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Abstract— Automatic seizure detection system can serve
as a meaningful clinical tool for the treatment and analysis
of epilepsy using electroencephalogram (EEG) and has
obtained rapid development. An automatic detection of
epileptic seizure method based on kernel-based robust
probabilistic collaborative representation (ProCRC) com-
bined with graph-regularized non-negative matrix factor-
ization (GNMF) is proposed in this work. The raw EEG
signals are pre-processed through the wavelet transform to
obtain time-frequency distribution of EEG signals as pre-
liminary feature information and GNMF is further employed
for dimension reduction, retaining and enhancing the pro-
ductive feature information of EEG signals. Then, the test
sample is represented using robust ProCRC that can decide
whether the testing sample belongs to each class (seizure
or non-seizure) by jointly maximizing the likelihood. In addi-
tion, the kernel trick is applied to improve the separability
of non-linear high dimensional EEG signals in robust Pro-
CRC. Finally, post-processing techniques are introduced to
generate more accurate and reliable results. The average
epoch-based sensitivity of 96.48%, event-based sensitivity
of 93.65% and specificity of 98.55% are acquired in this
method, which is evaluated on the public Freiburg EEG
database.

Index Terms— Electroencephalogram, seizure detection,
graph-regularized non-negative matrix factorization, kernel
method, robust probabilistic collaborative representation.

|. INTRODUCTION

PILEPSY is a chronic neurological disorder and
manifests by repeated spontaneous seizures that result
of excessive neuronal activity and 1% of the population
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worldwide live with epilepsy [1], [2]. Electroencephalogram
plays an important role in seizure detection, which reflects the
brain electrical activities [3]. However, the technique could
be time consuming for trained electroencephalographers to
perform visual inspection on the long term EEG recordings
over an extended period of time. Sometimes this process may
lead to inaccuracies [4]. Besides, inconsistent identification
results are possible for the same EEG recording because of
the subjective nature of the analysis. Therefore, automatic
seizure detection systems are needed for epilepsy monitoring
and treatment as an effective and reliable tool to aide medical
staff [5].

In the early 1980s, the method that decomposed EEG
signals into half waves and extracted sharpness, slope and
rhythmicity for classification was one of the earliest seizure
detection algorithms to be introduced in [6]. Subsequently,
automatic seizure detection systems have generated consid-
erable interest and various methods have been introduced
for epileptic detection, with varying degrees of success.
Srinivasan et al. [7] introduced an epileptic detection method
that applied the neural network and combined it with approx-
imate entropy. Wu et al. proposed an automatic seizure
detection method based on complementary ensemble empirical
mode decomposition (CEEMD) and extreme gradient boosting
(XGBoost) [8]. Khan et al. combined local binary patterns
(LBP) and discrete wavelet transform (DWT) to perform
time-frequency decomposition of signals, using univariate and
bivariate as features for epilepsy detection [9].

Recently, deep learning has also been widely applied to
seizure detection or prediction, which achieved good perfor-
mance. Kardcsony et al. proposed an end-to-end deep learning
approach based on a combination of Mask R-CNN, Inflated 3D
Convnet feature extraction and LSTM-FC for the classification
of Frontal and Temporal Lobe epileptic seizures [10]. Daoud
and Bayoumi applied the DCNN and Bi-LSTM network
learning spatial and temporal EEG features, as well as DCAE
based Semi-supervised learning approach for patient-specific
seizure prediction [11]. A deep learning-based model named
pyramidal one-dimensional convolutional neural network was
designed for the detection of epilepsy in [12]. Meanwhile,
Zhao et al. [13] introduced a novel graph attention network
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for automatic epileptic seizure detection. Duan et al. presented
one-dimensional convolutional embedding modules and a deep
metric learning model with a stage-wise training strategy to
detect seizures [14].

In many image or signal processing systems, discrete
wavelet transform (DWT) is usually used to decompose
the original record, and then the decomposed coefficients
are reconstructed to the sub-signals of different frequency
bands. Indeed, due to the non-stationary characteristics of
EEG signals, the characteristics of time series EEG data are
difficult to directly analyze, therefore, DWT is introduced
to process the raw EEG recordings to provide the frequency
and time domain information for the classification algorithm,
which has been widely applied because of its suitable
performance [3], [15], [16].

