addiction or mental disorders. The sub-
jects were required to obtain a full night (>7 h) sleep before
the day of the experiment. On the day of the experiment, they
were required to avoid consuming caffeine or alcohol. Each
subject signed a consent form and was trained to familiarize
themselves with the driving equipment before the start of the
experiment. The driving simulation was conducted using Log-
itech G27 Racing Wheel set and Carnetsoft Driving Simulator
(http://cs-driving-simulator.com) software. The subjects were
instructed to drive a car following a guiding car and to brake
as soon as the red taillights of the guiding car lit. Each subject
completed two identical driving sessions of 90 minutes, with
an interval of approximately one week. The experiment was
reviewed and approved by the institutional review board of the
National University of Singapore.

B. EEG Data Acquisition and Source Localization

Brain activity was recorded as EEG using wireless EEG
recording equipment with 24 dry electrodes (Cognionics, Inc.,
USA), with a sampling rate of 250 Hz. The impedances
of all EEG channels were kept below 20 kQ. The EEG
channels were referenced to the linked mastoids. Preprocessing
steps were performed to remove artifacts. Firstly, all EEG
channels were rereferenced using common average reference
(an alternative reference is infinity [27], [28]). The EEG
channels having poor contact with the scalp were removed
and then respectively interpolated using the signals from
its adjacent channels. The last 5-min portion of EEG was
discarded due to the change of the simulation phase into free
driving where there was no guiding car. The EEG signals were
band-pass filtered at 0.5~45 Hz. The processed signals were
segmented into epochs of a 2-second period. Abnormal epochs
containing values with more than 5 times standard deviation
from the mean probability distribution were removed using
EEGLAB [29]. Based on the self-reported confirmation of
fatigue after the experiment and the increased reaction time at
the end of the experiment, the epochs between the Oth and 15th
minute and between the 70th and 85th minute were considered
as alert and fatigue samples respectively. Four subjects having
the insufficient number of alert and fatigue epochs in either
session after epoch rejection were excluded from further
analysis. For the remaining subjects, the remaining epochs
were decomposed into components using independent com-
ponent analysis (ICA). ICA components representing artifacts
were removed and the remaining components were used to
reconstruct clean EEG epochs. Clean EEG epochs were then
obtained in the first session (alert: 391.12 £+ 51.81, fatigue:
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340.35 4 91.56) and the second session (alert: 377.15 £ 54.67,
fatigue: 363.50 £ 70.93) of the experiment.

The exact low resolution brain electromagnetic tomography
(eLORETA) [30] was used in this study to transform the EEG
signals at sensor level to the cortical current source densities.
The head model of eLORETA was based on the Montreal
Neurological Institute average MRI brain map (MNI152) [31].
The solution space was restricted to the cortical gray matter
with 6239 voxels at 5 mm spatial resolution. The voxels at
the cortical gray matter were then grouped into 80 cortical
regions, based on the automated anatomical labeling (AAL)
brain atlas. In this study, the 24-channel EEG signals were
transformed into 80-region EEG at source level. Single-region
and between-region measures were then computed from alert
and fatigue epochs at sensor level and source level separately
for the first and second sessions.

C. Single-Region Measures

The single-region measures utilized in this study were sam-
ple entropy and power spectral density. Sample entropy (SE) is
an optimized method of approximate entropy which estimates
the complexity of the time series of the data without including
the self-matches when computing the probability [32]. The
parameters of SE were set to m = 2 and r = 0.2xstd [6].
In this study, SE was computed at the whole band (0.5~45 Hz)
for all sensor level and source level regions. Power spectral
density (PSD) was utilized to measure the EEG activity at the
aforementioned bands relevant to fatigue identification, theta,
alpha, and beta bands. PSD was obtained by computing the
ratio between the power of each band and the power of the
total band [11]. In this study, PSD theta, alpha, and beta were
calculated for all sensor level and source level regions. The
differences of SE and PSD values between alert and fatigue
were obtained before computing the reliability, resulting in 24
and 80 values at sensor level and source level respectively.

