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Ultra-Robust Real-Time Estimation
of Gait Phase

Mohammad Shushtari , Hannah Dinovitzer, Jiacheng Weng , and Arash Arami , Member, IEEE

Abstract— An ultra-robust accurate gait phase estima-
tor is developed by training a time-delay neural network
(D67) on data collected from the hip and knee joint angles
of 14 participants during treadmill and overground walk-
ing. Collected data include normal gait at speeds ranging
from 0.1m/s to 1.9m/s and conditions such as long stride,
short stride, asymmetric walking, stop-start, and abrupt
speed changes. Spatial analysis of our method indicates
an average RMSE of 1.74±0.23% and 2.35±0.52% in gait
phase estimation of test participants in the treadmill and
overground walking, respectively. The temporal analysis
reveals that D67 detects heel-strike events with an average
MAE of 1.70±0.54% and 2.74±0.92% of step duration on
test participants in the treadmill and overground walking,
respectively. Both spatial and temporal performances are
uniform across participants and gait conditions. Further
analyses indicate the robustness of the D67 to smooth and
abrupt speed changes, limping, variation of stride length,
and sudden start or stop of walking. The performance of
the D67 is also compared to the state-of-the-art techniques
confirming the superior and comparable performance of
the D67 to techniques without and with a ground contact
sensor, respectively. The estimator is finally tested on a par-
ticipant walking with an active exoskeleton, demonstrating
the robustness of D67 in interaction with an exoskeleton
without being trained on any data from the test subject with
or without an exoskeleton.

Index Terms— Gait phase, gait variability, pathological
gait, rehabilitation, exoskeleton.

I. INTRODUCTION

MOBILITY impairments are of the main challenges
facing older adults as well as individuals suffering from
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stroke, or neurological conditions such as spinal cord injury,
Parkinson’s disease and multiple sclerosis. It is demonstrated
that gait training in the early stages of recovery can help
mitigate post-stroke motor deficits by forming new neural
pathways [1], [2], [3]. Among the available solutions in this
regard, lower limb exoskeletons offer high-intensity training
sessions that can boost the neuromotor control recovery of
affected individuals [4], [5]. In addition, these devices can
prevent muscle atrophy, and improve the quality of life for
people with motor deficits [6].

Control strategies are crucial to the efficacy of assistive
devices [7]. Imposing a predefined trajectory using a trajectory
controller can suppress the user’s motor contributions which
is shown to be disruptive to the motor rehabilitation of indi-
viduals who can still partially contribute to their motion [8].
A suitable strategy, therefore, must provide assistance as
needed by guiding the motion while letting the user walk at a
self-selected pace and pattern.

It is not easily possible to accomplish this goal with
impedance control when a time-dependent reference trajectory
is involved, since a trade-off has to be made between the
spatial guidance and the temporal freedom [9]. Consequently,
spatiotemporal decoupling is the key for an efficient assist-as-
needed (AAN) control scheme, in which every leg needs its
own reference trajectory independent of time. In this context,
the gait phase is a suitable replacement for time [10], since
it is monotonically increasing, reflecting gait events like heel-
strike, and its derivative is proportional to the cadence.

Gait phase estimation has been widely used in control of
assistive technologies such as lower-limb exoskeletons [11],
[12], also in gait neuromechanical modeling and analysis such
as joint impedance identification [13], [14] or estimation of
gait spatiotemporal parameters [15].

Accurate real-time gait phase estimation is challenging,
particularly, in case of pathological gait. Obtaining an accurate
gait phase estimate is largely dependent on predicting the next
gait event’s timing. Typically, the gait phase is estimated as
the ratio of the elapsed time from the latest heel-strike over
the expected stride duration [16], [17]. As the estimated stride
duration is updated at the end of each step, this method is only
appropriate for conditions with low gait variability.

