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Abstract—Healthy ageing modifies neuromuscular
control of human overground walking. Previous studies
found that ageing changes gait biomechanics, but
whether there is concurrent ageing-related modulation
of neuromuscular control remains unclear. We analyzed
gait kinematics and electromyographic signals (EMGs;
14 lower-limb and trunk muscles) collected at three
speeds during overground walking in 11 healthy young
adults (mean age of 23.4 years) and 11 healthy elderlies
(67.2 years). Neuromuscular control was characterized by
extracting muscle synergies from EMGs and the synergies
of both groups were k-means-clustered. The synergies
of the two groups were grossly similar, but we observed
numerous cluster- and muscle-specific differences between
the age groups. At the population level, some hip-motion-
related synergy clusters were more frequently identified in
elderlies while others, more frequent in young adults. Such
differences in synergy prevalence between the age groups
are consistent with the finding that elderlies had a larger
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hip flexion range. For the synergies shared between both
groups, the elderlies had higher inter-subject variability
of the temporal activations than young adults. To further
explore what synergy characteristics may be related to
this inter-subject variability, we found that the inter-subject
variance of temporal activations correlated negatively with
the sparseness of the synergies in elderlies but not young
adults during slow walking. Overall, our results suggest
that as humans age, not only are the muscle synergies
for walking fine-tuned in structure, but their temporal
activation patterns are also more heterogeneous across
individuals, possibly reflecting individual differences in
prior sensorimotor experience or ageing-related changes
in limb neuro-musculoskeletal properties.

Index Terms— Muscle synergy, ageing, gait, electromyo-
graphic signals (EMGs), motor variability.

|. INTRODUCTION

URING ageing, gait characteristics may gradually
change as a result of age-related changes in the neuro-
musculoskeletal system, including reduced muscle strength,
decreased joint power, and deteriorated sensorimotor func-
tions [1], [2]. Such changes in gait may increase the risk of
injury or even reduce mobility [3], [4]. Some past sensorimo-
tor experience or any history of neuromuscular impairment
may also lead to the expression of different learned and
compensatory patterns in the person’s gait. For instance,
when compared with healthy elderlies, disabled elderlies have
significantly higher mid-stance hip mechanical energy expen-
diture related to compensatory gait strategies [5]. Presumably,
these altered gait patterns, be they related to age-dependent
changes in biomechanics, prior learning, or past injuries, are
accompanied by alterations in the neuromuscular gait control

strategy implemented by the central nervous system [6].
How is the neural control of gait adjusted during ageing to
ensure efficient dynamic motor control as the vast number
of internal and external variables fluctuate over the years?
Answering this question would necessitate a thorough, mecha-
nistic understanding of how the immensely variable locomotor
muscle patterns are constructed by the motor system. One
way to study the neural implementation of gait control is
to reduce the observed high-dimensional motor patterns into
a low-dimensional set of motor modules representable as
muscle synergies [7], [8]. When a muscle synergy is recruited,
multiple muscles are activated as specific spinal premotor
interneurons [9], [10] and/or motor cortical neurons [11]
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synergistically activate different motoneuronal pools. The
muscular compositions of the muscle synergies encoded by
these neurons may be identified as vectors decomposed
from electromyographic signals (EMGs) using factorization
algorithms. As putative representations of neuromotor mod-
ules, muscle synergies and their temporal activations can be
regarded as markers that reflect modifications of the motor
control policy over time.