Non-negative matrix factorization (NMF) has been applied
successfully to various fields, including image processing
[17], [18] and data clustering [19], [20] as a powerful matrix
factorization technique. However, NMF does not preserve the
geometrical information, which is essential for data process-
ing. Compared with NMF, the graph-regularized non-negative
matrix factorization (GNMF) proposed in [21] retains the
intrinsic geometric structure, and therefore, more information
retained by graph regularization, making it an ideal method for
matrix factorization and data reduction. As redundancy exists
in long-term EEG signals, GNMF can be used to perform data
dimension reduction and retain the main feature information
at the same time.

Collaborative representation based classification (CRC) and
sparse representation based classification (SRC) have achieved
good performance in many fields, including pattern classifica-
tion [22], [23] and facial recognition [24], [25], [26]. CRC
and SRC both represent testing samples as an efficient linear
combination through training samples. Wright et al. [27], per-
formed face classification by evaluating the residuals that were
obtained through SRC. However, the complicated computation
procedure of the 1-norm to determine sparsity associated with
SRC is time-consuming. Later, Zhang er al. [28] presented
CRC as a development of SRC and achieved good perfor-
mance in accuracy, with low complexity. To clarify the intrin-
sic reason for CRC’s satisfactory performance, Cai et al. [29]
gave a probabilistic collaborative representation method from
a probability viewpoint for pattern classification. In this
paper, we utilize the probabilistic collaborative representation-
based classification (ProCRC) to represent the difference in
EEG signals as an efficient classification method for seizure
detection. Meanwhile, for inseparable EEG recordings in the
original space, the kernel trick provides a linear separable
representation method that maps the samples into the high-
dimensional feature space, and which has performed well in
machine learning and data classification [23], [24], [25]. The
non-linear separability of long-term EEG signals makes it
difficult to obtain effective classification results through linear
separable methods. Therefore, the kernel trick is combined
with ProCRC in this seizure detection system to help obtaining
more accurate classification results.

The main contributions of this work can be summarized as
follows:

e The DWT and GNMF are applied for retaining and
enhancing the productive feature information, which can

discover the intrinsic discriminating structure of the EEG
data.

o The kernel method is combined with robust probabilistic
collaborative representation for classification, with the
advantage that it could improve the linear separability
and efficiently calculate the maximum probability that a
test EEG sample belongs to each class.

o The pre-processing with the normalization based on dif-
ferential operator, as well as the post-processing including
multi-label fusion rule, optimize the performance of the
algorithm.

o The competitive experiment results are achieved on the
long-term EEG database with low computational cost.

The structure of this paper is as follows: section 2 briefly

introduces the database background and the details of the
datasets. The detailed algorithm for seizure detection is then
exhibited in section 3. Next, the results are showed in section
4 and section 5 is devoted to a detailed discussion of the
algorithm’s performance. Finally, section 6 presents the con-
clusions for this work.

Il. EEG DATABASE
A. The Freiburg Database

The database from the Epilepsy Center of the University
Hospital of Freiburg was used to evaluate the automatic seizure
detection system proposed in this paper and this database
provided the EEG signals for 21 patients. A Neurofile NT
digital video EEG system was used to sample the raw EEG
signals with a 256 Hz sampling rate. A 16-bit A/D converter
was used to record the epilepsy activities. Besides, six chan-
nels were selected previously by well-trained epileptologists,
including three extra-focal and three focal channels. The EEG
data recorded in the three focal channels were used in this
paper.

Based on the clinical manifestation, the onset and offset of
epilepsy activities were determined by well-trained epileptolo-
gists. For each patient, the recording time containing seizures
ranged from 2 to 5 h because each patient had different types
of epilepsy. For each recorded seizure activity, the durations
were also different; for example, some were less than 12 s
while others were more than 15 min. A summary description
is shown in Table I.

B. Training and Testing Datasets

In this automatic seizure detection system, the database
was divided into two parts: the training set and testing set.
To address the imbalance quantity in the seizure and non-
seizure signals, the number of two types of signals in training
set was selected according to the following rule: for most
patients, one or two seizure recordings were chosen and double
non-seizure recordings were selected to form the training set.
It should be noted that for patient 18, three seizures were
used because the durations of seizure activities were too short.
Then data augmentation is performed on the seizure data in the
way that these data are resampled twice applied the synthetic
minority oversampling technique (SMOTE), which makes the
amounts of seizure and non-seizure data equal.

