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Abstract— A-mode ultrasound has the advantages of1

high resolution, easy calculation and low cost in predicting2

dexterous gestures. In order to accelerate the populariza-3

tion of A-mode ultrasound gesture recognition technology,4

we designed a human-machine interface that can inter-5

act with the user in real-time. Data processing includes6

Gaussian filtering, feature extraction and PCA dimension-7

ality reduction. The NB, LDA and SVM algorithms were8

selected to train machine learning models. The whole9

process was written in C + + to classify gestures in10

real-time. This paper conducts offline and real-time experi-11

ments based on HMI-A (Human-machine interface based on12

A-mode ultrasound), including ten subjects and ten com-13

mon gestures. To demonstrate the effectiveness of HMI-A14

and avoid accidental interference, the offline experiment15

collected ten rounds of gestures for each subject for ten-fold16

cross-validation. The results show that the offline recogni-17

tion accuracy is 96.92% ± 1.92%. The real-time experiment18

was evaluated by four online performance metrics: action19

selection time, action completion time, action completion20

rate and real-time recognition accuracy. The results show21

that the action completion rate is 96.0% ± 3.6%, and the22

real-time recognition accuracy is 83.8% ± 6.9%. This study23

verifies the great potential of wearable A-mode ultrasound24

technology, and provides a wider range of application sce-25

narios for gesture recognition.26

Index Terms— A-mode ultrasound, real-time, gesture27

recognition, human–machine interface (HMI).28

I. INTRODUCTION29

UPPER limb defects seriously affect the ability of daily liv-30

ing (ADL) of transradial amputees. Surface electromyog-31

raphy (sEMG) is the mainstream method for prosthetic control32

in the human-machine interface (HMI). A great deal of effort33

has been devoted to the study of sEMG, see [1], [2], [3],34

[4], [5], [6], [7] and references therein. Despite sEMG having35

been progressively expanded in clinical applications, it still has36
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inherent limitations [8], [9], [10]. First, sEMG has inherent 37