Recent theoretical and experimental studies have suggested
that EMG-derived muscle synergies may be updated as limb
biomechanical properties change. In a study that simulated gait
using a realistic neuro-musculoskeletal model, the different
biomechanical demands of walking are indeed reflected by
the muscular compositions of the synergies [12], thus sug-
gesting that for consistent gait, the synergies’ structures should
depend on limb biomechanics. Consistent with the notion that
muscle synergies and their activations exhibit considerable
plasticity, studies in early motor development have revealed
that as the anthropometry of infants and children mature,
some early muscle synergies fractionate into units with fewer
muscles [13], [14]. Other results have shown that even though
some synergies may remain invariant in structure over the
years, their temporal control patterns still change throughout
life [15], [16]. Muscle synergies can also be modified after
motor learning [17] or neurological injuries. In stroke patients,
gait impairment appeared to be related to the expression
of abnormal synergies that could be explained by merging
multiple normal synergies [18]. Similar processes of synergy
merging have also been reported in stroke survivors with
upper-limb impairment [19] and runners undergoing motor
training [14].

In the literature, there are numerous but scattered studies on
the relationship between ageing and synergy modifications in
locomotor tasks. Monaco et al. [20] found that the gross struc-
tures of the muscle synergies and their temporal activations
were unchanged by ageing, but they suggested that ageing
may impact how spinal circuits integrate peripheral afference
and descending inputs, resulting in modification of the final
motor output in the older subjects. Baggen et al. [16], on the
other hand, showed that synergy structures and complexities
changed during ageing even though the between-task synergy
similarity was higher in the older group than in the younger
group. The above studies prove that a few basic muscle
synergies for gait can be identified from both younger and
older adults, but it remains unclear whether the between-group
differences in motor outputs may be attributed to changes in
specific muscle synergies, their temporal activities, or both.

Here, we aim to clarify whether the neural control of
gait is altered during ageing by comparing the locomotor
muscle synergies obtained from younger adults with those
obtained from older adults. To reveal how the synergies may
differ between the two age groups at the population level,
we examined the inter-subject variability of the synergies in
both groups and correlated them with kinematic measures.
To further understand any potential difference in gait control
stability between the two groups, we characterized both the
within-subject and inter-subject variability of the synergies’
temporal activations. Our analysis argues that as humans age,
not only are the muscle synergies fine-tuned in structure, but
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Fig. 1. The body-height normalized walking speeds selected by the
subjects. The between-group differences in three walking speeds are not
statistically significant. (fast: p = 0.85; normal: p = 0.71; slow: p = 0.88;
ANOQVA).

the activation patterns of specific synergies also change. These
modifications of muscle synergies may originate from both
age-dependent changes in gait biomechanics and the varied
sensorimotor experience of the subjects through the years.

[l. MATERIALS AND METHODS
A. Participants

Two groups of healthy subjects, a younger (N = 11;
7 females; age 23.4 + 2.5 years) and an older (N = 11;
7 females; age 67.2 + 4.3 years) group, participated. All
subjects had no history of any musculoskeletal or neurological
injury or surgery. Informed consent was obtained from each
subject before experimentation. All procedures were approved
by The Joint Chinese University of Hong Kong - New
Territories East Cluster Clinical Research Ethics Committee
(no. 2019. 498).

B. EMG and Kinematic Data Collection

Each subject was instructed to walk overground for 3.6 m
at three self-selected speeds (slow, normal, and fast) (Fig. 1).
As the subject walked, electromyographic signals (EMGs;
sampling rate of 1000 Hz) (14 muscles on each side) were
recorded by wireless surface EMG electrodes (Trigno, Delsys,
Boston, MA, USA). Before EMG sensor attachment, the skin
over the attachment positions was cleaned by alcohol (75%).
The sensors were then placed according to SENIAM recom-
mendations [21] and attached to skin surface with double-sided
tape, and stabilized in position with self-adherent bandage
wrap (3M Coban™). The muscles recorded included tibialis
anterior (TA), medial (MG) and lateral heads of the gastrocne-
mius (LG), soleus (Sol), vastus lateralis (VL), vastus medialis
(VM), rectus femoris (RF), hamstrings (Hams), adductor
longus (AL), tensor fascia latae (TFL), gluteus maximus (GM),
erector spinae (ES), external oblique (ExtO) and latissimus
dorsi (LatDor).

