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Abstract— Automatic seizure detection system can serve1

as a meaningful clinical tool for the treatment and analysis2

of epilepsy using electroencephalogram (EEG) and has3

obtained rapid development. An automatic detection of4

epileptic seizure method based on kernel-based robust5

probabilistic collaborative representation (ProCRC) com-6

bined with graph-regularized non-negative matrix factor-7

ization (GNMF) is proposed in this work. The raw EEG8

signals are pre-processed through the wavelet transform to9

obtain time-frequency distribution of EEG signals as pre-10

liminary feature information and GNMF is further employed11

for dimension reduction, retaining and enhancing the pro-12

ductive feature information of EEG signals. Then, the test13

sample is represented using robust ProCRC that can decide14

whether the testing sample belongs to each class (seizure15

or non-seizure) by jointly maximizing the likelihood. In addi-16

tion, the kernel trick is applied to improve the separability17

of non-linear high dimensional EEG signals in robust Pro-18

CRC. Finally, post-processing techniques are introduced to19

generate more accurate and reliable results. The average20

epoch-based sensitivity of 96.48%, event-based sensitivity21

of 93.65% and specificity of 98.55% are acquired in this22

method, which is evaluated on the public Freiburg EEG23

database.24

Index Terms— Electroencephalogram, seizure detection,25

graph-regularized non-negative matrix factorization, kernel26

method, robust probabilistic collaborative representation.27

I. INTRODUCTION28

EPILEPSY is a chronic neurological disorder and29

manifests by repeated spontaneous seizures that result30

of excessive neuronal activity and 1% of the population31
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worldwide live with epilepsy [1], [2]. Electroencephalogram 32

plays an important role in seizure detection, which reflects the 33

brain electrical activities [3]. However, the technique could 34

be time consuming for trained electroencephalographers to 35

perform visual inspection on the long term EEG recordings 36

over an extended period of time. Sometimes this process may 37

lead to inaccuracies [4]. Besides, inconsistent identification 38

results are possible for the same EEG recording because of 39

the subjective nature of the analysis. Therefore, automatic 40

seizure detection systems are needed for epilepsy monitoring 41

and treatment as an effective and reliable tool to aide medical 42

staff [5]. 43

In the early 1980s, the method that decomposed EEG 44

signals into half waves and extracted sharpness, slope and 45

rhythmicity for classification was one of the earliest seizure 46

detection algorithms to be introduced in [6]. Subsequently, 47

automatic seizure detection systems have generated consid- 48

erable interest and various methods have been introduced 49

for epileptic detection, with varying degrees of success. 50

Srinivasan et al. [7] introduced an epileptic detection method 51

that applied the neural network and combined it with approx- 52

imate entropy. Wu et al. proposed an automatic seizure 53

detection method based on complementary ensemble empirical 54

mode decomposition (CEEMD) and extreme gradient boosting 55

(XGBoost) [8]. Khan et al. combined local binary patterns 56

(LBP) and discrete wavelet transform (DWT) to perform 57

time-frequency decomposition of signals, using univariate and 58

bivariate as features for epilepsy detection [9]. 59

Recently, deep learning has also been widely applied to 60

seizure detection or prediction, which achieved good perfor- 61

mance. Karácsony et al. proposed an end-to-end deep learning 62

approach based on a combination of Mask R-CNN, Inflated 3D 63

Convnet feature extraction and LSTM-FC for the classification 64

of Frontal and Temporal Lobe epileptic seizures [10]. Daoud 65

and Bayoumi applied the DCNN and Bi-LSTM network 66

learning spatial and temporal EEG features, as well as DCAE 67

based Semi-supervised learning approach for patient-specific 68

seizure prediction [11]. A deep learning-based model named 69

pyramidal one-dimensional convolutional neural network was 70

designed for the detection of epilepsy in [12]. Meanwhile, 71

Zhao et al. [13] introduced a novel graph attention network 72
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for automatic epileptic seizure detection. Duan et al. presented73