In total, for the training set, there are 0.33 h of seizure
EEG recordings and 0.66 h of non-seizure recordings, which
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TABLE |
DETAILED INFORMATION OF THE FREIBURG EEG DATABASE
Patient Seizure type Sex Azziz%ieoz?(z;re N;?;t:lizs()f TT;:;% IE:}:E)G
1 CP,SP F 13.1 4 26
2 CP,SP,GTC M 118.2 3 26
3 CP, SP M 72.7 5 27
4 CP, SP, GTC F 87.4 5 28
5 CP, SP, GTC F 44.9 5 27
6 CP,GTC F 66.9 3 26
7 CP,SP,GTC F 153.5 3 25
8 CP,SP F 163.7 2 25
9 CP,GTC M 114.7 5 27
10 CP,SP,GTC M 411.0 4 25
11 CP,SP,GTC F 157.3 4 26
12 CP,SP,GTC F 55.1 4 28
13 CP,SP,GTC F 158.3 2 25
14 CP,GTC F 216.4 4 25
15 CP,SP,GTC M 145.4 4 33
16 CP,SP,GTC F 121.0 4 27
17 CP,SP,GTC M 86.2 5 27
18 CP,SP F 13.7 5 26
19 CP,SP,GTC F 12.5 4 24
20 CP,SP,GTC M 85.7 5 27
21 CP,SP M 83.1 5 27
Total - - 114.3 85 557

M: Male, F: Female, CP refers to complex partial seizures type, SP refers to simple partial seizures type, GTC re-

fers to generalized tonic-clonic seizures type.

were divided into 885 segments with 295 seizure segments
and 590 non-seizure segments. In addition, the testing set
encompassed 557 h EEG recordings with 56 seizures from
21 patients are employed for the evaluation of the proposed
method, Specifically, it contains 1.40 h of seizure EEG
recordings with 1256 segments and 555.60 h of non-seizure
recordings with 50044 segments, which is long enough to
evaluate the algorithm well.

1. METHODOLOGIES

The architecture of the whole algorithm for seizure detec-
tion is depicted in Fig. 1, where (a) includes pre-processing,
GNMEF, kernel-based robust ProCRC and post-processing; (b)
shows the procedure of kernel-based robust ProCRC.

A. Pre-Processing

The long-term raw EEG recordings were divided into
4-s segments using the sliding window in a non-overlapping
way. Then, the DWT was applied to the segments with
five decomposition levels. After decomposition, five detailed
coefficients for each segment were obtained, including d1 (64-
128 Hz), d2 (32-64 Hz), d3 (16-32 Hz), d4 (8-16 Hz) and

d5 (4-8 Hz), as well as the approximation coefficient
A5 (0-4 Hz). Here, we used the Daubechies-4 wavelet as
the wavelet function, because it has shown outstanding per-
formance in capturing EEG signals characteristics [30], [31].
Then, EEG sub-signals were reconstructed using d3, d4 and
dS for the detection system because the frequency for most
seizure activities was often below 30 Hz [32] and these
sub-signals produce less artifacts and background noise than
the other sub-signals. At the same time, if other detailed
coefficients were used, more data redundancy would occur and
more significant effects would still not be guaranteed.

Considering that the changes are not significant for some
seizure events comparing to non-seizure recordings, the nor-
malization based on differential operator is applied to enhance
the contrast between the background (non-seizure data) and
seizure data. After normalization, EEG signals can also satisfy
the non-negative constraint for GNMF. Here, the operator is
defined as:

1
P = exp(-|dif f(p)l) M

Here, diff refers to the first-order derivative, diff(p;) =
pi(t)— pi(t—1), refers to the EEG signals after reconstruction
and m is the positive parameter, chosen as 10000 in this



2644 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022
Pre-processing Post-processing
T ! (o i
! | | B |
I 1
: transform | Kemel- : H
signals : — :—» GNMF N —b: :—> Results
|| Normalization ! ProCRC i Collar operatio% :
1| basedon | | i
: differential : : multi-label :
|| operator ! : s !
| I ! i
e L s s cm i
 Jo Residual
dimensional
Sl related to
e seizure data
samples
¢ T v
Center robust- : Decision
HEeET Y| matrix | ProCRC Rl output
A A
h 4
Low- Residual
dimensional related to
testing non-seizure
samples data
Fig. 1. (a) Represents the whole process of the detection system, which can be divided into four parts: pre-processing; GNMF for data dimension

reduction; kernel-based robust ProCRC for determining the classification labels; and post-processing. (b) Outline of the kernel-based robust ProCRC

method.

paper. After normalization, the seizure activity becomes more
clearly compared with the background, which suggests that
the differential operator-based normalization could indeed
enhance the true seizure activity.

B. GNMF

NMF has been applied successfully to various fields includ-
ing computer vision and data clustering as a powerful matrix
factorization technique. However, it fails to preserve the
geometrical information, which is essential in data processing.
Hence, GNMF was proposed to overcome this limitation.