During walking, full-body kinematics were also recorded
using 3D motion capture cameras (Vicon, Oxford Metrics,
Oxford, UK; 200 Hz). Infrared reflective markers (N = 39)
were placed according to the requirements of the full-body
Plug-in Gait model implemented by Vicon Nexus. The gait
cycles for synergy and kinematics analysis were selected
based on data quality. For synergy extraction on average,
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1943 and 3042 cycles were selected for each young and old
subject, respectively. Evidences have shown that 20 cycles are
sufficient for synergy extraction for reconstructing EMGs with
optimal quality [22]. For joint angle comparison, cycles were
selected according to the quality of the marker trajectories.
We excluded cycles with absent heel or toe markers; as a
result, 11+3 and 19+£3 cycles were selected for the young
and old subjects, respectively. Kinematic data of specific
joints would be further compared between subject groups
based on the comparison results of the subsequent muscle-
synergy analysis. We defined the hip angle to be the angle
between the projected sagittal thigh axis and the sagittal
pelvic axis. The hip flexion/extension angle during static
standing was defined as the baseline and thus set to 0°.
A positive/negative (flexion/extension) angle corresponds to
one with the hip positioned anterior/posterior to the body.
The peak hip flexion and extension were then conveniently
obtained from the maximum flexion and extension angles,
respectively (Fig. 6, 7). Bending the knee by knee flexors is
referred to as knee flexion, so the opposite direction is knee
extension. Thus, increase and decrease of the angle represent
knee flexion and extension, respectively. Peak knee flexion is
equivalent to the knee range of motion.

C. EMG Preprocessing and Muscle Synergy Extraction

The EMGs collected from the right side of each subject were
preprocessed with the following steps: removal of noise from
powerline interference [23], [24], high-pass filtering (cutoff at
40 Hz), rectification, low-pass filtering (40 Hz), integration
(over 20-ms intervals) and variance normalization of each
muscle [25]. The cutoff frequencies of the high- and low-pass
filters were selected to preserve the most information in the
EMGs while keeping the number of extracted synergies the
same even when higher or lower cutoff frequencies were
used for the high- or low-pass filters, respectively. This was
followed by applying the non-negative matrix factorization
algorithm (NNMF) to extract time-invariant muscle synergies
from the EMGs [26]. Let D be a non-negative m x n data
matrix comprising n samples of an m-dimension data vector.
The NNMF models D to be a linear combination of two
matrices W and C, such that

D=WC" +R=> wc’ +R (1)

where vector w; is the i’” column of W denoting the i’"
muscle synergy, and vector ¢;, i’ column of C, is the temporal
activation coefficients for w;. R is the residual unexplained by
the model.

To identify the number of muscle synergies needed to
reconstruct the EMGs adequately, we successively increased
the number of synergies extracted from one to the number
of muscles recorded and selected the minimum number of
synergies required for an EMG-reconstruction R> of 80%. The
R? was calculated as follows,

R> =1— SSE/SST )
SST = D" (Dij — mD;)? (3)
ij

SSE = (Dij — [WCT];)? “4)
ij
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Fig. 2. The distribution of the dimensionality of the muscle synergy sets
(i.e., the number of synergies) for both groups at the three speeds.

where SST is the sum squared total, D;; is the EMG data of
the ith muscle at the jth time point, m D; is the average EMG
value of the ith muscle, and SSE is the sum squared error.

To prevent the extracted synergy set from respresenting
a suboptimal local minimum on the error surface, at each
number of synergies, NNMF was run 20 times, each time with
different initial parameters which were uniformly distributed
between 0 and the maximum EMG amplitude. The run with
the highest R*> was selected for further analyses. For both
the younger and older groups, the numbers of synergies thus
selected ranged from five to eight (Fig. 2).