one-dimensional convolutional embedding modules and a deep74

metric learning model with a stage-wise training strategy to75

detect seizures [14].76

In many image or signal processing systems, discrete77

wavelet transform (DWT) is usually used to decompose78

the original record, and then the decomposed coefficients79

are reconstructed to the sub-signals of different frequency80

bands. Indeed, due to the non-stationary characteristics of81

EEG signals, the characteristics of time series EEG data are82

difficult to directly analyze, therefore, DWT is introduced83

to process the raw EEG recordings to provide the frequency84

and time domain information for the classification algorithm,85

which has been widely applied because of its suitable86

performance [3], [15], [16].87

Non-negative matrix factorization (NMF) has been applied88

successfully to various fields, including image processing89

[17], [18] and data clustering [19], [20] as a powerful matrix90

factorization technique. However, NMF does not preserve the91

geometrical information, which is essential for data process-92

ing. Compared with NMF, the graph-regularized non-negative93

matrix factorization (GNMF) proposed in [21] retains the94

intrinsic geometric structure, and therefore, more information95

retained by graph regularization, making it an ideal method for96

matrix factorization and data reduction. As redundancy exists97

in long-term EEG signals, GNMF can be used to perform data98

dimension reduction and retain the main feature information99

at the same time.100

Collaborative representation based classification (CRC) and101

sparse representation based classification (SRC) have achieved102

good performance in many fields, including pattern classifica-103

tion [22], [23] and facial recognition [24], [25], [26]. CRC104

and SRC both represent testing samples as an efficient linear105

combination through training samples. Wright et al. [27], per-106

formed face classification by evaluating the residuals that were107

obtained through SRC. However, the complicated computation108

procedure of the 1-norm to determine sparsity associated with109

SRC is time-consuming. Later, Zhang et al. [28] presented110

CRC as a development of SRC and achieved good perfor-111

mance in accuracy, with low complexity. To clarify the intrin-112

sic reason for CRC’s satisfactory performance, Cai et al. [29]113

gave a probabilistic collaborative representation method from114

a probability viewpoint for pattern classification. In this115

paper, we utilize the probabilistic collaborative representation-116

based classification (ProCRC) to represent the difference in117

EEG signals as an efficient classification method for seizure118

detection. Meanwhile, for inseparable EEG recordings in the119

original space, the kernel trick provides a linear separable120

representation method that maps the samples into the high-121

dimensional feature space, and which has performed well in122

machine learning and data classification [23], [24], [25]. The123

non-linear separability of long-term EEG signals makes it124

difficult to obtain effective classification results through linear125

separable methods. Therefore, the kernel trick is combined126

with ProCRC in this seizure detection system to help obtaining127

more accurate classification results.128

The main contributions of this work can be summarized as129

follows:130

• The DWT and GNMF are applied for retaining and131

enhancing the productive feature information, which can132

discover the intrinsic discriminating structure of the EEG 133

data. 134

• The kernel method is combined with robust probabilistic 135

collaborative representation for classification, with the 136

advantage that it could improve the linear separability 137

and efficiently calculate the maximum probability that a 138

test EEG sample belongs to each class. 139

• The pre-processing with the normalization based on dif- 140

ferential operator, as well as the post-processing including 141

multi-label fusion rule, optimize the performance of the 142

algorithm. 143

• The competitive experiment results are achieved on the 144

long-term EEG database with low computational cost. 145

The structure of this paper is as follows: section 2 briefly 146

introduces the database background and the details of the 147

datasets. The detailed algorithm for seizure detection is then 148

exhibited in section 3. Next, the results are showed in section 149

4 and section 5 is devoted to a detailed discussion of the 150

algorithm’s performance. Finally, section 6 presents the con- 151

clusions for this work. 152

II. EEG DATABASE 153

A. The Freiburg Database 154

The database from the Epilepsy Center of the University 155

Hospital of Freiburg was used to evaluate the automatic seizure 156

detection system proposed in this paper and this database 157

provided the EEG signals for 21 patients. A Neurofile NT 158

digital video EEG system was used to sample the raw EEG 159

signals with a 256 Hz sampling rate. A 16-bit A/D converter 160

was used to record the epilepsy activities. Besides, six chan- 161

nels were selected previously by well-trained epileptologists, 162

including three extra-focal and three focal channels. The EEG 163

data recorded in the three focal channels were used in this 164

paper. 165

Based on the clinical manifestation, the onset and offset of 166

epilepsy activities were determined by well-trained epileptolo- 167