noise, which will cause crosstalk. Secondly, lack of robust 38

hierarchical signal, which makes the spatial resolution low. 39

Moreover, the typical finger-relate muscles are far away from 40

the surface tissue. The solution based on sEMG can not 41

distinguish the depth and spacing of the muscles, so it is 42

difficult to predict the dexterous gesture. 43

Recently, the ultrasound signal has been proposed as an 44

alternative non-invasive technology to control prostheses due 45

to its high signal-to-noise ratio, direct visualization of targeted 46

tissue, and ability to access deep-seated muscles. Due to the 47

extremely high commercial value of B-mode ultrasound in the 48

clinical field, the research on B-mode ultrasound is earlier 49

than on A-mode ultrasound [11], [12]. Shi et al. placed the 50

B-mode ultrasound probe on the biceps brachii and found that 51

there was a linear relationship between the thickness of the 52

muscle and the torque generated by the elbow [13], and there 53

was also a certain relationship between the muscle thickness 54

and fatigue [14]. Moreover, by obtaining the deformation 55

field between different gestures in the B-mode ultrasound 56

image, the recognition accuracy of the five gestures reached 57

94.05% ± 4.10% [15]. Zhang et al. [16] proposed a dual-mode 58

method combining B-mode ultrasound and sEMG to predict 59

the dynamic dorsiflexion of the ankle joint, which can achieve 60

better results than the single-mode method. Akhlaghi et al. 61

[17] classified four gestures in real-time, and controlled the 62

virtual hand using the HMI based on B-mode ultrasound. 63

Although the above studies have illustrated that B-mode 64

ultrasound is a reliable substitute for sEMG in HMI for 65

prosthetic control, B-mode ultrasound devices are bulky and 66

difficult to apply to wearable prosthetic devices. Compared 67

with B-mode ultrasound, the A-mode ultrasound transducer 68

is cheaper, smaller, and more wear-resistant. Finger-related 69

muscles are distributed around the forearm, and with the 70

distribution of multi-channel transducers, A-mode ultrasound 71

can detect the movement of these muscles. In addition, the 72

echo signal of A-mode ultrasound is one-dimensional signal, 73

which helps to shorten the calculation delay of HMI-A in real- 74

time recognition. 75

Due to the advantages of A-mode transducer in prosthetic 76

limb control, new transducers have emerged in recent years. 77

Sun et al. [18] designed a dual-frequency ultrasound trans- 78

ducer with a ring array arrangement. The low frequency 79

is responsible for deep detection and the high frequency is 80

responsible for shallow detection. Compared with the single 81

frequency transducer, the accuracy is improved by 7.3%. 82

Yan et al. [19] developed a lightweight transducer made of 83

polyvinylidene fluoride (PVDF) material, which can ensure 84
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Fig. 1. The framework of real-time gesture recognition scheme based on wearable A-mode ultrasound.