For the data matrix X = [Xq, - - -, Xy ] € RY*N NMF aims
at decomposing it into the product of two non-negative factors
as:

X~UxV’! )

V = [vjx] € RVK and U = [uy] € RM*Krefer to the
coefficient matrix and the base matrix, respectively.

The Euclidean distance between V and U is used as the
objective function:

Oyur = [X—uv7 )(2 3)

On the basis of the manifold learning theory, the GNMF
algorithm was proposed in [21] in which the local geometric

structure information was retained after matrix factorization.
The objective function is introduced for GNMF as follows:

2
Ogwmr = |X = OV |"+aTr (VILV) )

The local optimal updating rules used to obtain the two
matrices are as follows:

XV)ix
Uik < Uik (UVTV)ik (5)
(XTU + iWV)jk 6
l)]k < D]k (VUTU—i—iDV)]k ( )

After GNMEF, the base matrix U is obtained and we can convert
the raw EEG data into low-dimensional space from the original
space. The representation is defined as follows:

yi =U'x; (7)

where U is the pseudo-inverse matrix of base matrix U. UT =
UTu)-uT.

In this paper, GNMF retains the main feature information
after dimensionality reduction by a new representation based
on U'. Considering EEG data will have non-negative values
after DWT decomposition, so the differential operator-based
normalization provides non-negative values that satisfy the
non-negative constraint for GNMF. We used the training
data after pre-processing to perform GNMF and obtain the
base matrix U in this paper. Furthermore, the pseudo-inverse
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matrix U was computed and performed to transform the
data as a low-dimensional representation and the main feature
information of x; was retained in the new representation
for y;.

C. The Robust ProCRC

Compared with CRC, robust ProCRC investigates the CRC
algorithm from a probabilistic view and its performance,
accuracy and time cost are better than either SRC or CRC.
Suppose that data sets Y = [Yq, Y3, ..., Y] is a collection of
training samples. The training samples belongs to K classes
and each column in Y; represents a sample vector. And Yy
refers to the data of k th class. According to [29], for a data
points y inside S, a probability is defined through a Gaussian
function:

P((y) € Iy) o exp(—c ||la||*) 8)

And y has the higher probability approaching to the S center
if ||a||, is smaller. /(y) refers to the label of data point y, ly
refers to the label set for the collaborative subspace S spanned
by training samples and ¢ refers to a constant.

Practically, the testing sample z may be outside the collab-
orative subspace and, if this is the case, the probability that
the measure z belongs to S is defined as:

P((z) ely) = PU() =IW() € ly)PU(y) € ly)
o exp(—k [z — Yal3 + ¢ l|lall3) )

Here, 4 = c¢/k and y is in the subspace S.

For seizure detection, the EEG signals have two classes
(seizure and non-seizure), so the algorithm should decide that
the testing sample belongs to each class signal. For a sample
y inside S, the collaborative representation can be defined as
y =Ya = Z,’g:l Yo, where oy is the coding vector for
Y, and a = [a1; a2;...;ak]. To represent a seizure data
y having the same class label as y, the probability can be
calculated as:

P((y) = b)lI(y) € Iy) ocexp(—¢ lly — Yeoxl13)

¢ is a constant.
In addition, for a testing EEG sample z outside S, the
probability can be computed as:

P(l(z) =k)llz) =1(y)) = PU(y) =k) - P((z)
= 1WIG) = k) o< exp(—(llz = Yall3
+illal3 +y 1Ya = Yearl3) (D)
Suppose that a common data point y can be determined

to maximize the joint probability and I(z) = k is also
independent, we can then obtain the class label of z as:

P(l(z) =k) =max P(l(z) =1,...,1(z) = K) = max
[1, PU@ = &) & maxexp(~(llz - Yal3
2 1alB LS (Ve — YD) (12)

By applying the logarithm operator in the previous formula,
the result is:

(10)

(&) = argmin {“Z — Ya||%
(43

K
il + 2 >, (Yo - Ykakn%)] (13)

where y and A are parameters.
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So, we obtain the probability that
PUG) = k) ccexp(—(+A a5 + = - Yal;
+y | Yé - Yeax[2) (14)

In many classification problems, /; norm has a better perfor-
mance in enhancing the robustness, so the Laplacian kernel is
used and the probability is re-defined as:

P(l(z) =1WI(Y) € ly) occexp(=kllz = yll1)

The iterative re-weighted least square algorithm is applied to
solve the sparse coefficient vector (@) for robust ProCRC and
so we have (16), as shown at the bottom of the next page.