D. Clustering Muscle Synergies

To characterize the muscle synergy patterns of both groups,
the synergies of all subjects in both groups were k-means
clustered together using Matlab. We verified that analogous
results were obtained when the synergies of the two groups
were separately clustered. The algorithm was initialized with
random cluster centroids. The number of clusters was deter-
mined as the smallest number that yielded a local maximum
of average silhouette value (across 1 to 14 clusters). Each
run of the k-means algorithm was repeated 100 times to
ensure robustness in our determination of the number of
clusters. To quantify the between-group synergy similarity at
the population level, the scalar product (SP) between every pair
of synergy vectors from both groups was calculated in each
cluster; the SP of synergy pairs within the younger and older
groups were also calculated as baselines. The scalar product
ranges from O to 1, with 1 indicating two identical vectors and
0 indicating two vectors with no correlation.

E. Variability of Synergies’ Temporal Activations

The variability of synergies’ activation coefficients across
subjects in each group was evaluated after the muscle syner-
gies shared by both age groups were extracted. In this way,
we ensured that the temporal activations from the two groups
being compared were coefficients for the exact same set of
basis vectors. Pre-processed EMGs of all subjects of all three
speeds in both groups were concatenated into a single EMG
matrix, which was then factorized using NNMF. The minimum
number of synergies that yielded an EMG-reconstruction R? of
80% was selected as the number of synergies for this analysis.

After extracting the shared synergies, the temporal acti-
vation of each synergy was segmented into individual gait
cycles using the timings of heel strike and toe off for each
subject [27], with each cycle time-normalized and resampled
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Fig. 3. Cluster analysis of muscle synergies during overground walking at three self-selected speeds for both age groups. 10, 9 and 9 clusters
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*, p < 0.05; ANOVA) and an additional 10th cluster involving RF (CSRF, CS standing for cluster of synergy) in fast speed, all the nine clusters have

grossly similar synergies between the two age groups.
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Fig. 4. The similarity of muscle synergies in each cluster. In each cluster,
scalar product values were calculated for young-old, young-young and
old-old synergy pairs, respectively, with their means connected by a
continuous line. The significant differences are shown as pink lines
(p < 0.05, ANOVA).

into 200-time points (time points: 1-100 for stance; 101-
200 for swing), and then averaged across cycles. Each time
point of the resampled temporal activation was regarded as
an independent variable, and the variance of each time point
across subjects was calculated. We referred to this variance as
inter-subject variability of the temporal activations.

F. Sparseness of Muscle Synergy

Following earlier works [14], [28], we also explored
whether the sparseness of the synergy vector, may be related to
other attributes of the synergy or its coefficient. The sparseness
of each synergy vector was evaluated by:

V= Ixil) /) > x?
Jn—1

sparseness(X) =

where x; is the i’” muscle component of synergy x, and n
is the number of EMG channels. Based on this definition,
a vector with only one active component is a sparse vector
with a sparseness of 1 while a non-sparse vector with the
same value in all components has a sparseness 0.

G. Statistical Parametric Mapping

For every synergy, we applied statistical parametric mapping
(SPM) to further compare the temporal activations (averaged
across subjects) between the subject groups. The SPM is a
topological methodology for detecting field changes in smooth
n-dimensional continuous signals. It detects the regions of
interest of the continuous signals [29] by applying statistical
tests, such as subtraction, correlation, regression, t-test, and
ANOVA. The SPM is frequently used in the statistical analysis
of neuroimaging voxel data for functional mapping and func-
tional connectivity investigations [30]. Here, we employed the
SPM in a fashion analogous to that used in neuroimaging to
identify the temporal intervals of the temporal activations with
significant between-group differences (p < 0.05).

