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Abstract— Numerous state-of-the-art solutions for neural
speech decoding and synthesis incorporate deep learn-
ing into the processing pipeline. These models are typ-
ically opaque and can require significant computational
resources for training and execution. A deep learning archi-
tecture is presented that learns input bandpass filters that
capture task-relevant spectral features directly from data.
Incorporating such explainable feature extraction into the
model furthers the goal of creating end-to-end architectures
that enable automated subject-specific parameter tuning
while yielding an interpretable result. The model is imple-
mented using intracranial brain data collected during a
speech task. Using raw, unprocessed timesamples, the
model detects the presence of speech at every timesam-
ple in a causal manner, suitable for online application.
Model performance is comparable or superior to existing
approaches that require substantial signal preprocessing
and the learned frequency bands were found to converge to
ranges that are supported by previous studies.

Index Terms— Brain-Computer Interfaces (BCIs), deep
learning, electroencephalography.

I. INTRODUCTION

BRAIN-COMPUTER Interfaces (BCIs) hold the potential
for a direct connection to thoughts and intentions, as well

as direct neural control of external devices [1]. Due to superior
spatial resolution and spectral bandwidth, invasive BCIs have
advantages over non-invasive BCIs for more intricate direct
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neural control applications. Electrocorticography (ECoG) is
an invasive measurement of the electrical potentials generated
from the neocortex of the brain [2]. ECoG signals have been
shown to successfully control the movement of an upper-limb
neuroprosthetic [3] or typing interface [4], as well as decoding
speech processes [5].

In the last decade, neural speech decoding systems have
made significant progress, including describing brain regions
and mechanisms involved in speech, predicting words or
phonemes, and translating neural signals to articulatory kine-
matics, text, or directly to speech waveforms [6], [7], [8], [9],
[10], [11], [12]. Recent efforts have progressed to real-time
decoding and synthesis of overt and imagined speech [13],
[14], [15], [16], [17], [18]. While these studies primarily
focus on broadband gamma activity (∼70-250 Hz), recent
studies have shown that traditional lower-band frequencies
(∼0-50 Hz) also contain relevant and complementary infor-
mation for speech decoding [19].

Deep learning has been demonstrated to be an effective
method for decoding speech from ECoG signals and its
inclusion in the decoding and synthesis pipeline has increased
in recent years [12], [16], [20], [21]. Although an end-to-
end architecture may eventually be wholly effective with
sufficient training data, some current approaches have adopted
a modular scheme with several sequential component models,
each configured for a specific aspect of the speech decoding
process [15], [16], [22].

Regardless of the specific approach, the overarching goal is
to decode imagined or attempted speech directly from brain
signals to provide an alternate communication channel for
those who have lost the ability to speak. Here, the goal is
not to maximize a metric for the quality of speech decoding.
Instead, the approach is conceived from the perspective of
identifying brain activity associated with intervals of intended
speech output, with the ultimate objective of reliably detecting
activity associated with imagined speech.

The present work introduces a component model,
SincIEEG, based on a convolutional neural network (CNN)
architecture developed for the task of speech activity detec-
tion [23]. The model is designed as a gateway, constantly
monitoring brain activity to identify the segments pertinent
to speech production. These detected segments can then be
sent to downstream models for subsequent speech decoding
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and synthesis. SincIEEG, unlike a traditional CNN, learns
a set of bandpass filter coefficients at its input layer. This
provides several advantages over a traditional CNN since the
number of required model parameters is significantly reduced
by comparison, making it computationally efficient in terms
of training and implementation. This compactness allows
for flexibility without increasing the optimization problem.
Moreover, unlike most traditional CNNs, the SincIEEG model
has the distinct advantage of yielding interpretable parameters.
The bandpass filters learned by SincIEEG can be visualized
and equated to conventional spectral brain features.

The results demonstrate that SincIEEG is capable of detect-
ing the presence or absence of speech during each time
interval with a high level of accuracy, and compare the model’s
performance to a traditional CNN model, as well as non-deep
learning methods. In addition, the generalizability of the model
architecture is highlighted in terms of providing empirical,
interpretable insights about the discriminable bandpass spec-
tral features for any physiological data that can be represented
as an aggregate of bandpass activity.