Then, the sparse coefficient is applied to represent testing
EEG signals and the residual related to seizure and non-seizure
samples can be further obtained for classification.

5)

D. Kernel-Based Robust ProCRC

As an effective data processing method, the kernel method
is applied to improve the linear separability for EEG signals
and the new linear representation of the testing samples are
obtained after mapping. The non-linear mapping is defined as:
R™ — RF. R™ refers to the original data space and R refers
to the high-dimensional space. ((I)(y,-), (I)(yj))RF refers to the
inner products for the transformed samples and is defined by
the kernel function as:

(@), @) gr = PN @) =K (i, y))

Here, K(,) refers to the kernel function in the original data
space. After mapping, the training samples y and testing
samples z become K (M, y) and K (M, z), respectively. Here,
M is called the center matrix. The sparse representation then
becomes:

a7)

KM, z) = KM, y)p (18)

In this paper, the training data are applied to obtain matrix
M. For each class Y; = [yil, yl.z, e, yi"”] of the training set,
the mean sample can be computed as u; = (Z;"z 1 yij )/n;.
Then, the nearest half samples of u; are selected to compose
the matrix M; = [ui,ylfl,yéz, ..., y{"/2]. Next, the center
matrix M is generated as:

M = [M;, M, ..., Mg] 19)

In addition, the representation coefficient £ is re-defined for
the high space R after implementation of the kernel method
as:

N K
B = &>, KMY)D KO, Vi
+AI + KM, Y) " WyKM, Y))™!

KM, YY) WyK(M, z) (20)

After calculating the sparse representation coefficient, we can
compute the residual of seizure class and non-seizure class
data through the following definition:

70 = | K2~ KM YR @D

After mapping, the robust ProCRC is performed in the new
feature space. The residuals relating to the two class signals
are further compared to obtain the classification results.
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E. Post-Processing

To further achieve more accurate classification results, post-
processing techniques were performed on the kernel based
robust ProCRC classifier outputs to obtain the classification
label. These techniques included smoothing, threshold judg-
ment, adaptive collar operation and multi-label fusion.

The moving average filter is first used to the classifier
outputs to remove the accidental burrs and noise in the
smoothing step. The filter is defined as

C

D y+o

c=—C

g(n) = (22)

2C+1

Here, y is the output of kernel based robust ProCRC as the
filter input signal, g is the output signal and 2C + 1 is the
smoothing length.

For this system, we define the label “0” represents a
non-seizure segment and “1” represents a seizure segment.
To obtain the binary labels, the threshold judgement is applied
to the smoothing result g by compared to a fixed threshold r.
If g > r, the label is set to “1” (seizure segment), otherwise,
it is set to “0” (non-seizure segment). The threshold value r
is determined based on the classification verification results
of the training data in the training step, which is different for
each patient.

For the three-channel signals used in this paper, there are
three decision labels for one testing segment corresponding to
each channel. Besides, in the pre-processing part, all testing
segments are decomposed into three sub-signals that also
generate three decision labels. Therefore, multi-label fusion
is required, and the specific steps are as follows. Firstly, for
the results of three channels of each sub-signal, if two or three
channels decided as ‘1’ simultaneously, the segment will be
marked as ‘1°. In this way, three decision labels connected with
the three sub-signals are obtained. Next, for the three decision
labels, if three is at least one marked as ‘1’, the segment will
be considered as seizure data finally. Otherwise, the segment
will be marked as non-seizure data. Fig 2 shows the details of
multi-label fusion process.

For this long-term EEG database, the changes of seizure
activity are not obvious at the beginning and ending stages.
At the same time, smoothing causes these changes to be less
obvious. These factors make some seizure segments missed.
Therefore, the adaptive collar operation is used in the last
step to compensate for the missing segments. In this step,
both sides are extended m segments for each detected seizure
event. Considering that seizure amplitude is in proportion to
the seizure duration [3], so the value of m is patient specific
and selected based on the initial duration of seizure activities
for this technique.

IV. EXPERIMENT RESULTS

The Freiburg EEG database was adopted to evaluate the
proposed detection algorithm and the experiments were exe-
cuted in the MATLAB2016 with an Inter Core processor with

a 2.4Hz environment on a personal computer. To evaluate the
proposed seizure detection algorithm, two types of evaluation
criteria were used in this paper. The raw EEG signals were
divided into 4 s segments in the pre-processing stage, so the
first approach was segment-based evaluation, which contained
three contents: sensitivity, recognition accuracy and specificity.
The segments detected by this method were compared with the
segments labeled by experts, and three measures were defined
as follows:

Sensitivity: the number of seizure segments that were
detected correctly by our system divided by all seizure
segments labeled by experts. This measure represents the
accurate ability to detect epilepsy seizure signals. Specificity:
the non-seizure segments that were labeled by our system
divided by all non-seizure segments labeled by experts. The
specificity represents the accurate ability to detect non-seizure
data. Recognition accuracy: EEG segment numbers that were
distinguished correctly divided by the total EEG segments.