I1l. RESULTS

A. Some Hip-Related Muscle Synergies Tended to Be
More Age-Group Specific

We began by verifying that there was no significant differ-
ence between the body-height normalized walking speed of the
two age groups at all three self-selected speeds (Fig. 1). Thus,
any between-group differences in synergies or kinematics
should more likely originate from ageing effects rather than
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all clusters, the younger group had the highest proportion in the cluster involving GM at all three speeds while the older group was better represented

in clusters involving TFL and Hams at fast and slow speed, respectively.

gait speed difference. After extracting the muscle synergies of
each subject, for each gait speed, we k-means clustered the
synergies of all subjects of both groups to assess if there was
any age-related change in the muscle synergies for overground
walking. For all walking speeds, the synergies of both groups
could be grouped into 9-10 clusters, with 1 cluster involving
muscle RF specific to fast walking (Fig. 3). Within individual
clusters, between-group differences were speed-, cluster-, and
muscle-specific (e.g., ExtO in cluster 9, slow speed; TA and
ExtO in cluster 4, fast speed; and AL in cluster 4, normal
speed) (Fig. 3). For all walking speeds and each cluster,
we compared the similarity of young-versus-old synergy pairs
against baseline similarity from within-young and within-old
synergy pairs (Fig. 4). The young-versus-old similarity was
significantly lower than both baselines in 3 clusters for fast
speed, 1 cluster for normal speed, and none in slow speed,
thus further supporting the result that there were speed-specific
between-group differences in some of the synergy clusters.
Beyond the muscle- and speed-specific between-group dif-
ferences noted above, synergies of the two groups were also
different in the sense that some clusters comprised more syner-
gies from one of the age groups. Fig. 5 shows the proportions
of synergies from the younger (blue) and older (red) groups
within each synergy cluster. For fast speed, a cluster involving
TFL (CSTFL) was much more frequently identified in the
older (74%) than younger group (26%) (Fig. 5(a)); another
involving GM (CSGM) was much less frequently identified
in elderlies (20%, 33%, 24%) in all speeds. For slow walking,
a Hams-related cluster (CSHS) was likewise more noticeable
in the older group (65%) (Fig. 5(c)). Note that TFL, GM,
and Hams are all related to hip motion, and Hams to knee
motion as well. We therefore proceeded to examine the hip-
and knee-joint kinematics of the two age groups in more detail.

B. The Range of Hip Motion Differed Between Age
Groups

To investigate if the between-group differences in muscle
synergies noted above may correlate with differences in gait
biomechanics, we compared the gait kinematics between the
two age groups. Indeed, over a gait cycle, older adults had
higher hip flexion angle but lower hip extension angle when

compared with younger subjects at all speeds of overground
walking (Fig. 6). The peak hip flexion of the older group
was significantly higher than that of the younger group at all
speeds (Fig. 7(a)) whereas the peak hip extension of the older,
significantly smaller than those of the younger (Fig. 7(b))
(p < 0.05, ANOVA). On the other hand, knee flexion was
not significantly different between two groups.

C. At Normal and Slow Speeds, Older Adults Exhibited
Higher Inter-Subject Variability in Temporal Activations

To compare the muscle synergies’ temporal activations
between the two groups, we enforced the EMGs of both
groups to be explained by the same set of synergies (Fig. 8,
column 1) so that for each synergy, the activations being
compared represented coefficients for the same basis vector.
This enforcement is justified given the synergies of the two
groups were grossly similar (Fig. 3, 4). As shown in Fig. §,
the average temporal activation coefficients of the two groups
were different in amplitude at certain phases of the gait cycle
in the synergies involving GM (SGM) and TA (STA) (phases
with significant between-group differences are highlighted in
grey (p < 0.05, SPM)). To further contrast the temporal
activations of the two groups, we also calculated and compared
the across-subject variance of the coefficients at each time
point of both groups. For the normal and slow speeds, the inter-
subject temporal-activation variability of the older adults was
significantly higher than that of younger subjects in 6 synergies
involving the TA (STA), triceps surae (STRP), quadriceps
(SQCP), Hams (SHS), LatDor (SLD), and TFL (STFL),
respectively (p < 0.05, ANOVA) (Fig. 9). To further confirm
the validity of this analysis, we compared the variances of both
groups after excluding an older-group subject whose speed
was an outlier. The results for fast and slow speeds remained
the same as before, but the differences in SQCP and SHS at
normal speed became insignificant after outlier exclusion.