To address this issue, gait phase has been redefined and
usually estimated according to joint angles or the body motion.
In [18] and [19], for example, the phase-shift between the hip
joint angle and its integral is interpreted as the gait phase.
In [20], [21], [22], and [23], a cluster of adaptive oscillators
(AO) is employed to lock to the hip angle phase and frequency
or variation of leg’s muscle shapes. Alternatively, a Kalman
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Fig. 1. Experimental setup: a participant walking on the treadmill
(A) without and (B) with an exoskeleton. Participants kinematics are
recorded using the motion capture and motor encoders during without
and with exoskeleton walking, respectively. The ground reaction forces
are collected by separate load cells under each belt of the treadmill. The
participant has permitted usage of their photo in this paper.

filter (KF) is used in [12] instead of AOs to estimate the gait
phase. In these methods, gait speed changes are continuously
reflected in the gait phase, however, with some lag due to the
AO or the KF convergence dynamics. A solution is to reset the
estimated gait phase to zero at each heel-strike, detected using
a contact sensor. Such instantaneous correction of the gait
phase error, leads to discontinuous estimation. The phase error
is, therefore, gradually corrected to maintain the smoothness
of the gait phase [21].

A more accurate gait phase estimation, nevertheless,
requires more joints to be involved in the estimation process.
As an example, the gait phase is estimated in [24] by finding
a point on the hip-knee reference path that has the minimum
distance from the current hip-knee coordinate. To include
more kinematic features (e.g., joint velocity or body segments
acceleration) data-driven models are widely used as they can
learn the mapping from multi-dimensional kinematic space
to the gait phase. A Robust estimator, on the other hand,
is expected to provide an accurate mapping in a wide range
of gait speeds, patterns, conditions, and user characteristics.
Artificial Neural Networks (ANN) have the capability of
learning such complex mapping.

In [25], for example, an ANN is used to estimate the gait
phase at different speeds from the hip joint angle and trunk and
thigh inertial measurement units (IMUs) data. Alternatively,
long-short-term-memory (LSTM) networks are used to learn
the gait phase from the IMU data [26], [27], [28]. Addi-
tionally, [29] uses a convolutional neural network (CNN) to
estimate the gait phase while accounting for the variable gait
patterns associated with stairways and ramps.

Using data-driven models, the problem of designing a robust
and accurate gait phase estimator is turned into the problem
of collecting a rich data set that enables the model to capture
a generalizable yet accurate mapping between input data and
the gait phase. The need for a specially designed and trained
gait phase estimator is even more critical for gait training
exoskeletons because they must be capable of assisting a broad
spectrum of pathological gait patterns. The natural conflict

Fig. 2. The speed profile during the treadmill walking session. The right
and left belts share the same speed profiles except during the asymmetric
walking condition.

in physical human-exoskeleton interaction also require extra
robustness. Therefore, acceleration or velocity data, which
have a higher sensitivity to emerging conflicts, have to be
avoided as input features making the gait phase estimation
even more difficult.

Currently, none of the existing studies are designed to
provide accurate phase estimation during abnormal or patho-
logical gait. They are also designed specific to a certain
exoskeletons or prosthetic device. In this work, we present a
real-time gait phase estimator that only uses the hip and knee
angles as inputs and is specifically trained to maintain its per-
formance on new participants without retraining and regardless
of the assistive strategy, gait speed, gait pattern abnormalities
such as asymmetry, during treadmill or overground walking.
The proposed method is further compared to the state of the art
techniques and tested as the core of an impedance controller
implemented on an exoskeleton.

II. METHODS AND MATERIAL

A. Experimental Setup

Measurements of lower limb kinematics were carried out
with a motion capture system that included eight Vero
Cameras (Vicon, UK). The motion of the lower limbs was
calibrated, labeled, and tracked using 16 reflective markers
according to the Plug-In Gait convention [30]. An instru-
mented split-belt treadmill (Bertec, US), capable of measuring
ground reaction forces (GRF) under each foot, was used to
monitor and control the speed of each belt (Fig.1A). The
treadmill and the motion capture data were synchronized and
recorded at 1KHz and 100Hz, respectively. A lower limb
exoskeleton (Indigo, Parker Hannifin, USA) with actuated
hip and knee joints was also used, worn by an able-bodied
individual, to test the performance of the gait phase estimator
in the presence of an exoskeleton. The exoskeleton sensory
data as well as control commands are transmitted at 200Hz.