II. MATERIALS AND METHODS

A. Participants
ECoG data were recorded from 5 participants with phar-

macoresistant epilepsy undergoing clinical monitoring for
surgical planning. No participants reported hearing deficits.
In all cases, a tumor was not the source for the seizures
and no lesions were indicated by any electrode used for
analysis. All participants gave written informed consent and
the study protocol was approved by the institutional review
boards of Virginia Commonwealth University; University of
California, San Diego; Old Dominion University; and Mayo
Clinic, Florida.

Participants were implanted with subdural electrode grids or
strips (Ad-Tech Medical Instrument Corporation, 1-cm spac-
ing) based purely on their clinical need. Electrode locations
were verified by co-registering preoperative MRI and postoper-
ative computerized tomography scans. For combined visualiza-
tion, electrode locations were projected to common Talairach
space. Electrode locations were rendered using NeuralAct
[24], as shown in Figure 1. While brain areas associated with
speech are predominantly found on the dominant hemisphere,
which is the left hemisphere in the majority of right-hand
dominant people, the neural correlates of speech production
are not exclusively localized in the left hemisphere [25],
[26]. For this reason, both left and right hemisphere cases
are evaluated. In total, ECoG activity was recorded from
416 (96 left hemisphere, 320 right hemisphere) subdural
electrodes. Of these, electrodes that exhibited unnatural signal
anomalies based on visual inspection were excluded from the
analysis, leaving 364 electrodes (96 left hemisphere, 268 right
hemisphere). For each participant, the number of electrodes
implanted, analyzed, and identified as not located over the
auditory cortex (non-auditory) are provided in Table I.

B. Task
Participants were instructed to read aloud single words

presented in sequence on a computer screen while their

Fig. 1. Electrode locations for all 5 participants. Electrodes identified in
the auditory cortex region are highlighted in red.

TABLE I
ELECTRODES BY PARTICIPANT

brain activity and voice were simultaneously recorded. The
words were selected from a bank of 431 unique words,
split into 4 sets of 115-116 words. The bank of words are
primarily monosyllabic and comprised of the Modified Rhyme
Test [27], supplemented with additional words to better reflect
the phoneme distribution of American English [28]. While this
experimental paradigm was originally designed to examine
neural correlates of American English phonemes [7], the data
are being used in the present analysis exclusively for speech
activity detection without consideration of phonetic aspects.

The experiment begins with a fixation cross at the center of
the screen. The cross is then replaced by a word that stays
on the screen for 2.5 seconds. The word is then replaced with
the cross for 0.5 seconds, before the next word is presented.
Words are chosen randomly from the set of 115 words for each
session and each session contained a different subset of words.
Participants completed between 2 and 4 sessions, depending
on willingness and ability to complete the sessions.

C. Data Acquisition

ECoG and audio data were concurrently recorded dur-
ing the task. ECoG data were bandpass filtered between
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Fig. 2. The SincIEEG deep learning architecture: a classification model composed of a Multi-SincNet input layer and multiple subsequent
convolutional layers. (a) SincIEEG takes raw multi-channel ECoG time series data as input, with channel dropout for improved regularization.
(b) Multi-SincNet learns bandpass filter parameters to decompose the input signal - illustrated here with three pass-bands. (c) The filtered signals
are normalized with respect to the band dimension using spatial normalization before convolutional layers learn kernels across time and pass-
bands. All hidden layers use batch normalization for regularization and Leaky Rectified Linear Units for activation. The model predicts the likelihood
of speaking using a Sigmoid activation at its output layer.

0.5 and 500 Hz, notch filtered at 60 Hz and recorded using
g.USB amplifiers (g.tec Medical Engineering). The data were
recorded at a sampling rate of 1200 Hz and subsequently
decimated to 600 Hz.

The time series and its frequency spectra were visually
inspected for anomalies. Channels having uncharacteristic
frequency spectra, substantial artifacts, and/or saturated ampli-
tudes, were excluded from the analysis. In total, 364 (96 left
hemisphere, 268 right hemisphere) electrodes were used for
analysis.

This basic preprocessing is standard for ECoG acquisition
and the data decimation can be equivalently achieved by using
a lower sampling rate at the time of data acquisition. Thus,
the data used as input to the SincIEEG network effectively
represent the raw ECoG timesamples.