For completeness, we also considered the intra-subject
cycle-to-cycle variability of the temporal activations (Fig. 10).
The intra-subject temporal-activation variability of the elder-
lies was statistically higher than that of young adults in SGM
at fast speed, STRP and SHS at normal speed, and STA at
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group had significantly higher hip flexion (a) but lower hip extension (b) compared with the younger group (x p < 0.05, x* p < 0.01, ANOVA).

slow speed (p < 0.05, ANOVA), but lower in SEXO, SLD at
normal and slow speeds (p < 0.05, ANOVA).

D. Negative Correlations Between W-Sparseness and
C-Variability

We sought to investigate further what properties of the mus-
cle synergies (W) may be related to the inter- or intra-subject
variability of the temporal activations (C). Inspired by previous
works that characterized W by the sparseness of the synergy
vectors [14], [28], we correlated the sparseness of the shared
synergy vectors (Fig. 8) with the inter-subject variability of
the temporal activations of the same synergies. Surprisingly,
we found a significant negative correlation at slow speed
in the older group (r = —0.84, p = 0.001, Pearson’s
r) but not in the younger group (p = 0.8, Pearson’s r)
(Fig. 11). Such negative correlation between the sparseness
of W and the variance of corresponding C became more
obvious when the within-subject cycle-to-cycle variability of

the temporal activations was considered across all subjects.
In both age groups and at all gait speeds, the W-sparseness and
C-variance of the synergies extracted from the subjects exhib-
ited statistically significant negative correlations (Fig. 12)
(young, (fast, r = —0.48, p « 0.05; normal, r = —0.53,
p < 0.05; slow, r = —0.23, p = 0.03); old, (fast, r =
—0.30, p = 0.01; normal, r = —0.52, p < 0.05; slow,
—0.44, p « 0.05), Pearson’s r). Similarly, across
all gait speeds and across subjects, the across-time variance
of the temporal activations of each synergy (Var(C;)) also
correlated negatively with the sparseness of the same W in
both age groups (Fig. 13) (old, r = —0.78, p <« 0.05; young,
r = —0.79, p <« 0.05, Pearson’s r). For completeness, We also
performed additional analyses on finding potential correlations
between the sparseness of synergies and their activation peak
and average activations, respectively. Our results show that
for activation peak, significant correlations were found in both
groups at all three speeds, but for average activations, only at
the fast speed of the younger group.

r =
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IV. DISCUSSION

A. Age-Related Modifications of Locomotor Muscle
Synergies

Our k-means clustering identified 9 basic locomotor muscle
synergies that were utilized by both age groups for over-
ground walking at different self-selected gait speeds (Fig. 3).
At fast speed, one additional synergy (CSRF) was recruited,
agreeing with the previous result that in young male subjects,
the number of synergies activated was proportional to the
instantaneous speed of treadmill locomotion [31]. Neverthe-
less, excepting CSRF and other cluster- and speed-specific
between-group differences in certain muscles components,
overall, the observed muscle synergies were grossly similar
across age groups and speeds. The gross structure of the syn-
ergy clusters identified here may therefore represent elemen-
tary building blocks of locomotor patterns that are sufficient
for generating overground walking at a range of speeds and
conditions [32], [33]. Recent data from rodents have suggested
that the basic locomotor muscle synergies are encoded in

the spinal cord, developed early in life, and preserved into
adulthood [15], but are nonetheless subject to being fine-tuned
during development, possibly through supraspinal modula-
tion of the spinal synergy-encoding networks [15], [32].
The consistency of the overall compositions of the synergies
observed here agrees well with this result, but the small
between-group differences noted (Fig. 3) may reflect age-
related fine-tunings of the synergies structures already reported
in the rodents.