B. Experimental Protocol

Fourteen participants (age: 28±4 years, body mass:
75.2±17.6 kg, height: 176.6±6.8 cm, 7 females and 7 males)
with no known musculoskeletal impairments participated in
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Fig. 3. The TCN network consists of six residual blocks, each including
two dilated convolutional layers with the same dilation factor. Instanta-
neous joint angles (xt) are fed into the first residual block while the output
of the last residual block is fed into a linear layer to generate the final gait
phase predictions (φt). The dropout rate is set to 0.1 for all residual blocks.
Kernel size of 3 is used for all dilated causal convolutional layers.

this study. All participants provided informed consent prior
to the experiment. The study protocol and procedures were
approved by the University of Waterloo Clinical Research
Ethics Committee (ORE#41794) and conformed with the
Declaration of Helsinki.

The experiment involved treadmill and overground ses-
sions. The treadmill session consisted of walking without
the help of handrails in 8 different conditions for a total
of 13 minutes (see Fig. 2). The first four conditions of the
test consisted of walking at a constant speed of 0.8 m/s
where the participants were asked to walk normally, with
short strides, with long strides, and then again normally
(for 45 seconds each). The fifth condition of the test included
a speed sweep where the treadmill speed increased from
0.1m/s to 1.9m/s with a constant acceleration of 0.02m/s2,
immediately followed by a constant speed decrease back to
0.1m/s at the same rate. The sixth condition involved speed
jumps between 0.4m/s, 0.8m/s, and 1.2m/s. The acceleration
of the treadmill during these jumps was 0.4m/s2. The seventh
condition involved asymmetrical walking. Gait asymmetry
was imposed by driving the treadmill belts with different
speeds, up to a speed difference of 0.4m/s. As one of the
most prominent asymmetric features observed in post-stroke
patients, we used the swing time ratio (tlonger/tshorter) for
validation of the protocol [31], [32]. The speed difference
between treadmill belts was chosen to have a maximum swing
time ratio of 1.41±0.19 on average for all participants falling
within the reported average values of 1.24 [32] and 1.44 [31].
The eighth and final condition involved repetitions of start
walking, at a speed of 0.8m/s, and stop walking.

To check the sensitivity of the developed gait phase esti-
mator to the exoskeleton dynamics and its controller effect,
one participant repeated the same experiment two more times
while wearing the exoskeleton; once in the Passive mode
(controller was off) and once in the Active mode (controller
was on). In the Active mode, the exoskeleton joints were
controlled using the trained gait phase estimator embedded

Fig. 4. Spatial (eS) and Temporal (eT) error according to the estimated
and target gait phase profiles. The temporal error (eT) is computed at
the nth heel-strike event.

in a path controller [9] with the following joint stiffness (K )
and damping (D) coefficients: KHip = 300 N.m.rad−1,
DHip = 45 N.m.s.rad−1, KKnee = 65 N.m.rad−1, DKnee =
25 N.m.s.rad−1. The same impedance values were used for
both legs. The reference path was taken from [10].

The overground session consisted of walking on
a 10-meter straight path, three times with the following
conditions: normal walking, slow walking, fast walking, short
strides, and long strides. The participants were instructed to
walk at a self-selected pace and adjust as they see fit for the
trials at faster and slower speeds.

C. Training and Evaluation of the Gait Phase Estimator

Collected data, including joint angles, marker positions, and
GRF were filtered using a Woltring filter [33]. A Boolean
stance flag, S(t), was then computed as

S(t) = sgn(max(FG R(t) − Fth, 0)) (1)

where FG R(t) ≥ 0 is the vertical GRF and Fth is a threshold
set to 0.01 of each participant’s weight. The heel-strike event
is then detected from the rising edge of the stance flag.
The heel-strike events in overground walking, when GRF was
not measured, was extracted by applying the Foot Velocity
Algorithm (FVA) [34] on the foot marker data. The target
gait phase ( y) is then determined according to [10] as a
monotonically increasing line going from 0 to 1 between
two consecutive heel-strikes. The target gait phase values are
then transformed to an extended description as φ = [φ1, φ2,
φ3, φ4]T = [sin(2πyR), cos(2πyR), sin(2πyL), cos(2πyL)]T