gists. For each patient, the recording time containing seizures 168

ranged from 2 to 5 h because each patient had different types 169

of epilepsy. For each recorded seizure activity, the durations 170

were also different; for example, some were less than 12 s 171

while others were more than 15 min. A summary description 172

is shown in Table I. 173

B. Training and Testing Datasets 174

In this automatic seizure detection system, the database 175

was divided into two parts: the training set and testing set. 176

To address the imbalance quantity in the seizure and non- 177

seizure signals, the number of two types of signals in training 178

set was selected according to the following rule: for most 179

patients, one or two seizure recordings were chosen and double 180

non-seizure recordings were selected to form the training set. 181

It should be noted that for patient 18, three seizures were 182

used because the durations of seizure activities were too short. 183

Then data augmentation is performed on the seizure data in the 184

way that these data are resampled twice applied the synthetic 185

minority oversampling technique (SMOTE), which makes the 186

amounts of seizure and non-seizure data equal. 187

In total, for the training set, there are 0.33 h of seizure 188

EEG recordings and 0.66 h of non-seizure recordings, which 189



YUAN et al.: AUTOMATIC EPILEPTIC SEIZURE DETECTION USING GNMF AND KERNEL-BASED ROBUST ProCRC 2643

TABLE I
DETAILED INFORMATION OF THE FREIBURG EEG DATABASE

were divided into 885 segments with 295 seizure segments190

and 590 non-seizure segments. In addition, the testing set191

encompassed 557 h EEG recordings with 56 seizures from192

21 patients are employed for the evaluation of the proposed193

method, Specifically, it contains 1.40 h of seizure EEG194

recordings with 1256 segments and 555.60 h of non-seizure195

recordings with 50044 segments, which is long enough to196

evaluate the algorithm well.197

III. METHODOLOGIES198

The architecture of the whole algorithm for seizure detec-199

tion is depicted in Fig. 1, where (a) includes pre-processing,200

GNMF, kernel-based robust ProCRC and post-processing; (b)201

shows the procedure of kernel-based robust ProCRC.202

A. Pre-Processing203

The long-term raw EEG recordings were divided into204

4-s segments using the sliding window in a non-overlapping205

way. Then, the DWT was applied to the segments with206

five decomposition levels. After decomposition, five detailed207

coefficients for each segment were obtained, including d1 (64-208

128 Hz), d2 (32-64 Hz), d3 (16-32 Hz), d4 (8-16 Hz) and209

d5 (4-8 Hz), as well as the approximation coefficient 210

A5 (0-4 Hz). Here, we used the Daubechies-4 wavelet as 211

the wavelet function, because it has shown outstanding per- 212

formance in capturing EEG signals characteristics [30], [31]. 213

Then, EEG sub-signals were reconstructed using d3, d4 and 214

d5 for the detection system because the frequency for most 215

seizure activities was often below 30 Hz [32] and these 216

sub-signals produce less artifacts and background noise than 217

the other sub-signals. At the same time, if other detailed 218

coefficients were used, more data redundancy would occur and 219

more significant effects would still not be guaranteed. 220

Considering that the changes are not significant for some 221

seizure events comparing to non-seizure recordings, the nor- 222

malization based on differential operator is applied to enhance 223

the contrast between the background (non-seizure data) and 224

seizure data. After normalization, EEG signals can also satisfy 225

the non-negative constraint for GNMF. Here, the operator is 226

defined as: 227

P = exp(
1

m
|di f f (pi)|) (1) 228

Here, di f f refers to the first-order derivative, di f f (pi ) = 229

pi(t)− pi(t−1), refers to the EEG signals after reconstruction 230

and m is the positive parameter, chosen as 10000 in this 231
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Fig. 1. (a) Represents the whole process of the detection system, which can be divided into four parts: pre-processing; GNMF for data dimension
reduction; kernel-based robust ProCRC for determining the classification labels; and post-processing. (b) Outline of the kernel-based robust ProCRC
method.

paper. After normalization, the seizure activity becomes more232

clearly compared with the background, which suggests that233

the differential operator-based normalization could indeed234

enhance the true seizure activity.235

B. GNMF236

NMF has been applied successfully to various fields includ-237

ing computer vision and data clustering as a powerful matrix238

factorization technique. However, it fails to preserve the239

geometrical information, which is essential in data processing.240

Hence, GNMF was proposed to overcome this limitation.241

For the data matrix X = [x1, · · ·, xN ] ∈ RM×N , NMF aims242

at decomposing it into the product of two non-negative factors243

as:244

X ≈ U×VT (2)245

V = [v j k] ∈ RN×K and U = [uik ] ∈ RM×K refer to the246

coefficient matrix and the base matrix, respectively.247

The Euclidean distance between V and U is used as the248

objective function:249

ON M F =
∥∥∥X− UVT

∥∥∥2
(3)250

On the basis of the manifold learning theory, the GNMF251

algorithm was proposed in [21] in which the local geometric252

structure information was retained after matrix factorization. 253

The objective function is introduced for GNMF as follows: 254

OG N M F =
∥∥∥X− UVT

∥∥∥2 + λT r
(

VT LV
)