Audio data were recorded in parallel using a Blue Micro-
phones Snowball iCE USB microphone connected to the
research computer, sampled at 48 kHz. All data record-
ing and stimulus presentation were facilitated by BCI2000
software [29].

D. Speech Labeling

Speech labels used for training the model were made in
reference to the stimulus cue of the word being presented
in the experiment. Every time-sample from 0.5 seconds after
the word presentation cue to 1.5 seconds after the cue were
labeled as ‘speaking’. Every time-sample from 2.0 seconds
after the word presentation cue to 3.0 seconds after the cue
were labeled as ‘not-speaking’. The other segments, from the
cue to 0.5 seconds after, and from 1.5 to 2.0 seconds after,
were purposefully left unlabeled.

This labeling scheme was chosen based on the stimulus
presentation cue, as opposed to direct energy detection in
the audio signal, to develop a more robust model that does
not directly rely upon the acoustic signal. This was done to
emulate the scenario where the user is unable to speak, and
thus precise labels for the presence or absence of speech would
be unavailable. Instead, the proposed labeling indicates the
time segments where speech is most expected, which can be
generalized to imagined speech.

III. MODEL DESIGN AND OPTIMIZATION

The SincIEEG model is a Multi-SincNet based convolu-
tional deep learning architecture adapted for real-time detec-
tion of human speech from ECoG input signals. Proposed
in [30] for hand-pose classification from myoelectric sensor
readings, and based off the work from [23], the Multi-SincNet
architecture learns the coefficients of a set of parallel finite
impulse response (FIR) bandpass filters, applied across the
input channels. Subsequent convolutional layers learn kernels
that aggregate across time and bandpass frequency dimen-
sions. A final global view, established by a fully connected
layer and sigmoid activation, classifies either ‘speaking’ or
‘not-speaking’ from labeled data. Figure 2 illustrates the
SincIEEG model and its layer configurations. This section
details the architecture and training strategy to produce models
for validation described in Section IV.

In overview, the inputs to the model are 500 ms windows
of raw IEEG data (300 time samples) with a stride of 2 ms
(1 time sample). Each 500 ms window represents one training
sample for the model, described in Section II-D. A model was
trained for each participant, using all of the quality electrodes
available. Electrodes over the auditory cortex were excluded
for a model validation check, detailed in Section IV-C.2.
A K-fold training methodology was used and is detailed
further in Section III-E.

This architecture was developed and implemented using
Pytorch [31] deep learning Python library. Other critical
software libraries used for development and discovery include
matplotlib [32], numpy [33], pandas [34], [35], seaborn [36],
and SciPy [37].

A. Multi-SincNet Input Convolution

The first layer in the SincIEEG model is a Multi-SincNet
layer, an extension to the the Kaldi speech framework’s [38]
SincNet, which applies a SincNet to each of the incoming sen-
sor channels. A SincNet layer learns a configurable number of
bandpass filters, parameterized through two cutoff frequencies,
fL and fH . The Multi-SincNet layer can therefore be used to
decompose a collection input signals into a fixed set of learned
bands.
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In equations 1 and 2, multiple filters are conceptualized
as vectors of low and high cutoffs, FL and FH respectively,
identifying regions of the input’s spectrum that the model uses
for classification. These vectors are a parameterization of a
SincNet layer, which is shared in the experiments across all
sensors s ∈ S.

FL = { f L
0 , f L

1 , . . . , f L
i=B−1} ∈ R

+ (1)

FL = { f 0
L , f 1

L , . . . , f i=B−1
L } ∈ R

+ (2)

K : ( fL , fH , fs ) �→ R
W (3)

SincNet(FL , FH ) = {K (FL(i), FH (i))} (4)

Multi-SincNet = SincNetFL,FH(s) s ∈ S (5)

Sharing bandpass filters across each sensor reduces parame-
ters, improves model latency, and regularizes the treatment of
sensor data.

Each FIR filter, k is implemented as a set of kernel coeffi-
cients and applied through convolution with the input signal X .

X ⊗ k( fL , f H ) =
M−1∑

j=0

N−1∑

i=0

X[i ] ∗ k( fL , fH )[ j − i ] (6)

where X is the input signal and k fL , fH is the vector of
kernel coefficients that allows frequencies in [ fL, fH ] to
remain in the signal. Additional details on the calculation of k
coefficients and how they compare to learned kernels can be
found in [23].