before being utilized in the training of gait phase estima-
tor. Such transformation avoids the sharp gait phase tran-
sition in the 0 to 1 representation which is easier for
a data-driven model, e.g., a neural network, to represent.
A time-delay neural network [35] with 67 input delays
(D67 network) was trained separately using the scaled con-
jugate gradient backpropagation algorithm [36] to learn the
mapping from both legs’ hip and knee joint angles (input:
x = [θHip,R, θKnee,R, θHip,L, θKnee,L ]T ) to the extended target
gait phase (φ) by minimizing a loss function of the mean
square error (MSE) between the estimated and the target
extended gait phase. We note that our model is not sensitive
to the method by which the joint angles are computed as long
as they are accurate enough. For example, motor encoders are
later used instead of motion capture to measure joint angle in
an exoskeleton-assisted walking scenario(Section III-B). The
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Fig. 5. (A) Spatial Accuracy comparison between the D67, TCN, and
D5 networks. The circles in each pair of network and condition indicate
the mean of spatial RMSE across all gait cycles of each participant in
all conditions. The average spatial RMSE across the subjects is also
represented with the respective bar height. Similarly, (B) compares the
temporal MAE of the three networks in treadmill and overground walking
conditions. The comparisons denoted by asterisks show significant
difference between the average performance of the compared networks.
The p-value is smaller than 0.001 unless specified.

D67 network consisted of three hidden layers of 30, 20, and
10 neurons with Relu activation functions. The input data to
the network is X = [x, x1, . . . , x67] where xn is the joint
angles delayed by dn = ∑n

i=1 1 + �1.1i/15� samples where
� � is the floor operator. This way, the sampling density is
decreased for older samples enabling the network to increase
its memory horizon up to 473 samples (2.365s). For example,
in a normal gait with 1.23s step time duration, the first
50 inputs of the network are sampled from the last half-step-
time, while only 8 inputs are sampled with more than a step-
time delay.

Besides the D67 network, we constructed two baseline
networks. The first one is a Temporal Convolutional Net-
work (TCN), i.e. a modern convolutional architecture capa-
ble of capturing long-term dependency of the input similar
to recurrent networks while maintaining high computational
efficiency of the convolutional operations [37]. Our TCN
formulation and network hyper-parameters can be found in
Fig. 3. Instantaneous joint angles (x(t)) are used as an input to
the TCN while the dilation factors are increased exponentially
across the residual blocks to ensure wide receptive fields. The
number of residual blocks is chosen such that the receptive
field of the neurons in the last dilated causal convolutional
layer covers roughly the period of one full gait cycle. The
second baseline network is a time-delay neural network
with two hidden layers of 5 neurons with 5 input delays
(D5 network). Compared to the previous studies such
as [29], [38] which have a 0.3s of sampling buffer, the
D5 network has only a 0.025s of sampling buffer, serving as
a model with minimum complexity to evaluate if employing
more complex network architectures is worth the performance
improvement.

We used leave-one-subject-out cross validation to test the
neural networks’ performance on each subject (training on

TABLE I
COMPARISON OF D67, TCN, AND D5 NETWORK PERFORMANCES

13 subjects’ data, testing on one, and repeating the process for
all fourteen subjects). Training was performed using treadmill
and overground walking data of twelve subjects for updating
the neural network weights, while training stop condition was
checked using one randomly selected subject. Walking data
with exoskeleton are not included in training or validation
but are kept apart to evaluate the the estimated gait phase
sensitivity to the possible effects of the exoskeleton dynamics
and controller. The network estimate (φ̂) is then transformed
to the vector of left and right gait phases ( ŷ) using

ŷ = 0.5 + 1

2π
[atan2(φ̂1, φ̂2), atan2(φ̂3, φ̂4)]T . (2)

The instantaneous spatial gait phase estimation error is defined
as eS(t) = y(t) − ŷ(t). The spatial root mean square error
(RMSE) of gait phase estimation over each gait cycle is then
computed to compare the spatial performance of the networks.
The temporal error is also defined as eT [n] = Tn − T̂n where
Tn and T̂n are the nth heel-strike time detected from target
and estimated gait phase, respectively. eT [n] in then divided
by the duration of nth stride (separately for the left and the
right legs) to normalize the temporal error across different
conditions (e.g., long or short strides). Temporal mean absolute
error (MAE) is used as a compact measure for between-
network comparisons. The statistical differences are identified
by applying a two-sample Kolmogrov-Smirinov test with a
significance level set to 0.05 with a Bonferroni correction
being applied when comparing the three networks.