(4) 255

The local optimal updating rules used to obtain the two 256

matrices are as follows: 257

uik ← uik
(XV)ik(

UVTV
)

ik

(5) 258

v j k ← v j k

(
XTU+ λWV

)
j k(

VUTU+ λDV
)

j k

(6) 259

After GNMF, the base matrix U is obtained and we can convert 260

the raw EEG data into low-dimensional space from the original 261

space. The representation is defined as follows: 262

yi = U†xi (7) 263

where U† is the pseudo-inverse matrix of base matrix U. U† = 264

(UTU)−1UT. 265

In this paper, GNMF retains the main feature information 266

after dimensionality reduction by a new representation based 267

on U†. Considering EEG data will have non-negative values 268

after DWT decomposition, so the differential operator-based 269

normalization provides non-negative values that satisfy the 270

non-negative constraint for GNMF. We used the training 271

data after pre-processing to perform GNMF and obtain the 272

base matrix U in this paper. Furthermore, the pseudo-inverse 273
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matrix U† was computed and performed to transform the274

data as a low-dimensional representation and the main feature275

information of xi was retained in the new representation276

for yi .277

C. The Robust ProCRC278

Compared with CRC, robust ProCRC investigates the CRC279

algorithm from a probabilistic view and its performance,280

accuracy and time cost are better than either SRC or CRC.281

Suppose that data sets Y = [Y1, Y2, . . . , Yk] is a collection of282

training samples. The training samples belongs to K classes283

and each column in Yk represents a sample vector. And Yk284

refers to the data of k th class. According to [29], for a data285

points y inside S, a probability is defined through a Gaussian286

function:287

P(l(y) ∈ lY) ∝ exp(−c �α�2) (8)288

And y has the higher probability approaching to the S center289

if �α�2 is smaller. l(y) refers to the label of data point y, lY290

refers to the label set for the collaborative subspace S spanned291

by training samples and c refers to a constant.292

Practically, the testing sample z may be outside the collab-293

orative subspace and, if this is the case, the probability that294

the measure z belongs to S is defined as:295

P(l(z) ∈ lY) = P(l(z) = l(y)|l(y) ∈ lY)P(l(y) ∈ lY)296

∝ exp(−k �z − Yα�22 + c �α�22) (9)297

Here, λ = c/k and y is in the subspace S.298

For seizure detection, the EEG signals have two classes299

(seizure and non-seizure), so the algorithm should decide that300

the testing sample belongs to each class signal. For a sample301

y inside S, the collaborative representation can be defined as302

y = Yα = ∑K
K=1 Ykαk , where αk is the coding vector for303

Yk and α = [α1; α2; . . . ; αK ]. To represent a seizure data304

y having the same class label as yk , the probability can be305

calculated as:306

P(l(y) = k)|l(y) ∈ lY) ∝ exp(−ς �y − Ykαk�22) (10)307

ς is a constant.308

In addition, for a testing EEG sample z outside S, the309

probability can be computed as:310

P(l(z) = k)|l(z) = l(y)) = P(l(y) = k) · P(l(z)311

= l(y)|l(y) = k) ∝ exp(−(�z − Yα�22312

+λ �α�22 + γ �Yα − Ykαk�22)) (11)313

Suppose that a common data point y can be determined314

to maximize the joint probability and l(z) = k is also315

independent, we can then obtain the class label of z as:316

P(l(z) = k) = max P(l(z) = 1, . . . , l(z) = K ) = max317 ∏
k

P(l(z) = k) ∝ max exp(−(�z − Yα�22318

+λ �α�22
γ

K

∑K

i=1
(�Yα − Ykαk�22))) (12)319

By applying the logarithm operator in the previous formula,320

the result is:321

(α̂) = arg min
α

{
�z − Yα�22322

+λ �α�22 +
γ

K

∑K

k=1
(�Yα − Ykαk�22)