Beyond the small amplitude differences in certain muscle
components, the synergies of the younger and older groups
were also different in the sense that certain synergy clusters
were dominated by synergies from one of the two age groups
(Fig. 5). The clusters involving TFL (CSTFL) and Hams
(CSHS) included more older-subject synergies at fast and
slow speeds, respectively, but another cluster involving GM
(CSGM) was dominated by younger-subject synergies at all
speeds. We can infer that at the population level, older subjects
are more likely to utilize CSTFL and CSHS than younger
subjects, while younger adults are more likely to use CSGM
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during overground walking. Consistent with our results, a pre-
vious study [16] assessed age-related modifications of the
synergies for step ascent and likewise found subtle differences
between the synergies of the younger and older groups,
with the latter relying on somewhat more complex synergy
patterns. It is therefore likely that even for locomotion, the
muscle weightings of the synergies are fine-tuned or reshaped
as people age, with the times of change coinciding with
the maturation of the neuromusculoskeletal system, and with

Younger Group
[ J
O

-
%
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w

C-variance Across Time
N

0.5 1
W-sparseness

0.5 1

Fig. 13. Correlation between W-sparseness and Var(Cy). Each line is
the linear regression of W-sparseness and the across-time variance of
the synergies’ corresponding Cs across all subjects and speeds (young,
r=-0.79, p « 0.05; old, r= —0.78, p « 0.05, Pearson’s r).

the synergy-encoding networks being constantly adjusted by
sensory and descending signals [34] throughout the lifetime.
Interestingly, the age-specific synergy clusters are related
to muscles TFL, GM, and Hams which are hip flexor, hip
extensor, and knee flexor, respectively. From this observation,
we can infer the potential of the Hams to compensate GM for
weak hip extension during gait. This inference agrees with the
previous result that biceps femoris (whose long head is a part
of Hams) contributes to stance hip extension in the presence of
a weak GM [35]. Also, the prevalence of the TFL synergy in
the older group during fast walking may reflect the use of TFL
for generating additional hip flexor torque due to weakness of
other hip flexors (e.g. iliacus and psoas) in older subjects.

B. Origins of Age-Related Muscle Synergy Modifications

The identified changes in the muscle synergies may reflect
age-related changes in the biomechanical requirements of
walking. Certainly, ageing is associated with changes in
biomechanical properties [3], [36], [37], which may impose
a different set of biomechanical constraints to functional
gait [12], thus necessitating muscle synergy modifications [38].
In our findings, at all speeds, the older subjects had larger
ranges of hip flexion but smaller ranges of hip extension
(Fig. 7). Previously, Judge et al. found that elderlies tended to
use more hip flexor power to compensate for the insufficient
ankle plantarflexor power to ensure gait performance [3], [4].
The between-group difference in the frequencies of use of the
hip-related muscle synergies we report here (Fig. 5) may well
reflect such compensations occurring in most, but not all of the
older subjects. Changes in the gait biomechanical constraints
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may also change the biomechanical functions subserved by
the same muscle synergies. For instance, muscle GM typically
provides stability to the sacroiliac joint during walking [39];
however, its function and properties would be altered when
changes occur as a result of joint injury. Specifically, people
with patellofemoral pain syndrome have a shorter activation
duration of GM muscle activity when running compared to
normal people [40].

Alternatively, the observed muscle-synergy modification
may result from age-related changes in the central nervous
system (CNS). It has been shown that age-related structural
and chemical changes of the motor regions in the brain lead
to the use of different functional networks even for simple
motor skills [41]. Also, the spinal motor circuitries, and
in particular the arrangements of the reflex pathways, are
certainly modified in older humans [42]. Gradual age-related
damage of spinal interneurons due to environmental factors
has also been reported [43]. All of the above could potentially
account for the muscle-synergy changes reported here.