III. RESULTS AND DISCUSSION

The overall spatial and temporal performances of D67,
TCN, and D5 networks on the test participants across all trials
are compared in Fig 5 and Table I. The D67 network outper-
forms the TCN network with 32.3% and 39.3% smaller spatial
and temporal errors during the treadmill session, respectively.
The D67 also exhibits 24.9% smaller temporal MAE in
overground walking. The spatial performance, however, is not
significantly different between the D67 and the TCN networks
during the overground session. D67 network significantly out-
performs the D5 spatially and temporally in treadmill walking
and spatially in overground walking. The similar observation
applies to the TCN except for the temporal performance
during the overground walking. In all cases, D67 and TCN
have a more uniform spatial and temporal performance across
all participants, confirming the generalization of the trained
models. D5 performance, in contrast, has greater variations,



SHUSHTARI et al.: ULTRA-ROBUST REAL-TIME ESTIMATION OF GAIT PHASE 2797

Fig. 6. The performance of the D67 network in treadmill walking gait phase estimation. (A) The average estimated gait phase profile with respect
to the target gait phase. Gait phase estimation standard deviation is shaded in red. (B) The spatial RMSE of the estimated gait phase across the
strides in each condition made by all participants. The average RMSE of gait phase estimation at each condition is represented by the respective
bar height. (C) The estimated gait phase temporal error across all participants in each condition. The mean and standard deviation of the temporal
error are depicted by dashed lines and bold areas, respectively.

particularly, in terms of temporal MAE implying the lack of
expressivity in D5.

A. Detailed Performance Analysis

We now focus on D67 network for more detailed analysis of
gait phase estimation performance across different conditions
in both treadmill and overground walking.

1) Treadmill Walking: Fig.6.A shows the average estimated
gait phase spatial profile with respect to the target gait phase
across all gait cycles in different conditions in treadmill
walking. The coefficient of determination for the estimated
gait phase is greater than 0.999 that along with its negligible
standard deviation confirm the accuracy and generalization of
the D67 network.

The spatial performance across different experiment condi-
tion is further investigated in Fig.6.B where the mean Spatial
RMSE is plotted for each participant along with the total
mean Spatial RMSE across all participants in each condition.
The standard deviation of mean performance across all con-
ditions is 0.12%, indicating consistent generalization of the
D67 model over experiment conditions.

Fig.6.C illustrates the distribution of the temporal error
across experiment conditions. The D67 has accurately detected
heel-strike events on average 0.85% earlier (e.g., about 10ms
earlier in a stride with duration of 1.2s). The leading temporal
estimation is, however, not consistent as the multimodal distri-
bution of temporal error reveals that the estimated heel-strike
event lags behind the actual event rather than leading for a
sub-group of participants and conditions. The magnitude of the
temporal error is, nevertheless, consistently small in treadmill
and overground sessions across all experiment conditions
showing the accuracy of D67 in heel-strike detection based
on the hip and knee joint angles.

2) Overground Walking: The average estimated gait phase
profile across all gait cycles in different conditions during
overground walking is depicted in Fig.7.A showing a slight

increase in standard deviation compared to the treadmill walk-
ing. Fig.7.B provides further details on the spatial performance
for each participant across different conditions, indicating the
D67 network’s consistent performance.