}
(13)323

where γ and λ are parameters.324

So, we obtain the probability that 325

P(l(z) = k) ∝ exp(−(+λ
∥∥α̂

∥∥2
2 +

∥∥z − Yα̂
∥∥2

2 326

+γ
∥∥Yα̂ − Yk α̂k

∥∥2
2)) (14) 327

In many classification problems, l1 norm has a better perfor- 328

mance in enhancing the robustness, so the Laplacian kernel is 329

used and the probability is re-defined as: 330

P(l(z) = l(y)|l(y) ∈ lY) ∝ exp(−k �z − y�1) (15) 331

The iterative re-weighted least square algorithm is applied to 332

solve the sparse coefficient vector (α̂) for robust ProCRC and 333

so we have (16), as shown at the bottom of the next page. 334

Then, the sparse coefficient is applied to represent testing 335

EEG signals and the residual related to seizure and non-seizure 336

samples can be further obtained for classification. 337

D. Kernel-Based Robust ProCRC 338

As an effective data processing method, the kernel method 339

is applied to improve the linear separability for EEG signals 340

and the new linear representation of the testing samples are 341

obtained after mapping. The non-linear mapping is defined as: 342

Rm → RF . Rm refers to the original data space and RF refers 343

to the high-dimensional space.
〈
�(yi ),�(y j )

〉
RF refers to the 344

inner products for the transformed samples and is defined by 345

the kernel function as: 346〈
�(yi ),�(y j )

〉
RF = �(yi )

T �(y j )
T = K (yi , y j ) (17) 347

Here, K (, ) refers to the kernel function in the original data 348

space. After mapping, the training samples y and testing 349

samples z become K (M, y) and K (M, z), respectively. Here, 350

M is called the center matrix. The sparse representation then 351

becomes: 352

K (M, z) = K (M, y)β (18) 353

In this paper, the training data are applied to obtain matrix 354

M . For each class Yi = [y1
i , y2

i , . . . , yni
i ] of the training set, 355

the mean sample can be computed as ui = (
∑ni

j=1 y j
i )/ni . 356

Then, the nearest half samples of ui are selected to compose 357

the matrix Mi = [ui , y �i 1, y
�
i
2, . . . , y �i ni /2]. Next, the center 358

matrix M is generated as: 359

M = [M1, M2, . . . , MK ] (19) 360

In addition, the representation coefficient β is re-defined for 361

the high space RF after implementation of the kernel method 362

as: 363

(β̂) = (
γ

K

∑K

k=1
(K (M, Y)�k)

T · K (M, Y)k
�

364

+λI + K (M, Y)T WY K (M, Y))−1
365

K (M, Y)T WY K (M, z) (20) 366

After calculating the sparse representation coefficient, we can 367

compute the residual of seizure class and non-seizure class 368

data through the following definition: 369

γi (z) =
∥∥∥K (M, z)− K (M, Yi )β̂i

∥∥∥2

2
(21) 370

After mapping, the robust ProCRC is performed in the new 371

feature space. The residuals relating to the two class signals 372

are further compared to obtain the classification results. 373
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E. Post-Processing374