D. Between-Region Measures

In this study, phase lag index (PLI) and partial
directed coherence (PDC) were utilized as undirected and
directed between-region measures respectively. PLI measures
between-region synchronizations by computing the instan-
taneous phase differences between regions, minimizing the
effect of volume conduction [33]. PDC is a frequency-based
measure based on Granger causality, estimating the directed
information flow between regions [34]. For each measure,
the individual connections and their corresponding graph
metrics were computed. The individual connections of PLI
were computed for the alert and fatigue epochs between all
sensor level and source level regions, resulting in 276 and
3160 connections respectively. The individual connections of
PDC were calculated for the alert and fatigue epochs, resulting
in 552 for sensor level and 6320 for source level connections
(excluding the self-connections). The graph metrics of PLI and
PDC comprised global (clustering coefficient, characteristic
path length, global efficiency, and local efficiency) and nodal
(nodal efficiency and nodal clustering coefficient) metrics. The
PLI and PDC matrices were first thresholded at the sparsity

range of 10% to 40% with 1% increment to obtain their distinct
characteristics at the different number of edges. Each graph
metric was computed at each sparsity threshold and its area
under the curve (AUC) along the sparsity range was computed.
The difference of the average AUCs in alert and fatigue
states were computed before estimating their reliabilities. Each
global metric had one value per subject per session while each
nodal metric had 24 (80) values per subject per session at
sensor (source) level.

E. Reliability and Statistical Analysis

The single-region and between-region measures were
obtained for alert and fatigue epochs. The average difference
between alert and fatigue across epochs of each subject was
then computed separately for the first and second sessions.
See the box named ‘Compute Reliability’ depicted in Fig. 1.
Intraclass correlation coefficient (ICC) [35] was then computed
to measure the reliability of the differences across subjects
over the two sessions. Specifically, 26 difference values for
each session were grouped to compute the mean M and the
variance V2. The ICC was computed by

N

LS - e - M)

IcC=———
_ 2
(N—1)V2 &

where N is the number of difference values for each session.
x,% € {xll,le, . ,x216 and x,% € {x%,x%, - ,x§6} are differ-
ence values for session 1 and session 2, respectively. ICC was
set to zero when it was a negative value.

To determine whether the ICC distributions of the
single-regions and between-regions measures were differ-
ent, Kruskal-Wallis test was conducted for the sensor level
measures and source level measures separately. Wilcoxon
signed-rank test was conducted for the comparison between
SE and PSD and between PLI and PDC, while Wilcoxon rank-
sum test was conducted for the comparison between SE/PSD
and PLI/PDC.

I1l. RESULTS

The ICCs of the measures at sensor level and source level
were depicted in Fig. 2. Kruskal-Wallis test showed significant
differences (p<0.05) among the measures at both sensor level
and source level. The results of the post-hoc tests between the
measures were shown in Fig. 3 and Fig. 4 for the sensor level
and source level measures, respectively.

At sensor level, PSD theta had the highest mean ICC and
its ICCs were significantly higher than the ICCs of the other
measures. PSD alpha had the second highest mean ICC and
its ICCs were significantly higher than the ICCs of the other
measures except for sample entropy, PSD beta, and PLI alpha,
having similar mean ICCs among them. While PLI alpha
was significantly higher than PLI theta, PLI beta, and PDC
measures, sample entropy and PSD beta were significantly
higher than PLI theta and PLI beta only. The lowest mean
ICCs were found for PLI theta and PLI beta.

At source level, PSD alpha had the highest mean ICC and
its ICCs were significantly higher than the other measures.
PLI measures had the lowest mean ICCs and its ICCs were
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Fig. 1. The illustration of intraclass correlation coefficient (ICC) computation of the measures. The EEG data at sensor level were collected from
the two-session experiment. Exact LORETA was used for transforming the EEG at sensor level to EEG at source level. The EEG at both sensor
level and source level were segmented into alert and fatigue epochs. For each alert/ fatigue epoch, the single-region and between-region measures
were calculated. The measure change for each subject was computed by subtracting the average of the measure values in the fatigue epochs from
the average of the measure values in the alert epochs. The reliability coefficient was then calculated using ICC across the two sessions.