lightweight and obtained a classification accuracy of 97.6%.85

Xia et al. [10] used bushing to integrate the A-mode ultrasound86

and the sEMG. Compared with the single-mode method, the87

accuracy was improved by 4.9%.88

In addition, there are many practical studies on A-mode89

ultrasound [20], [21]. Guo et al. [22] used the A-mode90

ultrasound to obtain muscle deformation, and deduced the91

linear relationship between muscle deformation and wrist92

extension angle. Hettiarachchi et al. [23] increased the number93

of transducers to eight to recognize the finger movement of94

transradial amputees. Li et al. [24] proved that the average95

recognition accuracy using the A-mode ultrasound can reach96

96% for six movements, including five fingers in bending97

and static state. In addition, there were studies on force98

recognition [25], wrist recognition [26], arm position [27]99

based on A-mode ultrasound.100

Real-time performance is the premise for the practical101

application of wearable A-mode ultrasound. It is noted that102

most of the previous work related to A-mode ultrasound103

was analyzed offline, which can verify the feasibility of104

the algorithm. Real-time gesture recognition can be used in105

scenarios such as prosthetic control, presentations, and smart106

home appliances. These scenarios have higher requirements107

for real-time performance. Excessive response time will affect108

the interaction between the user and the HMI-A, resulting in109

delay or misjudgment.110

In this paper, a gesture recognition scheme based on wear-111

able A-mode ultrasound is proposed as shown in Fig. 1. The112

excellent recognition ability of this scheme is verified in the113

offline experiment. Then its real-time performance is further114

verified by a customized graphical user interface (GUI). The115

main contributions of this paper are as follows:116

1) Realized real-time gesture recognition based on wearable117

A-mode ultrasound, providing a basis for practical use.118

2) Real-time experiment was evaluated by four online119

performance metrics and achieved high performance.120

3) Compared different features in three-dimensional map121

and introduced relative offset rate for quantitative analysis.122

The rest of this paper is organized as follows: firstly, 123

Section 2 introduces the A-mode ultrasound, experiment setup, 124

data processing and statistical analysis. Section 3 describes 125

the offline experiment and real-time experiment. Experimental 126

results and extended discussion are presented in Section 4. 127

Finally, Section 5 concludes the paper. 128

II. METHOD 129

A. A-Mode Ultrasound 130

A-mode ultrasound is a technology that uses the amplitude 131

of pulse-echo to display. It is the earliest and longest- 132

developed ultrasound technology. When the ultrasound signal 133

propagates through various tissues of the human body, if it 134

encounters a tissue mutation interface, the echo signal will 135

be reflected accordingly due to the difference in acoustic 136

impedance. Therefore, the echo signal reflects the structure of 137

human tissue to a certain extent. When the fingers move, the 138

ligaments are first pulled by muscle contractions, and then 139

the ligaments pull the corresponding muscles to complete 140

the movement. As an one-dimensional acoustic signal, the 141

A-mode ultrasound can reflect the position and amplitude 142

intensity from echo signal. Therefore, the A-mode ultrasound 143

echo signal on the human forearm muscle can reflect the 144

interface of the muscle-bone and muscle deformation. Muscle 145

deformation under different gestures will lead to different 146

ultrasound signals. By analyzing the echo signal of muscles, 147

different gestures can be decoded, which can be used to 148

build HMI. 149

As shown in Fig. 1, a 4-channel A-mode ultrasound sig- 150

nal acquisition instrument designed and manufactured by 151

ELONXI Company was chosen, which was used to drive 4 152

A-mode ultrasound transducers and receive the echo signal. 153

The transducers have a detection depth of 39mm, which can 154

be used to detect the movement of deep muscles and tendons 155

in the forearm. The repetition frequency was equal to the 156

real-time recognition frequency and set as 10 Hz, which means 157

it grabs 10 frames of data per second from the acquisition 158

instrument. The number of sampling dots of each channel is 159
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1000, and there are 4 channels in total. Therefore, each frame160