To further achieve more accurate classification results, post-375

processing techniques were performed on the kernel based376

robust ProCRC classifier outputs to obtain the classification377

label. These techniques included smoothing, threshold judg-378

ment, adaptive collar operation and multi-label fusion.379

The moving average filter is first used to the classifier380

outputs to remove the accidental burrs and noise in the381

smoothing step. The filter is defined as382

g(n) = 1

2C + 1

C∑
c=−c

y(n + c) (22)383

Here, y is the output of kernel based robust ProCRC as the384

filter input signal, g is the output signal and 2C + 1 is the385

smoothing length.386

For this system, we define the label “0” represents a387

non-seizure segment and “1” represents a seizure segment.388

To obtain the binary labels, the threshold judgement is applied389

to the smoothing result g by compared to a fixed threshold r .390

If g > r , the label is set to “1” (seizure segment), otherwise,391

it is set to “0” (non-seizure segment). The threshold value r392

is determined based on the classification verification results393

of the training data in the training step, which is different for394

each patient.395

For the three-channel signals used in this paper, there are396

three decision labels for one testing segment corresponding to397

each channel. Besides, in the pre-processing part, all testing398

segments are decomposed into three sub-signals that also399

generate three decision labels. Therefore, multi-label fusion400

is required, and the specific steps are as follows. Firstly, for401

the results of three channels of each sub-signal, if two or three402

channels decided as ‘1’ simultaneously, the segment will be403

marked as ‘1’. In this way, three decision labels connected with404

the three sub-signals are obtained. Next, for the three decision405

labels, if three is at least one marked as ‘1’, the segment will406

be considered as seizure data finally. Otherwise, the segment407

will be marked as non-seizure data. Fig 2 shows the details of408

multi-label fusion process.409

For this long-term EEG database, the changes of seizure410

activity are not obvious at the beginning and ending stages.411

At the same time, smoothing causes these changes to be less412

obvious. These factors make some seizure segments missed.413

Therefore, the adaptive collar operation is used in the last414

step to compensate for the missing segments. In this step,415

both sides are extended m segments for each detected seizure416

event. Considering that seizure amplitude is in proportion to417

the seizure duration [3], so the value of m is patient specific418

and selected based on the initial duration of seizure activities419

for this technique.420

IV. EXPERIMENT RESULTS421

The Freiburg EEG database was adopted to evaluate the422

proposed detection algorithm and the experiments were exe-423

cuted in the MATLAB2016 with an Inter Core processor with424

a 2.4Hz environment on a personal computer. To evaluate the 425

proposed seizure detection algorithm, two types of evaluation 426

criteria were used in this paper. The raw EEG signals were 427

divided into 4 s segments in the pre-processing stage, so the 428

first approach was segment-based evaluation, which contained 429

three contents: sensitivity, recognition accuracy and specificity. 430

The segments detected by this method were compared with the 431

segments labeled by experts, and three measures were defined 432

as follows: 433

Sensitivity: the number of seizure segments that were 434

detected correctly by our system divided by all seizure 435

segments labeled by experts. This measure represents the 436

accurate ability to detect epilepsy seizure signals. Specificity: 437

the non-seizure segments that were labeled by our system 438

divided by all non-seizure segments labeled by experts. The 439

specificity represents the accurate ability to detect non-seizure 440

data. Recognition accuracy: EEG segment numbers that were 441

distinguished correctly divided by the total EEG segments. 442

Although high sensitivity and specificity are the goals of 443

most epilepsy detection systems, these two goals are contra- 444

dictory. Specifically, improving sensitivity reduces specificity 445

as non-seizure signals may be incorrectly marked as seizure 446

signals. Meanwhile, if higher specificity is obtained, the sen- 447

sitivity is reduced and some seizure activities may be missed. 448

In addition, the quantity of non-seizure data is much longer 449

than seizure data leading to a particular imbalance between 450

two types of data. Hence, the appropriate methods for each 451

stage of this algorithm are needed to solve the data imbalance 452

problem and obtain both better sensitivity and specificity in 453

this work. 454

The results evaluated by the first approach are depicted in 455

Table II. The average results that were achieved included a 456

sensitivity of 96.48%, recognition accuracy of 98.56% and 457

specificity of 98.55%. For most patients (18 out of 21), the 458

sensitivity was 100%, which means that our method could 459

detect all seizure segments for these seizure activities. The 460

lowest sensitivity of 66.67% was obtained in patient 1 and 461

19 because the short duration of seizure events resulted in 462

unclear epilepsy activities. Besides patient 10, whose results 463

had the lowest specificity of 91.31%, all other patients result 464

achieved a specificity higher than 92%, with 15 patient results 465

achieving a specificity greater than 99%. 466

The second approach was an event-based evaluation that 467

focused on the number of seizure events, not the number of 468

EEG segments. Therefore, the number of seizure activities 469

detected by this method was compared with the number of 470

activities labeled by experts. Here, the sensitivity was defined 471

as the number of seizure events correctly detected by our 472

method divided by all seizure events labeled by experts. 473

Another criterion was the false detection rate, which was used 474

to focus on the non-seizure data that were marked as seizure 475

data by our system and calculated as the average number of 476

false seizures detected per hour. The results are shown as 477

Table III. 478

In total, 56 seizure events from testing set were adopted 479

to evaluate this method and 53 events were detected correctly, 480

(α̂) = arg min
α

{
γ

K

∑K

K=1
�Yα − Ykαk�22 + λ �α�22 + (Yα − z)T WY(Yα − z)

}
(16)
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TABLE II
THE RESULTS EVALUATED UNDER SEGMENT STANDARDS

Fig. 2. The multi-label fusion steps used in the post-processing stage.