Although high sensitivity and specificity are the goals of
most epilepsy detection systems, these two goals are contra-
dictory. Specifically, improving sensitivity reduces specificity
as non-seizure signals may be incorrectly marked as seizure
signals. Meanwhile, if higher specificity is obtained, the sen-
sitivity is reduced and some seizure activities may be missed.
In addition, the quantity of non-seizure data is much longer
than seizure data leading to a particular imbalance between
two types of data. Hence, the appropriate methods for each
stage of this algorithm are needed to solve the data imbalance
problem and obtain both better sensitivity and specificity in
this work.

The results evaluated by the first approach are depicted in
Table II. The average results that were achieved included a
sensitivity of 96.48%, recognition accuracy of 98.56% and
specificity of 98.55%. For most patients (18 out of 21), the
sensitivity was 100%, which means that our method could
detect all seizure segments for these seizure activities. The
lowest sensitivity of 66.67% was obtained in patient 1 and
19 because the short duration of seizure events resulted in
unclear epilepsy activities. Besides patient 10, whose results
had the lowest specificity of 91.31%, all other patients result
achieved a specificity higher than 92%, with 15 patient results
achieving a specificity greater than 99%.

The second approach was an event-based evaluation that
focused on the number of seizure events, not the number of
EEG segments. Therefore, the number of seizure activities
detected by this method was compared with the number of
activities labeled by experts. Here, the sensitivity was defined
as the number of seizure events correctly detected by our
method divided by all seizure events labeled by experts.
Another criterion was the false detection rate, which was used
to focus on the non-seizure data that were marked as seizure
data by our system and calculated as the average number of
false seizures detected per hour. The results are shown as
Table II1.

In total, 56 seizure events from testing set were adopted
to evaluate this method and 53 events were detected correctly,

. A 2 2
(@) = arg min [? ZK:l 1Yo — Yrarls + 4 llall3 + (Yo — 2)" Wy (Ya — Z)]

(16)
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TABLE Il TABLE Il
THE RESULTS EVALUATED UNDER SEGMENT STANDARDS THE RESULTS EVALUATED UNDER EVENT-BASED METHOD
Patient Sensitivity (%) Accuracy (%) Specificity (%) Number of Number of Sensitivity False
Patient  seizures experts true 0 detection
1 66.67 92.54 92.55 marked detections (%) rate/h
2 100 99.96 99.96 | ) 1 50 054
3 100 99.46 99.46 ) 2 ) 100 0.08
4 100 99.58 99.58 3 3 3 100 0.19
5 100 98.63 98.63 4 4 4 100 0.18
6 100 99.69 99.69 5 3 3 100 0.48
7 100 99.93 99.93 6 5 2 100 035
8 100 99.59 99.59 7 5 2 100 0.08
9 100 97.99 97.98 ] 1 1 100 0.12
10 100 91.31 91.30 9 4 4 100 0.52
11 100 97.09 97.09 10 5 2 100 0.40
12 100 99.94 99.94 1 3 3 100 112
13 100 99.58 99.58 12 3 3 100 011
14 100 99.56 99.56 13 1 1 100 0.08
15 92.73 99.40 99.43 14 3 3 100 0.16
16 100 99.49 99.49 15 3 2 66.67 0.06
17 100 99.95 99.95 16 3 3 100 015
18 100 99.15 99.15 17 4 4 100 011
19 66.67 97.74 97.75 18 5 2 100 0.96
20 100 99.79 99.79 19 5 1 50 391
21 100 99.16 99.16 20 3 3 100 011
Average 96.48 98.55 98.56 1 4 4 100 030
D3 The labels of . The decision Total 56 53 93.65 0.44
3 Fusion
L]ree channels| of D3
0.65 — — 1
The labels of The decision al
D4 dhree channels of D4 Results 06 1
0.55 ': q
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three channels of D5
0.45 - 1
Fig. 2. The multi-label fusion steps used in the post-processing stage. 04l ]
. .. . . 0.35 | 1
with obtaining an average sensitivity of 93.65% for all patients.
The average false detection rate of 0.44/h was achieved for 031 L | 1
21 patients, and except for patient 11 and 19 with false 0.25 ]
detection rates higher than 1/h, the false detection rates of most o
patients were relatively ideal. The high false detection rates | ‘
of these two patients were likely caused by high-amplitude 0.15 — 1

activities. In addition, 18 patients were able to correctly detect
all seizure events, except patients 1, 15 and 19. For these
three patients, each had one seizure event missed because the
durations for the three seizure activities were too short.