contains 4000 sampling dots, forming a matrix of 4 × 1000.
161

B. Experiment Setup162

Ten common era subjects (eight males and two females;163

23 ± 2 years, denoted as S1 to S10) without a history of neu-164

romuscular and joint diseases participated in the experiment.165

Before participating, all subjects were informed about the166

experiment and provided informed consent. The testing proce-167

dure followed the Declaration of Helsinki and was approved168

by the Institutional Review Board of Fuzhou University.169

As shown in Fig. 1, the subjects sat naturally with their170

elbows resting on the table and kept relaxed. Four A-mode171

transducers were attached to the forearm to get muscle infor-172

mation by a customized arm strap. Then, standard ultrasound173

couplant was applied between the skin and the transduc-174

ers. To evaluate the performance of the A-mode ultrasound175

for gesture recognition, we designed 10 different gestures.176

As shown in Fig. 1, including clenching fist(CF), stretching177

thumb (ST), stretching index finger (SI), stretching thumb178

and index finger(STI), stretching index finger and middle fin-179

ger(SIM), stretching ring finger and little finger (SRL), flexing180

ring finger and little finger(FRL), flexing thumb and index181

finger(FTI), flexing thumb (FT) and stretching all fingers(SA).182

Most of these gestures are commonly used in ADL [28].183

Signal acquisition was carried out with a customized GUI as184

shown in Fig. 1. Each subject completed ten gestures in turn,185

which was regarded as one round of the experiment, and each186

gesture lasted 5 seconds. Since the subjects need a certain187

reaction time, the initial and final seconds were deducted,188

while the data of the middle 3 seconds were retained. Each189

time the subjects completed one round of data collection, they190

were given a 60-second break to reduce the weariness and191

discomfort associated with the experiment.192

C. Data Processing193

The first 20 sampling dots and the last 20 sampling dots for194

each echo signal were removed before filtering due to they195

were usually unstable. As the signal processing flow shown196

in Fig. 1, the first line is the raw signal, the ordinate is the197

echo amplitude, and the abscissa is the echo time. The second198

line is the Gaussian filtered signal. The third line is the feature199

value extracted after segmentation, the ordinate represents the200

value of the feature, and the abscissa represents the dimension201

of the feature. The fourth line is the normalized features. The202

processing method of the ultrasound signal is similar to our203

previous work [29]. It consisted of Gaussian filtering, feature204

extraction, and feature dimensionality reduction.205

1) Gaussian Filtering: Considering the inherent noise and206

interference signal of ultrasound equipment. In the preprocess-207

ing stage of the original data, Gaussian filtering is chosen.208

As a zero phase shift filtering method with the smallest209

time-frequency window area, Gaussian filtering is widely used210

in the field of ultrasound signals. The ultrasound signal was211

filtered by the one-dimensional Gaussian function, as shown212

below:213

G(t) = 1√
2πσ

e− ( f −μ)2

2σ2 (1)214

where f denotes frequency, μ is the expectation, and σ is the 215

standard deviation of the Gaussian function. 216

2) Feature Extraction: We extracted the ultrasound signal 217

features with fixed window length and step size to obtain 218

representative information. The window length was set as 219

10 sampling dots and step size as 5, then calculated the 220

features Mean, Var, and ES of each window respectively. 221

Suppose N is the length of window size, i is the i th sampling 222

dot, X1x̄ is the average value of the window. 223

Denote Mean as the centralized trend of data, as follows: 224

Mean = 1

N

∑N

i=1
xi (2) 225

The Var is used to measure the dispersion of data and is 226

defined as follows: 227

V ar = 1

N

∑N

i=1
(xi − x̄) (3) 228

The ES feature is expressed as the Energy feature normal- 229

ized by sigmoid function, and the Energy feature is defined 230

as: 231

Energy =
(∑N

i=1
x2

i

) 1
2

(4) 232

The sigmoid function is defined as: 233

S(x) =
(

1 + e−(xi−b)
)−1

(5) 234

where, i represents the i th feature, according to experience, 235

we set threshold b = 3. 236

3) PCA Dimensionality Reduction: As a commonly used 237

data dimensionality reduction algorithm, principal component 238

analysis (PCA) transforms closely related variables into as 239

few new variables as possible, so that these new variables 240

are uncorrelated in pairs. Fewer comprehensive indicators 241

represent various types of information respectively to achieve 242

the purpose of data dimensionality reduction. Considering 243

the computational cost, we used PCA to reduce the feature 244

dimension to 40, and the cumulative contribution rate of prin- 245

cipal components after dimensionality reduction is greater than 246

99%. Additionally, we used the top three principal components 247

to draw a three-dimensional map of the features to compare 248

different methods of feature reduction more intuitively. 249

D. Statistical Analysis 250

Average offline recognition accuracy and real-time perfor- 251

mance metrics are reported with mean and standard devia- 252

tion (SD). One-way repeated measure analysis of variance 253

(ANOVA) and Mann-Whitney U test were used to compare 254

different features (i.e., Mean, Var and ES) and different clas- 255

sifiers (i.e., LDA, SVM and NB). If the analysis data follows 256

a normal distribution, one-way ANOVA was used. Otherwise, 257

the Mann-Whitney U test was used. Tukey’s honestly signif- 258

icant difference tests were used to assess whether there are 259

significant differences between different groups. The statistical 260

significance level of all comparisons was set to p = 0.05. 261

III. EXPERIMENT 262

A. Offline Experiment 263

1) Offline Test: For the offline experiment, we collected 264

a total of 10 rounds of data, each containing 10 gestures. 265
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Nine rounds of data are used as the training set, and the266