Filters are initialized to uniformly sub-divide the majority
of the available spectrum (i.e., 0-300 Hz) with a 3 Hz region of
overlap between adjacent bands. The original Kaldi implemen-
tation initializes bands starting at a low-cutoff of 30 Hz, but
this minimum starting frequency is reduced to 10 Hz for the
present analysis to help encourage use of lower frequencies
that may be relevant for this application [19]. The Kaldi
SincNet implementation also includes a minimum frequency
and minimum bandwidth constraint, which are configured to
be 1 Hz and 3 Hz, respectively. Kaldi enforces these minimums
by increasing the absolute value of the learned low-cutoffs and
bandwidths by their respective minimums. Future work should
explore the impact of different potential initialization schemes.

B. Activation

Rectified linear units (ReLU), defined as y = max(0, x),
provide a linear gradient for all input x ∈ R

+ and 0 gradient
for x ≤ 0. With zero-centered bandpass outputs, a large
portion of values will not have a gradient with ReLU acti-
vation. Instead, the Leaky ReLU activation (LReLU) provides
a small gradient for x ≤ 0, while still being non-linear and
computationally simple. The LReLU activation is defined in
equation 7, where the default α = 0.01 is used for for all
experiments.

Leaky ReLU(x) = max(0, x) + α ∗ min(0, x) (7)

Using LReLU on zero-centered data still greatly diminishes
negative inputs. However, the learned affine parameters within
the batch normalization layers can learn to offset any inputs
into regions with higher variance.

C. Batch Normalization

The amplitude of the output from the Multi-SincNet filters
scale directly with the amplitude of the input signal. Between-
sensor relative magnitudes are important to maintain, so scal-
ing at the sensor dimension of intermediate data is avoided in
the early layers.

Brain dynamics are not evenly distributed in the frequency
domain, however, and will tend to have higher amplitudes
at lower frequencies. This means the additional bandpass
dimensions may be distributed at different scales, making it
difficult to learn shared kernels in subsequent convolution
layers. Furthermore, the scale of the intermediate values may
shift as the cutoff frequencies of the learned bandpass filters
are optimized.

Therefore, in order to balance influence when learning
kernels applied across bands, and to scale hidden outputs to
activation regions, a spatial batch normalization [39] is applied
at the band dimension in the three hidden outputs following the
Multi-SincNet input layer. Re-scaling each band independently
maintains within-band relative dynamics that can be learned
using shared weights.

μ f = 1

BST

B−1∑

b=0

S−1∑

s=0

T −1∑

t=0

X[b, s, f, t] (8)

σ f = 1

BST

B−1∑

b=0

S−1∑

s=0

T −1∑

t=0

(X[b, s, f, t] − μ f )
2 (9)

y = X − μ f√
σ f + �

∗ γ + β (10)

f or f ∈ F

where B is the batch size, S is the set of sensors, F is the set
of bandpass regions, and T is the number of input samples.
Learned affine parameters β and γ allow the model to adjust
the center and scale away from the origin and unit variance.
Following cross-band convolution, spatial normalization is
applied across sensors - computing μs and σs analogous to
μ f and σ f . At this point in the architecture, distributions
across sensors are well-normalized and suitable for batch
normalization’s regularizing effect, reducing internal covariate
drift.

D. Monte Carlo Dropout
Sensor systems with many highly responsive input channels

may have spurious errors or drift, and sometimes must be
removed in pre-processing. Additionally, for general tasks such
as speech activity detection from an ECoG array, some impor-
tant brain regions may have multiple sensors covering them,
resulting in high co-linearity across channels. To regularize
co-linearity across sensors, channel dropout [40] is applied on
the input to the model during training. Channel dropout on the
sensors zeros all signal values for a sensor with an independent
Bernoulli random number parameterized by probability p. It is
common to avoid using dropout when using batch normaliza-
tion since the noise caused by the dropout will skew the mean
and variance statistics used in normalization towards zero.
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However, for SincIEEG, the data modality is already centered
at zero, and the practical application motivates robustness to
sensor dropout.

E. Optimization Procedure

All deep learning models in this work, both the SincIEEG
described above and CNN model described in Section IV-C.4,
use stochastic gradient descent from gradients produced by
error back-propagation. The Adam optimizer [41] is employed
with the learning rate fixed to α = 0.001 for all experiments.
Binary cross-entropy loss between the target label and the
model’s output is used as the objective criteria.