It should be noted that the state of the CNS, the structures
of the muscle synergies deployed, the biomechanical functions
subserved by the synergies, and limb biomechanical properties
all mutually influence each other. The changes in the synergies
originating from age-related alterations in neuronal circuitry
would affect gait kinematics, which may elicit other necessary
compensatory changes in the synergies. Meanwhile, long-term
physical changes of the legs may also induce reshaping of the
muscle synergies through the sensory afferents [44].

C. Elderlies Have Higher Inter-Subject Variability of the
Synergies’ Temporal Activations

As an individual grows from a toddler to an adult, early
muscle synergies are fine-tuned to accommodate the develop-
ing neuro-musculoskeletal system, and the precise temporal
activations of the locomotor synergies are also reshaped
gradually [14], [45]. This gradual sculpting of the activations is
presumably also dependent on the individual’s history of sen-
sorimotor experience and motor learning [14], [17], [32], [46].
Our result here reveals a higher inter-subject variability of
the synergies’ temporal activations in elderlies (Fig. 9), indi-
cating a higher heterogeneity of locomotor control strategies
within the older cohort. The result may simply be the con-
sequence of the older subjects having had more years of life
than the younger ones for accumulating different patterns of
motor-control adjustments from their variable sensorimotor
histories or different levels of degeneration that altered neuro-
muscular control. Our result also agrees with the conclusion
of Baggen er al. [16], that the organization or activation
timing of the synergies for step ascent may be altered through
the lifetime, thus inevitably leading to higher across-subject
variability in the older group.

D. Negative Correlation Between Sparseness of
Synergies and Variability of Their Temporal Activation

Muscle synergies and their temporal activation were
extracted from the EMGs using NNMF. While the synergies
have been interpreted as neuromotor modules that corre-
spond to how discrete spinal or cortical premotor networks

co-activate the motoneuronal pools of multiple muscles, the
temporal activation may reflect the dynamic neural activi-
ties that drive the recruitment of these networks [32]. The
sparseness of the synergy vectors studied here, on the other
hand, quantifies the degree of muscle co-activations in each
motor module. The synergy with the highest sparseness would
involve the activation of only 1 muscle, while the synergy with
the lowest sparseness, co-activation of all recorded muscles.
Presumably, the synergy’s sparseness should reflect the con-
nectivity between the premotor neurons encoding the synergy
and the moto neurons [10].

As an attempt to relate properties of the synergy vectors (W)
to characteristics of their temporal activations, we correlated
W-sparseness with both the inter- and intra-subject variability
of C (Fig. 11, 12, 13) and surprisingly found a negative
correlation between them. To the best of our knowledge,
our finding is the first demonstration that variability of the
synergies’ drives could be related to the numbers of muscles
coordinated by the synergies. Thus, synergies with lower
sparseness values (i.e., more muscle components) have more
diverse temporal activations, both within and across subjects.
We speculate that the premotor networks that coordinate larger
numbers of muscles are also susceptible to modulation by
feedback signals coming from more muscles, thus giving them
greater variability of activations. Such feedback modulation
can be underpinned either by intraspinal reflex pathways or
long-loop reflex circuits that involve the descending pathways.
Indeed, it has been shown that synergy-encoding premotor
interneurons are directly contacted by both proprioceptive
and descending synaptic terminals [47]. In one of our recent
works, we showed that muscle synergies that exhibit higher
variability in their activations might play a more important role
in driving changes in motor outputs during early motor skill
learning [17]. Therefore, our demonstration of the negative
correlation between synergy sparseness and activation variabil-
ity implies that the synergies that are less sparse may play a
more critical role in helping the CNS arrive at the appropriate
motor outputs during the initial phase of locomotor adaptation
or gait retraining. Whether muscle synergies that are less
sparse should represent better targets of intervention awaits
further study. We do not know the functional implications of
this arrangement. Perhaps it reflects how motor-output vari-
ability is maximized for functional flexibility when the outputs
themselves are constrained by the structures of the muscle
synergies and the connectivity of the premotor networks.
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