remaining round is used as the test set. In order to demon-267

strate the effectiveness of the offline experiment and avoid268

accidental interference, the experiment carried out ten-fold269

cross-validation.270

The Linear Discriminant Analysis (LDA) classifier, Support271

Vector Machine (SVM) classifier and Naive Bayes (NB) classi-272

fier are effective in small sample experiment [29]. Therefore,273

we selected the LDA, SVM and NB classifiers as machine274

learning algorithms. The recognition accuracy (RA) was used275

to evaluate, which is defined as follows:276

R A = Number o f correctly recogni zed gestures

T otal number of testing gestures
× 100%277

(6)278

2) Relative Offset Rate: To compare the influence of dif-279

ferent features on gesture recognition, we studied the feature280

space of different feature methods, and introduced relative off-281

set rate (OR) to quantitatively analyzed the recognition effect.282

Suppose that the class center coordinates of two groups of data283

are X1{x1
1 , x2

1 , . . . , xk
1 } and X2{x1

2 , x2
2 , . . . , xk

2 } respectively,284

and the two groups of data come from the same gesture.285

Where k represent the dimension of the feature. Then, the286

offset distance (OD) of the two class center coordinates can287

be defined as:288

O D = Euclidean(X1, X1) =
√√√√ k∑

i=1

(xi
1 − xi

2)
2

(7)289

Since different features differ in the order of magnitude,290

we used relative OR for comparison, which can be defined as:291

O R = O D∑n
i=1

∑n
j=1 Euclidean(Xi , X j )/C2

n
, i �= j (8)292

where n represents the number of gestures.293

B. Real-Time Experiment294

1) Real-Time Test: For the real-time experiment, we used295

the same data processing procedure for the offline test. In the296

offline experiment, the effect of the NB algorithm is slightly297

worse than that of the LDA and SVM. Therefore, only the298

LDA and SVM algorithms are used in the real-time experi-299

ment. To demonstrate the utility of the HMI-A, we tried to use300

very little training. For LDA and SVM algorithms, a round of301

gesture training is conducted respectively, and two rounds are302

repeated to evaluate the experimental results.303

2) Performance Metrics: To evaluate the online performance304

of the HMI-A for gesture recognition, four metrics were305

chosen, including motion selection time (ST), motion comple-306

tion time (CT), motion completion rate (CR), and real-time307

recognition accuracy (RA) [30].308

Fig. 2 shows a detailed explanation of ST and CT. ST is the309

time from the start of the test to the first successful gesture310

recognition, which reflects the reaction speed of the recogni-311

tion system. If a certain gesture is not recognized successfully312

within 5 seconds, it is considered that the recognition fails,313

and its ST is not included in the total statistics. CT is the314

time consumed to predict the current gesture rightly 10 times.315

Fig. 2. Illustration of real-time performance metrics.

If the gesture is not successfully recognized 10 times within 316

5 seconds, the gesture is regarded as incomplete. Since the 317

real-time recognition frequency is 10Hz, CT is greater than 318

one second, and the closer it is to one second, the better the 319

recognition effect. 320

CR is the percentage of actions completed within 5 seconds, 321

which reflects the usability of the HMI to the user. If a gesture 322

is successfully recognized 10 times within 5 seconds, the 323

action is considered complete. RA is the recognition accuracy 324

from the first correct prediction to the end of the 5 seconds 325

prediction time, which can represent the prediction stability. 326

Only when the current motion is marked as recognition 327

completion is the ST, CT, and RA counted. 328

IV. RESULTS AND DISCUSSION 329

A. Offline Analysis 330

After PCA dimensionality reduction, the top three principal 331

components are retained to draw gesture scatter plots obtained 332

by different feature extraction methods. As shown in Fig. 3, 333

X1, X2 and X3 represent the values of the 1st, 2nd, and 3rd 334

dimension principal components, respectively. Ten different 335

colored circles correspond to ten different gestures. Circles 336

of the same color are more concentrated in the ES method, 337

and clusters of circles of different colors are more spread out. 338

In contrast, the Var and Mean methods have lower aggregation 339

degree of circles of the same color, and the cluster distance 340

of circles of different colors is smaller, resulting in lower 341

discrimination of the SRL, FTI and FT gestures. The ES 342

method can make the same gesture more focused, while 343

different gesture clusters have greater distance between them. 344

Therefore, in the analysis of the feature space, the ES method 345

is the best. 346

The relative OR can quantitatively analyze the recognition 347

effect of different feature methods. Table I shows that the 348

relative OR of the ES method is significantly lower than that 349

of the Mean and Var methods. The lower the relative OR, the 350

higher the degree of intra class aggregation, which is consistent 351

with what we observe in the feature space. Table II lists the 352

recognition accuracy obtained by the three feature methods 353

using the three classification algorithms. Regardless of the 354

algorithm, the recognition accuracy obtained by the ES method 355

is higher than that of the Mean and Var methods, which further 356

verifies the above statement. 357
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Fig. 3. Scatter plots of the top three principal components after PCA with different feature methods.

Fig. 4. Offline gesture recognition error rate of ten different subjects.