Sensor Level Source Level
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Fig. 2. The means and standard errors of the single-region and between-region measures. The measures at the sensor level were depicted in the
left panel while the measures at the source level were shown in the right panel.

significantly lower than the ICCs of the other measures.
Sample entropy, PSD theta, and PSD beta had similar mean the differences were significant.

ICCs among them. PDC measures had similar mean ICCs The ICCs of the global and nodal metrics computed from
among the different frequency bands although PDC beta had between-region measures were listed in Table I and Table II

the highest ICC, followed by PDC alpha and PDC theta, and



HARVY et al.: RELIABILITY OF EEG MEASURES IN DRIVING FATIGUE

2747

TABLE |
RELIABILITY OF THE GLOBAL METRICS OF PLI AND PDC MEASURES

Measure Graph Metric ICC (Sensor Level) ICC (Source Level)
Clustering Coefficient 0.4179 0.3493
Characteristic Path Length 0.0300 0.3366
PLI Theta Global Efficiency 0.0701 0.3505
Local Efficiency 0.2753 0.3570
Clustering Coefficient 0.5763 0.1700
Characteristic Path Length 0.4595 0
PLI Alpha Global Efficiency 0.6039 0.0274
Local Efficiency 0.5970 0.0850
Clustering Coefficient 0 0
Characteristic Path Length 0 0
PLI Beta Global Efficiency 0 0
Local Efficiency 0 0
Clustering Coefficient 0.3470 0
Characteristic Path Length 0.4558 0.1133
PDC Theta Global Efficiency 0.2614 0.0066
Local Efficiency 0.2261 0
Clustering Coefficient 0.3137 0
Characteristic Path Length 0.4802 0.1127
PDC Alpha Global Efficiency 0.1496 0.0326
Local Efficiency 0.2254 0
Clustering Coefficient 0.2467 0
Characteristic Path Length 0.4985 0.0970
PDC Beta Global Efficiency 0.0165 0.0713
Local Efficiency 0.1711 0
Sensor Level Post-Hoc Statistics <10 Source Level Post-Hoc Statistics
SE}
PSD|
Theta
PSD|
Alpha
PSD
Beta[
PLI[
Theta
PLIL
Alpha
PLI
Betal
PDC|
Theta
PDC!
Alphal
PDC|
Betal

SE PSD PSD PSD _PLI PLI PLI PDC PDC PDC P-value
Theta Alpha Beta Theta Alpha Beta Theta Alpha Beta

Fig. 3. The post-hoc statistics between the measures at sensor level.
White boxes indicate the non-significant differences while the colored
boxes refer to the significant differences.

respectively. Among the PLI measures at sensor level, PLI
alpha had the highest ICCs for both global and nodal metrics,
followed by PLI theta. PLI beta had poor ICCs (ICC < 0.2)
for the global and nodal metrics. The graph metrics of PLI

0.05

PLI PDC PDC PDC P-value
Theta Alpha Beta Theta Alpha Beta Theta Alpha Beta

SE _PSD PSD PSD _PLI PLI

Fig. 4. The post-hoc statistics between the measures at source level.
White boxes indicate the non-significant differences while the colored
boxes refer to the significant differences.

alpha at source level had lower ICCs than the respect metrics
at sensor level. The graph metrics of PLI beta showed poor
ICCs while the graph metrics of PLI theta at source level
generally had higher ICCs than the corresponding metrics at
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TABLE Il

RELIABILITY OF THE NODAL METRICS (MEAN + STD) OF PLI AND PDC MEASURES

Measure

Graph Metric

ICC (Sensor Level)

ICC (Source Level)