In contrast to the treadmill session, the heel-strike detection
takes place with a small but consistent lag during the over-
ground walking. Fig.7.C illustrates that the heel-strike event
is detected -1.83% later than the actual event (e.g., about
21ms later with a 1.2s stride time). This implies that the
controlled condition in treadmill walking enables the model
to better capture the gait dynamics and therefore, predict
the heel-strike accurately. Moreover, the heel-strike events
are reflected in the target gait phase with higher precision
during treadmill walking than the overground walking due
to the higher accuracy of force-based heel-strike detection
than the marker-based method. Henceforth, the D67 network
has probably learnt the heel-strike timings more precisely in
treadmill walking.

B. Gait Phase Estimation in Presence of an Exoskeleton

In contrast to the previous tests, we used the joint angles
computed by the exoskeleton motor encoders as the gait
phase estimator inputs. The spatial performance of the D67
in presence of the exoskeleton in the Passive mode and
Active mode in treadmill walking is shown in Fig.8.A,B,
respectively. The D67 exhibits a slightly smaller spatial error
(1.67±0.67%) compared to the treadmill session without the
exoskeleton. The exoskeleton regularizes gait in the Passive
mode due to its passive dynamics (i.e., inertia and friction)
which causes the human lower limb motion to be damped
and, therefore, restricts the kinematic variability. In the Active
mode, in contrast, the spatial error increases by almost 100%
and reaches to 3.49±1.06% which is still sufficiently accurate
for the exoskeleton controller to provide assistance properly
in all experiment conditions. The decrease in the gait phase
estimation performance stems from the human-exoskeleton



2798 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 7. The performance of the D67 network in overground walking gait phase estimation. Figure description is the same as Fig. 6

occasional conflicts in leading the motion since the exoskele-
ton assistance was not always aligned with the user inten-
tion. These conflicts emerge as excessive interaction force
which to some extent distorts the gait pattern and, therefore,
worsen the gait phase estimation performance. The overall
estimated gait phase profile is illustrated in Fig. 8.A. A slight
distortion is noticeable in the overall gait phase both in the
Passive and Active modes compared to treadmill walking
without exoskeleton. This is because of the exoskeleton effect
on gait pattern. The gait phase profile in the Active mode
also demonstrates a higher standard deviation due to the
human-exoskeleton conflicts. Furthermore, the temporal error
distribution in Fig.8.C exhibits greater standard deviation in
the Active exoskeleton mode compared to the Passive mode
and no exoskeleton conditions. The Spatial distortion and the
higher temporal error standard deviation issues in the Active
exoskeleton mode could be alleviated by incorporating the data
from walking in presence of exoskeleton in the training. This
is, however, not suggested as it reduces the generalizability
and robustness of the model to different exoskeleton structures
and controller designs (e.g., reference trajectory and controller
impedance).

C. Robustness Analysis

To compare the robustness of the trained gait phase esti-
mators, we scrutinized the gait phase estimation in the speed
jump, asymmetric gait, and stop and go conditions.

1) Abrupt Speed Change: We considered a single stride in
the speed jump condition where the treadmill speed abruptly
changes from 0.8m/s to 1.2m/s. Fig.9.A shows the estimated
gait phase profiles averaged over all participants. While D67
and TCN network demonstrate a negligible standard deviation,
the D5 exhibits an unstable gait phase estimation facing the
sudden change of the treadmill speed which has led to a
standard deviation more than 20%. This analysis reveals that
D5 network is of no use in daily life where an exoskeleton
user frequently decides to switch their gait speed. According
to the overall results represented in Fig.5, however, the D5
network seems to have an acceptable performance. It even
seems to be a better option for a practical purpose where
lower computational complexity and simple implementation

is an advantage. Nevertheless, the recent robustness analysis
shows that the overall performance measures such as RMSE,
which is widely used in the literature, are not sufficient for
validating the performance of a gait phase estimator.

Robustness of D67 network is further investigated in strides
when the treadmill speed has jumped back and forth between
0.4m/s, 0.8m/s, and 1.2m/s in Fig.9.B. The estimated gait
phase remained smooth for all of the participants in all cases.
The highest gait phase variation is observed in case of 0.4m/s
to 0.8m/s speed increase. In general, the gait phase estimation
is more variable in the case of abrupt increase in the speed
rather than abrupt decrease.