Models are evaluated through multiple refits using a K-Fold
procedure across a participant’s sessions. A single holdout
session is used for evaluation in each fold and the remain-
ing sessions are used for training. Some participants had three
sessions, providing two training sessions per fold, while others
had only two sessions overall and provided one session per
training fold. The training data is randomly split into a 25%
cross-validation portion for monitoring model performance
during training. After each epoch of training, a model under
optimization is applied to the cross-validation data and scored.
For the SincIEEG and CNN experiments, the best model on
the cross-validation is maintained and stored after 100 epochs
of training.

Experiments without auditory sensors and other supple-
mentary architecture exploration used early stopping. For
these experiments, if the cross-validation performance did not
improve for 10 epochs during training, then the best model
at that point was stored and the training procedure ended.
The early stopping procedure generally produced models with
similar performance to their 100 epoch counterparts. Other
configurations that were explored using this truncated proce-
dure include variations of activation function, batch normal-
ization, number of learned kernels, and other modifications to
convolution configuration. Performance was robust for most
configurations and these preliminary experiments focused on
reducing model complexity.

IV. MODEL VALIDATION

ECoG data acquired from participants performing the
speech task were used to further validate the model. The
models are validated both quantitatively for predictive perfor-
mance, as well as qualitatively for convergence of the spectral
band filters to physiologically plausible ranges.

A. Prediction Accuracy

The prediction accuracy is simply computed as the pro-
portion of windows correctly classified as ‘speaking’ or
‘not-speaking’. Visualizations that overlay the stimulus cue,
curated labels, speech audio signal, and the model’s predicted
likelihood of speech are presented. Aligning recorded speech
with model predictions across multiple training windows
enables an examination of the model’s predictions with both
the labeled regions and recorded speech data. The model’s
ability to predict speech occurring outside the labeled region

help to validate the model’s generalization capabilities. Ulti-
mately, this visualization provides an indication as to how
the model would perform in practice. For instance, frequent
oscillations in the predicted likelihood may achieve reasonable
accuracy but ultimately be unreliable for use in a classification
pipeline.

B. Spectral Band Convergence

A key aspect of this model’s utility is its ability to learn
spectral bands that minimize the loss function of the network.
When the band parameters are combined with the loss and
cross validation loss for each training batch, a visualization
of the band convergence over time can be obtained. This
visualization can serve several purposes. For the present analy-
sis it serves as an additional method of model vetting and
interpretation, to establish the frequency bands the model
identified as empirically predictive. For other analyses, it could
serve as an exploratory tool to investigate whether frequency
information is central to the phenomenon.

C. Comparison Models and Benchmarks

1) Randomization Tests: In order to compare the model
performance to random chance, model prediction was assessed
when trained on randomly labeled segments. The label-
ing scheme maintained a proportional amount of speaking/
not-speaking labels, and thus the chance accuracy should be
50%. To confirm this, the train and test paradigms were kept
identical, except that before training, a labeled segment was
randomly assigned a ‘speaking’ or ‘not-speaking’ label. The
hyperparameters chosen for model configuration were 1-Band
with a dropout of P = 0.5.

2) Auditory Cortex Electrode Removal: To verify that classi-
fication performance was not merely being driven by auditory
feedback, electrodes in the auditory cortex region were man-
ually identified based on anatomical landmarks and removed
from the analysis (see Figure 1). An abbreviated evaluation
of SincIEEG was performed to confirm that the classification
performance was not significantly degraded by the exclusion of
the auditory electrodes. Optimization time of these additional
models was reduced by using early stopping as described in
Section III-E. Additional testing verified that early stopping
does not unfavorably bias the resulting model performance.