PLI Theta

Nodal Clustering Coefficient
Nodal Efficiency

0.1663 £ 0.1450
0.1369 £ 0.1428

0.1921 £ 0.1455
0.1657 £ 0.1332

PLI Alpha

Nodal Clustering Coefficient
Nodal Efficiency

0.3149 £ 0.1969
0.3275 £ 0.2188

0.1536 £+ 0.1386
0.1272 £ 0.1312

PLI Beta

Nodal Clustering Coefficient
Nodal Efficiency

0.0459 £ 0.0863
0.0485 £ 0.0847

0.1220 £ 0.1453
0.1301 £ 0.1350

PDC Theta

Nodal Clustering Coefficient
Nodal Efficiency

0.2123 £ 0.1411
0.1009 £ 0.1319

0.1115 £ 0.1293
0.1728 £0.1622

PDC Alpha

Nodal Clustering Coefficient
Nodal Efficiency

0.1937 £ 0.1225
0.1059 £+ 0.1228

0.1168 £0.1376
0.1812 £ 0.1683

PDC Beta

Nodal Clustering Coefficient
Nodal Efficiency

0.1623 £+ 0.1039
0.0987 £ 0.1100

0.1207 £ 0.1437
0.1844 £0.1776

Sensor Level
PSD Theta

PLI Alpha

PLI Alpha Nodal Efficiency

ICC>0.4:
7 (29.17%)

0.1 02 03 04 05
Source Level

0 01 02 03

4f
ICC>0.4:

IcC>04: |
] 10(41.67%)

46 (16.67%)

04 05 06 07 0 01 02 03 04 05 06 07

18 PSD Alpha 0 PDC Beta i PLI Theta Nodal CC
16/ 1CC>0.4: 350 ICC>0.4: 10 1CC>0.4:
14; 7(8.75%) 300l 1060 (16.77%) 3(3.75%)

12 h50
10
200
8
. 150
4 100
2 50
0

0 01 02 03 04 05

0 01

Fig. 5.

02 03 04 05 06 07 0 0.1 02 03 04 05

The ICC distributions of the selected measures for single-region, between-region, and nodal metrics. The top panel and bottom panel

showed the distributions of the measures at sensor and source level respectively. The horizontal axis represents ICC values and the vertical axis
represents the number of occurrences. The red lines in each plot refer to ICC = 0.4 and the percentages indicate the regions / connections having

ICCs higher than 0.4.

sensor level, except for the clustering coefficient. For the PDC
measures, global metrics had higher ICCs at the sensor level
than the metrics at source level except for global efficiency of
PDC beta. The nodal clustering coefficients of PDC measures
were higher at sensor level than the metrics at source level,
while the opposite case occurred for the nodal efficiency of
PDC measures.

The measures with the highest ICCs in different cate-
gories, such as single-region, individual connections, and
nodal metrics, were selected for visualization. The ICC distrib-
utions of the selected measures were depicted in Fig. 5. For the
single-region category, PSD theta and PSD alpha had the high-
est mean ICCs at sensor level and source level respectively.
PLI alpha and PDC beta had the highest mean ICCs for
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PSD Theta

PLI Alpha Nodal Efficiency

0.66

0.12

Fig. 6.  The topographies of ICC values of PSD theta and PLI alpha
(nodal efficiency) at the sensor level.

PLI Alpha
AN 0.70
0.48

Fig. 7. The top 20 connections of PLI alpha having the highest ICC
values at the sensor level.

between-region measures. For the nodal metrics, PLI alpha
(nodal efficiency) and PLI theta (nodal clustering coefficient)
had the highest mean ICCs. In Fig. 5, single-region measures
and nodal metrics had a higher percentage of regions with
ICC > 0.4 at sensor level relative to the measures at source
level while the between-region measures with ICC > 0.4 had
similar percentage of individual connections at sensor level
and source level.

The ICCs of the selected single-region measure, nodal
metric, and between-region measure at the sensor level were
depicted in Fig 6 and Fig 7. In Fig. 6, higher ICCs for PSD
theta were observed in frontal and occipital regions while
higher ICCs for PLI alpha (nodal efficiency) were mainly
found from frontal to occipital regions in the right hemisphere.
In Fig. 7, twenty connections with the highest ICCs were
shown for PLI alpha. The connections were mainly found
between frontal and central regions and between central and
parietal/occipital regions.

The selected measures at source level were depicted in
Fig. 8, Fig. 9, and Fig. 10 for single-region measure, nodal
metric, and between-region measure, respectively. In Fig. 8,
the right frontal, right temporal, right parietal and occipital
regions had higher ICCs for PSD alpha. For PDC beta,
twenty connections with the highest ICCs were shown in
Fig. 9. The connections were observed mainly from right
superior frontal gyrus (medial part) and right anterior cingulate
gyrus to the other parietal, temporal, and occipital regions.
For PLI theta (nodal clustering coefficient), higher ICCs
were found in frontal, temporal, and occipital regions, shown
in Fig. 10.