2) Asymmetric Gait: Fig.(10) shows the performance of
D67 in asymmetric gait condition. The spatial and temporal
errors are always less than 4.81% and 6.16%, respectively,
indicating stability and robustness of the estimation. As the
speed difference between treadmill belts increases, the spatial
error in the phase estimation of both legs increases. This is
however, more stressed for the left leg during the right leg
limping interval. The opposite is also valid during the left leg
limping interval.

3) Stop and Start: Fig.(11) Shows the estimated gait phase
of participant #5 with and without exoskeleton as the treadmill
stops and start running again. The estimated gait phase during
walking without exoskeleton and with the exoskeleton in
Passive mode smoothly converges to a constant level when
the treadmill stops and maintains that level until the treadmill
starts running again. In the Active exoskeleton mode, the
estimated gait phase slope decreases gradually as the treadmill
stops. During the stop interval, however, the estimator exhibits
some oscillations on the gait phase which are due to the
controller design rather than the sensitivity of the gait phase
estimator. With a fixed gait phase in the stop interval, the
exoskeleton imposes a fixed posture and therefore, fights
against the natural human motions (such as shifting the body
load between legs). The resultant conflict, as mentioned earlier,
disturbs the estimated gait phase.

D. Comparison With the State of the Art

The performance of the D67 network is further compared
to the performance of other gait phase estimators reported
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Fig. 8. The comparison between the temporal and spatial performance
of the D67 network in treadmill walking with the Passive and Active
exoskeleton on participant #5. (A) Overall average gait phase profiles
in Passive and Active modes across experiment conditions. The shaded
area shows the standard deviation. (B) The spatial performance across
the experiment conditions in the Active and Passive control modes.
(C) The temporal error distribution across all conditions in case of the
Passive and Active exoskeletons. The mean and standard deviation of
temporal errors are denoted by dashed lines and dark shaded area under
the curves, respectively.

Fig. 9. (A) Comparison of D67, D5, and TCN networks estimated
gait phase mean and standard deviation (denoted by shaded area)
as the treadmill speed jumped from 0.8 to 1.2m/s averaged across all
participants. (B) Detailed performance of the D67 network gait phase
estimation in different speed jump scenarios. Each gray line represents
one of the subjects while the blue line shows the average gait phase
profile.

in literature for constant speed walking, speed jumps, and
speed sweep on treadmill walking as well as overground
walking at self-selected speed. We used three time-based
gait phase estimators (TBEs) developed by Lenzi et al. [16],

Fig. 10. D67 spatial and temporal performance for each step of the
right and left legs during asymmetric walking. The blue and red circles
show the performance at each step while the corresponding curve show
the smoothed performance. The intervals during which the right and left
legs are severely limping are denoted by blue and red shaded areas,
respectively.

Fig. 11. D67 gait phase estimates when the treadmill belts have stopped
and start moving again for participant #5 without exoskeleton and with the
exoskeleton in the Passive and Active mode, respectively. The shaded
area shows the interval when the treadmill belts were fully stopped.

Ferris et al. [17], and Kang et al. [25] as baselines along with
the following methods compared to the D67

• Kang(NN): A neural network (reffered to as the inde-
pendent model) trained for gait phase estimation on new
participant similar to D67. The model is trained on a
range of speeds between 0.6 and 1m/s, which includes
steady state walking at 0.8m/s as well as speed jumps
with accelerations of 0.05m/s2.

• Kang(CNN): Later in [29], Kang et at. trained a CNN for
gait phase estimation for level ground and ramp walking
as well as stair ascend and descend.

• Yan(AO): An AO-based gait phase estimator developed
by Yan et al. in [21] that uses foot contact sensors for
phase error correction. D67 is compared to the vGRF
variation of their method as it has the similar definition
for gait phase. Yan(AO), Lenzi(TBE), and Ferris(TBE)
methods are tested in this work during steady state
walking at 0.67, 0.94, and 1.22m/s. They are additionally
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Fig. 12. Comparison of D67 gait phase estimator performance with approaches reported in the literature for (A) fixed speed, (B) speed jumps, and
(C) speed sweep in treadmill walking as well as overground walking at (D) preferred speed and (E) variable speeds.

tested during speed jumps between the aforementioned
speeds with an acceleration of 0.028m/s2.