3) LDA and SVM Benchmarks: To explore whether the
frequency bands that the SincIEEG model identified would
confer some benefit over using the entire broadband spectrum,
the performance using the bands that 3-band SincIEEG learned
for each participant was compared to the performance using
broadband activity from 0.5-170 Hz frequencies. The 3-band
version was chosen to compare because it is more distinct from
broadband than the 5-band version which generally occupies
a greater proportion of the spectrum. A Linear Discriminant
Analysis (LDA) and a linear Support Vector Machine (SVM)
were implemented as performance benchmarks. Because these
comparatively simple classifiers are not capable of attaining
reasonable performance using raw ECoG timesamples, a pre-
processing method derived from [13] was implemented that
generates a band power aggregate measure over a 500 ms
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Fig. 3. Mean and variance of accuracy for all repetitions’ test folds, for each participant model configuration.

window that updates every 50 ms. The labels were accordingly
downsampled to 20 Hz. For each label, the preceding 500 ms
of the corresponding preprocessed ECoG signals were used
to compute the input features. The resulting feature array was
flattened into a vector for training the LDA and SVM models.
This process was performed for both the broadband and 3-band
SincIEEG versions.

4) Standard CNN: To establish how SincIEEG performs
compared to a traditional deep learning method, a standard
CNN was implemented and evaluated based on [42]. For this
CNN, the first convolutional layers aggregate across time with
kernels and stride of five samples, and a dilation of two
samples to further downsample. The next layer maintains the
kernel’s size and stride, but returns to default dilation of one.
The remaining two convolutional layers learn 3x3 kernels with
unit stride and dilation until a final dense layer outputs to
a sigmoid activation. A total of 16 filters were learned in
each convolutional layer. The standard convolutional network
model is an important alternative to SincIEEG as it uses the
same convolution operation but is not directly interpretable.
The training and testing paradigms remained unchanged, only
the model architecture was exchanged.

V. RESULTS

A. Prediction Accuracy

The average SincIEEG model accuracy across all partic-
ipants was 94.1% (s.e. 3.5%), and all but one participant
achieved an accuracy above 90%. Figure 3 shows the accu-
racy of all model configurations per participant with each
configuration repeated three times. Results from Participants 1
and 2 were very consistent regardless of hyperparameter,
while Participant 3 showed significant variability in the 3- and
5- band versions, and Participant 5 performed better without
dropout. These differences are most likely mediated by elec-
trode number and placement. However, the ability of the model
to achieve good performance on such a variety of electrode
locations is a testament to its robustness, and the advantages
of a participant-specific feature set.

As described in Section II-D, target labels were created from
the timings of experiment cues, rather than the participant’s
speech. Therefore, to better gauge speech detection perfor-
mance for practical speech detection applications, predictions
were qualitatively assessed by visual inspection into one of
three categories: Full Success, Partial Success, and Failure.

A word trial was considered a Full Success if the prediction
captured the entirety of the spoken word prior to onset and

TABLE II
PREDICTION SUCCESS OVER TRIALS

maintained until speech had ceased. Subplots (a), (d), and (g)
in Figure 4 are examples of Full Success trials. Regions of
false positive predictions encompassing a correctly identified
speaking region were still categorized as a Full Success since
false positives are envisioned to be less critical than false
negatives for future applications to imagined speech.

A trial was considered a Partial Success if it captured the
majority of the word but clipped either the beginning or the
end. Subplots (b), (e), and (h) in Figure 4 are examples of
Partial Success trials. A trial was considered a Failure if the
word was missed entirely, if the model prediction was erratic
or inconsistent, or if a portion of the word was missed from
an otherwise well-placed detection. Subplots (c), (f), and (i)
in Figure 4 are examples of Failure trials.

For each participant’s best model configuration, the model
with the best cross-validation performance was selected and its
test-set predictions were assessed using the criteria described
above.

Table II shows the proportion of words assigned to each
category for a 115 word test set for each participant for the
respective best model configuration. Participant 1 and 2 models
were able to very consistently predict speech before speech
onset, suggesting that the model and electrode location com-
bination may capture aspects of speech planning. Participant 3
and 4 models had a majority of partial successes. These trials
largely exhibited clipping the beginning portion of words,
suggesting that the model may be capturing aspects of speech
production rather than speech planning.

B. Spectral Band Convergence

Figure 5 shows a representative example of spectral bands
converging over training epochs. While there was a signif-
icant amount of variability in the plots across participants
and configurations, there are several consistent observations.
First, there is a distinct and consistent difference in the
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Fig. 4. SincIEEG model predictions of 9 representative words, grouped into 3 categories detailed in Section V.A. (a)–(i) Panels show representative
word trials from each category. The grey trace is the audio waveform from the microphone and represents the participants utterances during the
word trial. The blue trace, and associated shading, represent the moving average and standard deviation of the model-derived ‘speaking’ likelihood
over the previous 15 samples. The green shaded area represents the region labeled ‘speaking’, and the orange shaded area represents the region
labeled ‘not-speaking’. Top row: Participants 5, 4, 5. Middle row: Participants 1, 3, 2. Bottom row: Participants 3, 1, 2.