IV. DISCUSSION

In this study, we comprehensively investigated the relia-
bility of the EEG measures for driving fatigue identifica-
tion. Our study explored the reliability of measure changes,
instead of measure values, to evaluate the consistency of the
changes from alert to fatigue. We estimated the reliability
across two sessions with a long interval in between, instead
of two episodes within a session, since such estimation is
closer to the practical use of fatigue detection which requires
reliable performance across days of operation. We com-
pared the reliability of the single-region measures with the
between-region measures and discussed the results in detail
below.

From the single-region measures at sensor level,
we observed differences in the ICCs of PSD measures
relative to SE. Among the single-region measures, PSD theta
(significant, p<0.05) and PSD alpha (not significant, p>0.05)
had higher mean ICCs relative to SE while PSD beta had
lower mean ICCs (not significant, p>0.05). Previous spectral
EEG study also found that EEG activity in theta band had
the highest correlation coefficients between two episodes of
driving fatigue, followed by that in alpha and beta bands [5].
At source level, the ICCs of PSD alpha were significantly
higher than PSD theta, PSD beta, and SE. In this study,
higher ICCs were found at lower frequency bands. This might
reflect the distinct consistencies of the single-region measures
in particular frequency bands during driving fatigue.

At both sensor level and source level, single-region mea-
sures generally had higher mean ICCs than individual connec-
tions from between-region measures. This observation might
indicate the difference between the regional activities and
inter-regional interactions in identifying brain state changes.
While the consistency of regional activities from alert to
fatigue depends only on the individual regions, the consistency
of inter-regional interactions relies on the changes involving
any two regions. This more complex mechanism in between-
region interactions might be reflected by their overall lower
reliability relative to the reliability of the regional activities.

The ICCs of the measures at sensor level were generally
higher than those at source level, except for PDC measures.
For single-region measures, the higher percentage of regions
with ICC > 0.4 were found at sensor level relative to source
level, suggesting that single-region measures are more reliable
at sensor level compared to those at source level. This finding
is in agreement with the previous statement in a study inves-
tigating the reliability of EEG measures at both sensor and
source levels [22], probably due to the volume conduction
effect at the sensor level which was highly repeatable across
sessions and subjects [24], [37].

At sensor level, PLI measures generally exhibited lower
mean ICCs except for PLI alpha. In the previous study
comparing MEG-based between-region measures [24], phase-
based measures also showed relatively lower reliabilities. The
low ICCs of PLI might be caused by its method of minimizing
the volume conduction effect [24] and relying on subtle prop-
erties of the signals which were harder to estimate and more
variable across subjects [37]. Compared to the other between-
region measures, PLI alpha at sensor level displayed higher
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1

12

Regional Degree

Fig. 9. The top 20 connections of PDC beta having the highest ICC values at the source level.

mean ICCs in individual connections and graph metrics. The
observation agreed with a study investigating the reliabilities
of PLI and weighted PLI, reporting higher global and the
median of inter-regional PLI in alpha band relative to that
in theta and beta bands [25]. Connectivity in alpha band

was also reported as relatively more dominant and reliable
compared to that in the other bands for driving fatigue assess-
ment [12]. The dominance of PLI alpha at sensor level might
suggest the high consistency of the measure in identifying
fatigue.



HARVY et al.: RELIABILITY OF EEG MEASURES IN DRIVING FATIGUE

2751

Fig. 10. The ICCs of PLI theta (nodal clustering coefficient) at the source level.

On the other hand, PDC measures had significantly higher
ICCs (p<0.05) at source level than those at sensor level.
This might signify that the PDC measures at source level are
relevant to identifying fatigue. A previous study had assessed
mental fatigue using PDC measures at the source level, reveal-
ing the less efficient and asymmetrical organization of the
cortical connectivity [36].