V. DISCUSSIONS

Many automatic seizure detection algorithms require finding
and computing suitable features and classifiers to generate

1 2

Fig. 3. The residual difference of one-minute recordings from patient 2;
“1” refers to the residual difference of seizure data and “2” refers to the
residual difference of non-seizure data.

classification results. However, selecting valid features is time-
consuming, and the choice of classifiers is not always appro-
priate to best distinguish seizure from non-seizure data. In our
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Fig. 4. The diagram of the experimental procedure for 1 h EEG data
from patient 2. (a) the raw EEG signals from one channel; (b) the signals
after pre-processing; (c) the results after kernel based roust probabilistic
collaborative representation; (d) the results after smoothing; (e) the
binary value after threshold judgment for one channel.

proposed algorithm, only wavelet transform and GNMF are
used for simple preprocessing, feature extraction and dimen-
sionality reduction, and its computation is not complicated.
In addition, in the classification step, we use the training data
to represent the testing samples through kernel-based robust
ProCRC algorithm and the residuals obtained related to the
two class signals are compared to determine the classification
results of the test samples, which is also easy to implement
and has fewer parameters. Fig. 3 shows the difference between
the residuals of the seizure stage and the non-seizure stage
for patient 2, which can be seen that there is a significant
difference and can be effectively classified.

Besides, to obtain more accurate classification results for
the long-term nonstationary EEG signals, our method also
applies different methods in the pre-processing and post-
processing parts. The DWT is used to decompose the raw
signals into five sub-signals and to provide the frequency and
time information. Then, normalization based on the differential
operator is further adopted to heighten the difference between
the two class signals, which can capture abrupt changes and
improve classification accuracy.

In the post-processing stage, as isolated incorrect detec-
tion points exist in the whole detection process because the
raw EEG signals have noise in the recording process, the
smoothing step is used to remove these errors. In an epileptic
seizure activity, due to the slow change, it is difficult to
completely detect the segments of the beginning and the end
stages, and some parts may be missed. In this method, the
adaptive collar operation is performed to compensate for the
missed segments. These procedures are shown in Fig. 4, which
include smoothing and threshold judgment, while Fig.5 shows
the multi-label fusion and adaptive collar techniques.

The kernel method can transform the EEG samples into a
more linear separable form through kernel mapping. In order
to verify this effect, we conducted a comparison experiment
using the robust ProCRC with kernel method and the robust

Fig. 5. The steps of multi-label fusion and the adaptive collar operation
of 1 h EEG data from patient 2. (a) (b) and (c) the binary value EEG
signals from the three different channels; (d) the results after multi-label
fusion with the three channels; (e) the final classification results obtained
by the adaptive collar operation for the three channels.
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Fig. 6.  The comparison of results between the robust ProCRC with

kernel method and without kernel method.

ProCRC without kernel method, and 95.24% average sen-
sitivity, 90.83% recognition accuracy and 90.82% average
specificity were obtained through the robust ProCRC with
kernel method which was shown in Fig.6. The experiment
using the kernel method obtained better classification results,
which suggests that the linear representation of the testing
sample becomes more accurate for classification after kernel
mapping.

To further quantify the performance of our method, we cal-
culated the running time for each step: The training step had
a duration of 4.902 s, while for 1 h of EEG data, it took
41.54 s to obtain classification representation in the testing
stage. In the study of Yuan er al., the training step had a
duration of 15 s, while it took 1 min to obtain classification
representation in the testing stage for 1 h of data using kernel
collaborative representation [33]. Overall, the efficiency in our
proposed algorithm indicates that it is feasible as a real-time
seizure detection system.