Fig. 5. Spectral band convergence of the 1-, 3-, and 5-band SincIEEG networks for Participant 2. The bold lines are the center of the band, and
the shaded regions in the corresponding color are the band bounds. The top row is without dropout, and the bottom row is with dropout.

band evolutions during training when dropout is included in
the model. With dropout, bands tended to converge more
smoothly, rather than exhibiting large jumps in value as
observed without dropout. With shared parameters, zeroing
a sensor channel eliminates its influence and subsequently
allows other sensors of varying magnitudes to drive para-
meter updates. Furthermore, zeroed sensors bias downstream
normalization layer statistics towards zero. It is posited that
these aspects result in the higher variance stochastic search of
frequencies illustrated in Figure 5.

The final bands learned for each participant, aggregated
across sessions and model configurations, are shown in
Figure 6, with the bands aggregated across participants shown
in Figure 7. For better visualization, only SincIEEG mod-
els with performance in the top 50% for each participant
are included in the figures. The bands are superimposed

on a single frequency spectrum as a density plot at high
transparency. Each band is plotted in a different color, with
more saturated hues representing frequencies common across
more participants and model configurations than less saturated
hues. This provides a compact conceptualization of the final
converged frequencies across models.

For the 1-band case, the general tendency is for the band to
be broad. However, the aggregated data shows that the bands
commonly overlapped around 25-75 Hz, implying the lower
frequency band may be more predictive than high gamma for
the task, as supported by [19].

The 3-band case indicates one lower-frequency band in a
narrow range from 20-40 Hz, a broader middle band roughly
spanning 120-200 Hz, and a high frequency band converging
above 250 Hz. The 5-band case shows similar bands at
the low and high ends of the spectrum, with intermediate
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Fig. 6. Learned frequency bands for each participant and 1-, 3-, or 5-band configurations. The selected bands are superimposed on a single
frequency spectrum as a density plot at high transparency. Each band is plotted in a different hue: blue, yellow, green, red, and purple. More
saturated hues represent frequencies common across a greater number of model configurations than less saturated hues. Vertical dashed lines
correspond to the initial cut-off frequencies of adjacent bands prior to convergence. More details on the band initialization procedure can be found
in Section III-A.

TABLE III
MODEL ACCURACY COMPARISON

Fig. 7. Learned frequency bands for the top-50% of model configurations
across participants for each 1-, 3-, or 5-band configuration, as described
in Figure 6. For improved visualization, the figure only includes the top-
50% of model configurations of each the participants’ sessions.

bands centered at approximately 75 Hz, 150 Hz, and 200 Hz,
respectively.

A benefit of the interpretability of learning frequency
bands is that the results can be directly compared to known
physiologically-relevant bands. Kanas et. al. examined 8 Hz
wide frequency bands from 0 to 248 Hz, and produced a his-
togram ranking bins by contribution to speech detection [43].
It is a multi-modal distribution, with two larger peaks, one
spanning 0-40 Hz and one 180-200 Hz, with two smaller,
broader peaks in the intermediate frequencies.

The 3- and 5-band plots mirror this trend. In the 3-band
version, the lower frequency band at 40 Hz and the middle
band covering the 150-200 Hz range coincide quite closely
with the peaks in the Kanas et. al. histogram. The 5-band
version is even more compelling, with the first band again
centering on 40 Hz, the two middle bands covering areas
around 100 Hz and in the middle hundreds, and the fourth
band centering directly at 200 Hz.

C. Comparison and Benchmarks
Table III shows the performance of all validation measures

in comparison to SincIEEG. The SincIEEG and SincIEEG
Non-Auditory results are the mean test fold accuracy for each
participants’ best performing model configuration, effectively
the highest bar for each participant in Figure 3. Excluding
the auditory cortex electrodes did not significantly impact
model performance. The causal formulation of the model, and
accurate capture of speech onset within the predicted speech
window, provides a strong indication that perception of speech
was not a driver of the model classification accuracy. The CNN
architecture performance is overall on par with SincIEEG. This
shows that the interpretable and parsimonious architecture of
the SincNet does not compromise model performance.