In this study, the pattern of the reliability of the measures
at source level might not resemble that at sensor level,
particularly for distinct frequency bands. This observation
might be caused by the variability induced by the source
localization method [37]. In this case, the use of multimodality
such as EEG-fMRI might be more beneficial for reliability
estimation of driving fatigue indicators at sensor level and
source level. A previous study has assessed driving fatigue
using EEG-fNIRS, showing increasing alpha suppression in
the occipital region and increasing HbO in the frontal cortex,
supplementary motor area, primary motor cortex, and parieto-
occipital cortex [38].

Based on the results of the graph metrics, we found that
nodal metrics had relatively high standard deviations. On the
right panel of Fig. 6, regions were observed with high contrast
of high and low ICC values. Similar to individual connections,
the highly varying ICCs might be caused by the complexity
to compute the metrics. In this case, the reliability of nodal
efficiency and clustering coefficient of a node depended on
its changes relative to the changes of all of the other nodes.
Synchronous changes between states with all other nodes
could result in high reliability while asynchronous changes
with one or more nodes could lower the reliability. The global
effect of this dependency with all of the other nodes might

also suggest the ICCs of the global metrics which were
varying within the ICC value ranges of the corresponding
nodal metrics. At sensor level, several global metrics could
achieve higher ICCs relative to the mean ICCs of the single-
region measures, possibly indicating the synchronous changes
among all nodes. The other cause might be that particular
nodes were more relevant for fatigue estimation, which will
be discussed in conjunction with the regions of the other
measures.

Particular regions were observed with higher ICCs com-
pared to the other regions. In PSD theta at sensor level, higher
ICCs were found in frontal and occipital regions as shown on
the left panel of Fig. 6. At source level, right frontal, right
temporal, right parietal and occipital regions of PSD alpha
displayed higher ICCs relative to the other regions, depicted
in Fig. 8. Based on the nodal metrics, regions from right
frontal to right occipital showed high ICC values at sensor
level for PLI alpha (nodal efficiency), shown on the right
panel of Fig. 6. Frontal, temporal, and occipital regions had
higher ICC values relative to the other regions for PLI theta
(nodal clustering coefficient) at source level, shown in Fig. 10.
Based on the results, higher ICCs were mainly found in frontal
and occipital regions. In the previous studies, power increases
during fatigue have been reported in occipital region [11],
[39], [40], [41] and in frontal region [10], [11], [42], [39].
These regions might be more sensitive to induced fatigue,
involved in the pathophysiology of chronic fatigue [43] and
cognitive control [44], [45] (frontal) as well as visual processes
(occipital).

For the PLI alpha at sensor level (see Fig. 7), the connec-
tions having high ICCs were observed between frontal and
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central and between central and parietal/occipital regions. The
previous study using transfer entropy also revealed connec-
tivity changes around central and parietal regions during a
transition state from high to low vigilance level [44]. These
high ICCs of connections involving the central region might
explain the importance of sensorimotor regions (central) in
relation to the visual (occipital) and cognitive control (frontal)
processing during fatigue [44], [45].

For PDC beta at source level, connections from right frontal
to right occipital regions displayed high ICC values. In the
previous study using PDC at the source level, an asymmetrical
pattern of connectivity was observed where the right hemi-
spheric connectivity was preserved during fatigue [36]. The
dominance of right hemispheric activity might be associated
with sustained visual attention [46], [47].

To conclude, this study presented the reliability of the
proposed measure changes between alert and fatigue states.
The reliability of single-region and between-region measures
were computed at sensor level and source level. At both sensor
level and source level, single-region measures had higher
mean ICCs than the individual connections of between-region
measures. Nodal metrics displayed highly varying ICCs, sug-
gesting the dependence of a region on the changes of the
other regions. The global effect of this interdependency was
reflected in the ICCs of the global metrics, varying within
the ICC range of the respective nodal metrics. In this study,
between-region measures showed high reliability for PLI alpha
(sensor level) and PDC measures (source level) while single-
region measures showed high reliability for PSD at lower
frequency bands (theta and alpha). All in all, the reliability of
measures during driving reveals their capability of consistently
identifying driving fatigue. Such reliability across sessions
with a long interval is important for the selection of measures
in real-time fatigue monitoring.
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