with obtaining an average sensitivity of 93.65% for all patients.481

The average false detection rate of 0.44/h was achieved for482

21 patients, and except for patient 11 and 19 with false483

detection rates higher than 1/h, the false detection rates of most484

patients were relatively ideal. The high false detection rates485

of these two patients were likely caused by high-amplitude486

activities. In addition, 18 patients were able to correctly detect487

all seizure events, except patients 1, 15 and 19. For these488

three patients, each had one seizure event missed because the489

durations for the three seizure activities were too short.490

V. DISCUSSIONS491

Many automatic seizure detection algorithms require finding492

and computing suitable features and classifiers to generate493

TABLE III
THE RESULTS EVALUATED UNDER EVENT-BASED METHOD

Fig. 3. The residual difference of one-minute recordings from patient 2;
“1” refers to the residual difference of seizure data and “2” refers to the
residual difference of non-seizure data.

classification results. However, selecting valid features is time- 494

consuming, and the choice of classifiers is not always appro- 495

priate to best distinguish seizure from non-seizure data. In our 496
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Fig. 4. The diagram of the experimental procedure for 1 h EEG data
from patient 2. (a) the raw EEG signals from one channel; (b) the signals
after pre-processing; (c) the results after kernel based roust probabilistic
collaborative representation; (d) the results after smoothing; (e) the
binary value after threshold judgment for one channel.

proposed algorithm, only wavelet transform and GNMF are497

used for simple preprocessing, feature extraction and dimen-498

sionality reduction, and its computation is not complicated.499

In addition, in the classification step, we use the training data500

to represent the testing samples through kernel-based robust501

ProCRC algorithm and the residuals obtained related to the502

two class signals are compared to determine the classification503

results of the test samples, which is also easy to implement504

and has fewer parameters. Fig. 3 shows the difference between505

the residuals of the seizure stage and the non-seizure stage506

for patient 2, which can be seen that there is a significant507

difference and can be effectively classified.508

Besides, to obtain more accurate classification results for509

the long-term nonstationary EEG signals, our method also510

applies different methods in the pre-processing and post-511

processing parts. The DWT is used to decompose the raw512

signals into five sub-signals and to provide the frequency and513

time information. Then, normalization based on the differential514

operator is further adopted to heighten the difference between515

the two class signals, which can capture abrupt changes and516

improve classification accuracy.517

In the post-processing stage, as isolated incorrect detec-518

tion points exist in the whole detection process because the519

raw EEG signals have noise in the recording process, the520

smoothing step is used to remove these errors. In an epileptic521

seizure activity, due to the slow change, it is difficult to522

completely detect the segments of the beginning and the end523

stages, and some parts may be missed. In this method, the524

adaptive collar operation is performed to compensate for the525

missed segments. These procedures are shown in Fig. 4, which526

include smoothing and threshold judgment, while Fig.5 shows527

the multi-label fusion and adaptive collar techniques.528

The kernel method can transform the EEG samples into a529

more linear separable form through kernel mapping. In order530

to verify this effect, we conducted a comparison experiment531

using the robust ProCRC with kernel method and the robust532

Fig. 5. The steps of multi-label fusion and the adaptive collar operation
of 1 h EEG data from patient 2. (a) (b) and (c) the binary value EEG
signals from the three different channels; (d) the results after multi-label
fusion with the three channels; (e) the final classification results obtained
by the adaptive collar operation for the three channels.

Fig. 6. The comparison of results between the robust ProCRC with
kernel method and without kernel method.

ProCRC without kernel method, and 95.24% average sen- 533

sitivity, 90.83% recognition accuracy and 90.82% average 534

specificity were obtained through the robust ProCRC with 535

kernel method which was shown in Fig.6. The experiment 536

using the kernel method obtained better classification results, 537

which suggests that the linear representation of the testing 538

sample becomes more accurate for classification after kernel 539

mapping. 540

To further quantify the performance of our method, we cal- 541

culated the running time for each step: The training step had 542

a duration of 4.902 s, while for 1 h of EEG data, it took 543

41.54 s to obtain classification representation in the testing 544

stage. In the study of Yuan et al., the training step had a 545

duration of 15 s, while it took 1 min to obtain classification 546

representation in the testing stage for 1 h of data using kernel 547

collaborative representation [33]. Overall, the efficiency in our 548

proposed algorithm indicates that it is feasible as a real-time 549

seizure detection system. 550

Table IV provides a comparison between our method and 551

other methods that used the Freiburg database as well. 552

The seizure detection method introduced by [34] used 553
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TABLE IV
COMPARISON OF METHODS EVALUATED FROM THE SAME DATABASE