The bands identified by the 3-band SincIEEG for each
participant were compared to a broadband approach and
classified with LDA and SVM. For both classifiers across par-
ticipants, using learned bands instead of the broadband showed
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an improvement in classification accuracy. This implies that
SincIEEG provides unique and relevant features due to the
participant-specific, empirical, and/or parsimonious nature of
the learned SincIEEG bands.

It should be noted that, regardless of whether using learned
bands or broadband, the LDA and SVM classifiers with the
preprocessed ECoG signals did not achieve better results than
SincIEEG. Additionally, SincIEEG was able to achieve better
results with greater time-domain resolution than the methods
using the preprocessed features.

VI. DISCUSSION

This work introduces SincIEEG, a deep learning model with
an interpretable architecture. SincIEEG is capable of detecting
overt speech using unprocessed ECoG recordings based on a
diversity of electrode coverage. SincIEEG meets or exceeds
the performance of other ECoG speech detectors, with several
additional advantages.

In prior work on using ECoG for speech activity detection,
Kanas et. al achieved maximum accuracies of 92% [22], and
98.8% with non deep learning classifiers [43]. Other studies
used the detection model as part of a larger speech decoding
analysis and so did not report specific results on speech
detection performance [15], [16]. In comparison to SincIEEG,
which uses unprocessed ECoG recordings, these approaches
require appreciable signal preprocessing prior to speech detec-
tion. Since the feature extraction is inherent in SincIEEG,
any latency introduced via explicit, potentially suboptimal,
data-independent preprocessing is mitigated in the processing
pipeline - which is critical for real-time implementation.

The architecture of SincIEEG is CNN-based, like that of
the foundational work of EEGNet, which showed the viability
of CNN’s for several tasks using non-invasive EEG signals
[44]. The EEGNet architecture was subsequently extended
for application in a movement task to intracranial signals,
including the addition of a spatial component [45]. This
approach is also capable of determining data-driven frequency
features, albeit in a manner distinct from SincIEEG. While it
is demonstrated that SincIEEG is capable of speech activity
detection from ECoG signals, the original implementation was
used for acoustic speech detection [23], and it has also been
applied to EMG signals [30]. Using a related approach for
seizure detection using non-invasive EEG, Fukumori et. al.
showed that a data-driven approach was superior to static filter
banks [46]. Such models that learn the task-relevant spectral
bands can be applied to other domains where frequency
analysis is central. This is mainly due to the utility of learning
bandpass filters, and the flexibility of the scope on which
different filters can be learned.

In terms of interpretability, visualization of the learned
bands provides a unique modality for studying the relevant
spectral features. One consistent observation is that, across all
1-, 3-, or 5-band models and all participants, a low frequency
component was always included. This supports prior work that
suggests lower frequency features can play a key role in speech
detection in addition to broadband gamma [7], [43]. While
the present analysis did not attempt to specifically identify the
subset of electrodes related to speech production processes,

due to the consistent performance results regardless of the
hemisphere of the implant, it is expected that the contributions
are largely from the ventral primary motor cortex as shown in
prior work [6], [11], [13], [47].

Beyond interpretability, the flexibility of the SincNet archi-
tecture’s ability to learn different combinations of relevant
frequency bands make it promising for implementing transfer
learning to leverage existing data for development and training
of generalizable models. Gathering sufficient data and learning
robust models for new participants is challenging, particularly
for intracranial recordings where available data is limited and
the electrode locations are generally sparse and not consistent
across participants. In this context, transfer learning can be
used to refine the model on a new participant’s data after
having learned its initial parameters from other participants’
data - which can significantly reduce training time and improve
model robustness and performance.

Because SincIEEG is capable of learning task-relevant spec-
tral bands across multiple participants independent of precise
electrode locations, it has the potential to learn generalized
bands for brain regions sampled by the population of elec-
trodes across participants. Furthermore, specific bands can be
learned for channel context labels, such as in which brain
region an electrode resides. This allows for encoding a spatial
component to the transfer learning, initializing different bands
dependent on electrode location.

Ultimately, toward the development of a practical speech
neuroprosthetic, future work must examine the efficacy of
SincIEEG on transfer learning and, moreover, on imagined
speech and integration with the subsequent speech decoding
pipeline.
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