Table I'V provides a comparison between our method and
other methods that used the Freiburg database as well.
The seizure detection method introduced by [34] used
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TABLE IV
COMPARISON OF METHODS EVALUATED FROM THE SAME DATABASE
Method e ppGaay ST Seene Resoaiden dftl(tm)

Yuan et al.[33] 21 595 94.41 96.97 96.87 0.26
Mahmoodian et al.[34] 20 560 95.83 96.70 96.84 0.24
Tzimourta et al.[35] 21 28.6 99.74 97.30 97.74 0.21
Geng et al.[36] 20 680 98.08 98.69 98.69 0.24
Yu et al.[37] 21 564.38 97.48 96.81 96.83 0.53
Ma et al.[38] 21 566.57 95.12 97.60 97.60 -
Zhou et al.[39] 21 - 93.70 97.20 95.40 -
Hussain et al.[40] 21 - 99.46 98.45 99.27 -
Lietal.[41] 21 564.03 97.47 96.17 96.17 0.487
Ours 21 590 96.48 98.56 98.55 0.44

cross-bispectrum for feature extraction and obtained a lower
false detection rate; but the sensitivity and specificity were
both lower than ours and their method only detected the EEG
data of 20 patients. In the work of Tzimourta. et al., they
proposed a multicenter methodology applying DWT with five
decomposition levels [35]. The random forest classifier was
performed on 28.6 h of EEG data from 21 patients and the
results were obtained with a sensitivity of 99.74% and false
detection rate of 0.21/h. However, while the classification
results were quite satisfactory, the experimental data contained
only 28.6 h of EEG data, which was much shorter than the
EEG data we used, while our results were obtained from
590 h of EEG data. Geng et al. introduced an efficient method
using bidirectional long short-term memory neural networks
and stockwell transform to perform seizure detection [36].
Even though 680 h of EEG data were used to evaluate the
performance, a lower false detection rate of 0.24/h and a
higher sensitivity of 98.09% were obtained, the patient 10 in
this database is not considered in their method, whereas we
analyzed data from all 21 patients. Furthermore, the time
complexity of the training stage is about 48 s, which is
relatively longer than our method with 4.902s, and their
method uses far more hyperparameters than our method.

As an efficient classification method, the CRC was intro-
duced in [33] for epileptic detection. This method was used
to analyze 595 h EEG data from 21 patients and achieved
a sensitivity of 94.41% and false detection rate of 0.26/h, but
the specificity and sensitivity were both lower than ours. Later,
in the work of Yu et al., the authors proposed a method that
applied kernel methodology combined with robust probabilis-
tic collaborative representation [37]. A sensitivity of 97.48%,
specificity of 96.81% and false detection rate of 0.53/h were
obtained using their method which used only 52 seizures in
the testing stage. Compared to their algorithm, our system
evaluated 56 seizures. Even a slightly lower sensitivity was
obtained, while better specificity and false detection rate were
achieved. It shows that the recognition performance of our
algorithm for seizure EEG data is not bad, and has a better
recognition effect on non-seizure data. Tensor, as an efficient
method, has been used for seizure classification. Ma et al. [38]

calculated tensor distance as EEG feature and applied the
BLDA classifier for the detection algorithm. This method
obtained a sensitivity of 95.12% and specificity of 97.60%
for the EEG data from 21 patients, which were lower than
those obtained with our method.

Moreover, many deep learning algorithms have also been
validated and evaluated on this database. Zhou et al. proposed
a convolutional neural network (CNN) to distinguish ictal,
preictal, and interictal stages for seizure detection and achieved
the average accuracies of 95.4% for interictal and ictal classi-
fication using frequency domain signals, which is lower than
our methods [39]. Hussain et al. used 1 D-convolutional long
short-term memory neural networks to automatically generate
customized features for better classification of ictal, interictal,
and preictal segments, which achieved a highest classification
accuracy of 99.27%. Even though the results were better than
our method, they used 80% of the EEG segments for training
the model and the remaining 20% of signals were used to test,
while Our algorithm requires very little training data [40].
Li et al. combined the fully convolutional network and the
Nested Long Short-Term Memory (NLSTM) model for end-
to-end automatic seizure detection and the average sensitivity
of 97.47%, specificity of 96.17%, and false detection rate
of 0.487/h are yielded [41]. Compared with their method,
a higher accuracy and a lower false detection rate are observed
in our proposed method. Therefore, our algorithm has compa-
rable performance with lower algorithm complexity and does
not require too many labeled samples for supervised learning.

VI. CONCLUSION

An efficient system using GNMF and kernel-based robust
ProCRC is proposed for epileptic seizure detection. For
long-term raw EEG signals, GNMF is mainly applied to
dimensionality reduction and preserve the useful EEG feature
information, after which the kernel method is used to enhance
the linear separable representation. After performing kernel-
based robust ProCRC, the training set is applied to represent
the testing samples sparsely and the residuals are compared to
distinguish the two classes of EEG signals and obtain the class
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label. The classification results and low time complexity also
indicate the potential application value for real-time clinical
application of the proposed algorithm.
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