cross-bispectrum for feature extraction and obtained a lower554

false detection rate; but the sensitivity and specificity were555

both lower than ours and their method only detected the EEG556

data of 20 patients. In the work of Tzimourta. et al., they557

proposed a multicenter methodology applying DWT with five558

decomposition levels [35]. The random forest classifier was559

performed on 28.6 h of EEG data from 21 patients and the560

results were obtained with a sensitivity of 99.74% and false561

detection rate of 0.21/h. However, while the classification562

results were quite satisfactory, the experimental data contained563

only 28.6 h of EEG data, which was much shorter than the564

EEG data we used, while our results were obtained from565

590 h of EEG data. Geng et al. introduced an efficient method566

using bidirectional long short-term memory neural networks567

and stockwell transform to perform seizure detection [36].568

Even though 680 h of EEG data were used to evaluate the569

performance, a lower false detection rate of 0.24/h and a570

higher sensitivity of 98.09% were obtained, the patient 10 in571

this database is not considered in their method, whereas we572

analyzed data from all 21 patients. Furthermore, the time573

complexity of the training stage is about 48 s, which is574

relatively longer than our method with 4.902s, and their575

method uses far more hyperparameters than our method.576

As an efficient classification method, the CRC was intro-577

duced in [33] for epileptic detection. This method was used578

to analyze 595 h EEG data from 21 patients and achieved579

a sensitivity of 94.41% and false detection rate of 0.26/h, but580

the specificity and sensitivity were both lower than ours. Later,581

in the work of Yu et al., the authors proposed a method that582

applied kernel methodology combined with robust probabilis-583

tic collaborative representation [37]. A sensitivity of 97.48%,584

specificity of 96.81% and false detection rate of 0.53/h were585

obtained using their method which used only 52 seizures in586

the testing stage. Compared to their algorithm, our system587

evaluated 56 seizures. Even a slightly lower sensitivity was588

obtained, while better specificity and false detection rate were589

achieved. It shows that the recognition performance of our590

algorithm for seizure EEG data is not bad, and has a better591

recognition effect on non-seizure data. Tensor, as an efficient592

method, has been used for seizure classification. Ma et al. [38]593

calculated tensor distance as EEG feature and applied the 594

BLDA classifier for the detection algorithm. This method 595

obtained a sensitivity of 95.12% and specificity of 97.60% 596

for the EEG data from 21 patients, which were lower than 597

those obtained with our method. 598

Moreover, many deep learning algorithms have also been 599

validated and evaluated on this database. Zhou et al. proposed 600

a convolutional neural network (CNN) to distinguish ictal, 601

preictal, and interictal stages for seizure detection and achieved 602

the average accuracies of 95.4% for interictal and ictal classi- 603

fication using frequency domain signals, which is lower than 604

our methods [39]. Hussain et al. used 1 D-convolutional long 605

short-term memory neural networks to automatically generate 606

customized features for better classification of ictal, interictal, 607

and preictal segments, which achieved a highest classification 608

accuracy of 99.27%. Even though the results were better than 609

our method, they used 80% of the EEG segments for training 610

the model and the remaining 20% of signals were used to test, 611

while Our algorithm requires very little training data [40]. 612

Li et al. combined the fully convolutional network and the 613

Nested Long Short-Term Memory (NLSTM) model for end- 614

to-end automatic seizure detection and the average sensitivity 615

of 97.47%, specificity of 96.17%, and false detection rate 616

of 0.487/h are yielded [41]. Compared with their method, 617

a higher accuracy and a lower false detection rate are observed 618

in our proposed method. Therefore, our algorithm has compa- 619

rable performance with lower algorithm complexity and does 620

not require too many labeled samples for supervised learning. 621

VI. CONCLUSION 622

An efficient system using GNMF and kernel-based robust 623

ProCRC is proposed for epileptic seizure detection. For 624

long-term raw EEG signals, GNMF is mainly applied to 625

dimensionality reduction and preserve the useful EEG feature 626

information, after which the kernel method is used to enhance 627

the linear separable representation. After performing kernel- 628

based robust ProCRC, the training set is applied to represent 629

the testing samples sparsely and the residuals are compared to 630

distinguish the two classes of EEG signals and obtain the class 631
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label. The classification results and low time complexity also632

indicate the potential application value for real-time clinical633

application of the proposed algorithm.634
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