• Thatte(GP-EKF): A gait phase estimator developed
by Thatte et al. [12] using Gaussian Process extended
Kalman filter (GP-EKF). This method is tested on tread-
mill walking with a sinusoidal speed profile varying
between 0.4 and 1.2m/s with a 20s period.

In fixed speed treadmill walking (Fig.12.A) the D67 has
an RMSE of 1.82±0.41% for steady state walking at 0.8m/s
outperforming all the competents but the Lenzi(TBE) which
has a slightly better performance. The well-controlled gait
conditions during fixed-speed treadmill walking causes lower
variation in step duration and gait pattern allowing TB methods
to provide accurate estimations. Besides Kang(NN), other
methods also rely on heel-strike detection sensors. D67,
in contrast, uses only joint angles and still provides the second
best accuracy.

Fig.12.B shows the comparison in speed jump condition
on treadmill. Kang(NN) and Kang(TBE) is tested on speed
jumps between 0.6 and 1m/s with an unreported acceleration.
The D67 network, with an RMSE of 1.5±0.42%, outperforms
all approaches despite not using any contact sensors.

The comparison in speed sweep condition is illustrated in
Fig.12.C. The D67 network resulted in RMSE of 1.6±0.42%
while the Thatte (GP-EKF) method obtained 4±0.55% RMSE
during the speed sweep experiment. For a more realistic
comparison, however, both approaches should be tested on
the same condition.

There is no comparable gait phase estimator presented
in the literature with reported performance on asymmetric
gait. As a close study, however, we also compared our
method’s performance with Thatte (GP-EKF) for walking
with one prosthetic leg. As the other leg is intact in that
study, some asymmetric features are presented in the gait.
Our method resulted in RMSE of 1.69±0.33% and Thatte
(GP-EKF) resulted in RMSE of 4±0.55% RMSE. For a
more realistic comparison, however, both approaches should
be tested under the same conditions.

With an RMSE of 2.11±0.41%, the D67 outperforms the
Kang(CNN) with a RMSE of 3.5±1.5%, the YAN(AO) with
performance of 4.25±0.47%, and the rest of the time-based
methods in overground walking with preferred speed (see
Fig.12.D). The D67 maintains its edge over the YAN(AO) and
the time-based methods in overground walking with variable
speed with an average RMSE of 2.31±0.76% as illustrated
in Fig.12.E.

IV. CONCLUSION

In this study, a time-delay neural network (D67) is trained
using hip and knee joint angles collected from 14 partici-
pants walking on a treadmill and overground to develop an
accurate and robust gait phase estimator. Several types of
gait data were collected in the study including normal gait
at speeds between 0.1m/s and 1.9m/s and conditions such
as long stride, short stride, asymmetric walking, stop-start,
and abrupt speed changes. On average, our model’s RMSE
for gait phase estimation on treadmill walking and over-
ground walking was 1.74±0.23%, and 2.35±0.52%, respec-
tively. The temporal analysis also revealed that D67 was
able to detect heel-strike events with an average MAE of
1.70±0.54% and 2.74±0.92% for treadmill and overground
walking, respectively. Across participants and gait conditions,
spatial and temporal performance is found to be consistent.
Additional analyses demonstrated the robustness of the D67
to sudden changes in walking speed, limping, changing stride
length, and sudden stops or halts of walking. Furthermore,
this study tested the D67’s performance with an active
exoskeleton to determine its reliability in interaction with
such a device. Finally the D67 model exhibits comparable
or superior performance to the state-of-the-art gait phase
estimators.

Our gait phase estimator is designed toward enhancing
comfort and performance of exoskeleton-assisted walking for
impaired individuals. Collected dateset is, however, obtained
from healthy people simulating some pathological gait pat-
terns which does not fully represent the complexity and
variability of an impaired gait. Further evaluation is, there-
fore, required on individuals with impaired gait to further
assess the robustness of the proposed method. Inclusion
of such pathological walking data in training process as
well as implementing our gait phase estimator in differ-
ent assist-as-needed controllers are considered as the future
steps.
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