TABLE I
RELATIVE OFFSET RATE OF DIFFERENT FEATURE METHODS

Fig. 4 shows the gesture recognition error rate for ten358

different subjects using the ES method and three classification359

algorithms in offline experiment, respectively. Compared with360

the average value of recognition error rate, the NB algorithm361

has the highest error rate for gesture recognition, and ANOVA362

shows that the LDA algorithm is significantly better than the363

NB algorithm ( p < 0.05 ). Fig.5 compares the ability of three364

classification algorithms to classify ten different gestures. The365

recognition performance of the LDA algorithm is the best, but366

the recognition accuracy of CF and SRL gestures is lower367

than that of the SVM algorithm. The recognition accuracy of368

almost all gestures, the NB algorithm is lower than that of the369

LDA and SVM algorithms. Therefore, we only used the LDA370

and SVM algorithms in the real-time experiment.371

B. Online Performance372

The online performance metrics of the HMI-A for gesture373

recognition are summarized in Table III and Table IV. Since374

it is a real-time experiment, the data of the LDA and SVM375

TABLE II
GESTURE RECOGNITION ACCURACY BASED ON COMBINATIONS OF

DIFFERENT FEATURE METHODS AND ALGORITHMS

come from two experiments. The ST includes the subject’s 376

reaction time and the time for the software to recognize the 377

correct gesture. The former depends on the response of the 378

subjects, the ST of S1 and S9 are both within 0.18 seconds, 379

while the slowest subject is 0.81 seconds. The CT can be 380

considered as ST plus the time of ten successful predictions. 381

Since the real-time recognition frequency is 10 Hz, the CT 382

should be one second longer than the ST. The results show that 383

the mean difference between CT and ST is within 1.1 seconds, 384

indicating that the entire recognition result is basically correct 385

during the completion of the gesture. 386

In practical applications, the CR is the most important 387

performance metric, which reflects whether the user’s expected 388
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TABLE III
PERFORMANCE METRICS FOR TEN SUBJECTS BASED ON LDA

TABLE IV
PERFORMANCE METRICS FOR TEN SUBJECTS BASED ON SVM

Fig. 5. Average recognition accuracy for ten different gestures.

Fig. 6. Real-time gesture recognition accuracy of ten different subjects.

movement can be achieved. The average CR of the LDA389

and SVM algorithms is more than 95%, which means that390

the HMI-A can basically complete the instructions issued391

by the user. Fig. 6 lists the gesture recognition accuracy392

of ten different subjects in the real-time experiment, which393

Fig. 7. Comparison of online performance metrics for LDA and SVM.

shows that both the LDA and SVM algorithms can get good 394

recognition accuracy. The average recognition accuracy of the 395

LDA algorithm is 82.5% ± 5.7%, and the SVM algorithm 396

is 83.8% ± 6.9%. In fact, since the recognition results of 397

the entire experimental process are considered, many wrong 398

gestures are included in the process of switching gestures, so 399

the actual recognition accuracy is higher than the experimental 400

results. Fig. 7 compares the online performance metrics of the 401

LDA and SVM algorithms. ANOVA shows that there is no 402

significant difference between the performance of the LDA and 403

SVM algorithms, which means that our gesture recognition 404

scheme can achieve favorable results with simple machine 405

learning algorithms. 406

V. CONCLUSION 407

In this paper, we proposed a real-time gesture recognition 408

scheme for HMI based on wearable A-mode ultrasound. The 409

experiments were performed on our customized GUI, and 410

the signal was acquired by four A-mode ultrasound transduc- 411

ers. Data processing includes filtering, feature extraction and 412
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dimensionality reduction. Based on this scheme, we have done413

offline and real-time experiments respectively. In the offline414

experiment, the feature three-dimensional map and relative OR415

were used to filter the features, and the ES feature with the best416

effect is selected. Then different classification algorithms are417

compared according to the recognition error rate. The effect of418

the NB algorithm is general, so the LDA and SVM algorithms419

are retained and applied to the next real-time experiment.420

The real-time experiment was evaluated by four online421

performance metrics. ST is mainly determined by the user’s422

reaction speed. CT and CR indicate that after the action423

selection is completed, the recognition of gestures is basically424

correct, and the completion rate is very high. RA counts the425

recognition accuracy throughout the experiment. Our scheme426

shows extremely high real-time performance and can be used427

in practical scenarios. This means the feasibility of HMI-A428

to replace traditional sEMG-based HMI, especially for the429

recognition of dexterous finger movements.430

However, HMI-A also has some limitations due to its own431

signal characteristics. The A-mode ultrasound can only detect432

depth information in one dimension, so its anti-interference433

ability is weaker than that of the B-mode ultrasound. The434

offset of the transducers and different arm postures lead to a435

decrease in the recognition accuracy. In the future, we hope to436

work on HMI-A robustness research. We will obtain a recog-437

nition model containing various situations by deep learning,438

or propose algorithms for transducers offset or arm posture439

changes.440
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