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Deep Reinforcement Learning for Control of
Time-Varying Musculoskeletal Systems With
High Fatigability: A Feasibility Study

Jessica Abreu

Abstract—Functional electrical stimulation (FES) can be
used to restore motor function to people with paralysis
caused by spinal cord injuries (SCls). However, chronically-
paralyzed FES-stimulated muscles can fatigue quickly,
which may decrease FES controller performance. In this
work, we explored the feasibility of using deep neural net-
work (DNN) controllers trained with reinforcement learn-
ing (RL) to control FES of upper-limb muscles after SCI.
We developed upper-limb biomechanical models that exhib-
ited increased muscle fatigability, decreased muscle recov-
ery, and decreased muscle strength, as observed in people
with chronic SClIs. Simulations confirmed that controller
training time and controller performance are impaired to
varying degrees by muscle fatigability. Also, the simu-
lations showed that large muscle strength asymmetries
between opposing muscles can substantially impair con-
troller performance. However, the results of this study
suggest that controller performance for highly-fatigable
musculoskeletal systems can be preserved by allowing for
rest between movements. Overall, the results suggest that
RL can be used to successfully train FES controllers, even
for highly-fatigable musculoskeletal systems.

Index Terms—Reinforcement learning, functional
electrical stimulation, motor control, spinal cord injury,
biomechanical model.

|. INTRODUCTION

VERY YEAR, over 130,000 people worldwide develop

paralysis as a result of spinal cord injuries (SCIs) [1],
and over half of these injuries affect mobility in all four
limbs [2]. Most of the people with upper extremity paralysis
indicate that regaining the ability to manipulate objects is their
highest priority [3], [4]. Also, people with SCI would prefer to
regain control of their own limbs, as opposed to using external
assistive devices [5]. By eliciting contractions in paralyzed
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muscles, functional electrical stimulation (FES) can satisfy
these design objectives.

Many studies have demonstrated that FES can restore some
degree of upper-limb motor function to people with paral-
ysis [6], [7], [8], [9]. People with SCIs have been able to
complete functional tasks by controlling FES systems with few
degrees of freedom and pre-programmed hand grasps [10].
Yet, the FES systems that have been demonstrated to date
provide low-dimensional control, which falls short of approx-
imating natural upper-limb function. Also, the implementa-
tion of FES systems requires continuous intervention from
highly-skilled clinicians and engineers. Therefore, FES sys-
tems to restore upper-limb motor function to individuals with
SCIs have not been widely translated into clinical practice.

If FES neuroprostheses are to be more widely used, they
will require controllers that can address the aforementioned
limitations. FES controllers should be easy to train, and
they should maintain performance with minimal intervention
from experts. Ideally, FES controllers should be effective in
coordinating multiple actuators, providing multidimensional
control that approximates natural movement. Since chronic
paralysis causes muscles to become substantially weaker and
more fatigable [11], [12], [13], [14], FES controllers should
be effective even for highly fatigable and atrophied muscles.
While many of these needs have been addressed individually
by previous studies [15], [16], [17], there are no FES controller
architectures, to the best of our knowledge, that can meet these
requirements simultaneously.

Recently, deep reinforcement learning (DRL) has been
used to train FES controllers that can meet many of these
needs. By emulating natural learning, RL automatically
adjusts controller parameters to maximize performance. There-
fore, RL may prevent labor-intensive manual adjustments
of controller parameters. RL has been used to control a
multi-actuator biomechanical model [18], [19], an upper-limb
FES system [20], and robotic arms performing complex motor
tasks [21]. More recently, an RL technique called Hindsight
Experience Replay (HER) [22] has been used to train FES
controllers in as little as 15 minutes [23]. DRL controllers
were able to effectively control a multi-input, multi-output
biomechanical model of the arm in a large workspace, and
trained controllers required minimal retraining for consid-
erable changes in biomechanical properties [24]. However,
previous studies did not consider musculoskeletal systems with
highly fatigable and atrophied muscles, such as those observed
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Fig. 1.  Arm Model and Motor Task. (A): Diagram representing the
musculoskeletal model of the arm and the motor task. The controller
was tasked with moving the arm towards a target region T inside the
workspace (light green). For some experiments, we chose to artificially
link the fatigue levels in opposing muscles (in matching colors) to assess
the effects of muscle strength asymmetries on controller performance.
(a) anterior deltoid, (b) posterior deltoid, (c) brachialis, (d) short head
of the ftriceps, (e) biceps, (f) long head of the triceps. (B): Visual
representation of the compartment model of fatigue implemented in this
work, adapted from [27]. The fatigue model was incorporated into the
musculoskeletal model, allowing for the estimation of fatigue levels for
each muscle during arm control.

in people with SCIs [11], [12], [13]. Fatigue is well-recognized
as a major challenge for effective and robust FES control [17],
[25], [26]. Because time-varying fatigue levels cannot be easily
estimated in real time, they cannot be used as controller inputs.
Consequently, for fatigable systems, the same control input is
likely to result in time-varying muscle forces. Therefore, it is
unclear if existing DRL controllers will be effective for people
with SCI.

In this study, we demonstrate DRL for control of a time-
varying, fatigable musculoskeletal arm model representing the
biomechanical properties of people with SCIs. We explore the
impact of muscle fatigue and muscle atrophy on controller
performance. Also, we characterize the impact of muscle
strength (i.e. maximum muscle force) asymmetries on DRL
controllers. This study supports the feasibility of using DRL
to train FES controllers for people with SCI.

IIl. METHODS
A. Musculoskeletal Model

To evaluate controller performance, we used an existing
musculoskeletal model of the human arm, as described pre-
viously [15], [19], [23]. Figure. 1A shows a diagram of the

model. The model contained two segments representing the
forearm and the upper arm. The segments were connected by
2 pin joints representing the shoulder and the elbow. The arm
model included two degrees of freedom: horizontal flexion
and extension of the shoulder, and flexion and extension of
the elbow. The movement of the arm was constrained to a
horizontal plane and the weight of the arm was supported, as if
moving on a tabletop with no friction. The model included a
total of 6 actuators represented by Hill muscle models [28].
Hill muscle parameters were extracted from [29], [30], and
limb segment dimensions were calculated from [31] for a male
subject with a height of 177 cm and weighting 80 kg, as in
similar RL studies that demonstrated suitable motor behav-
ior [19], [23] and robustness changes in biomechanical prop-
erties [24]. See Supplementary Tables I and II for an overview
of key musculoskeletal parameters. As shown in Figure. 1A,
4 actuators acted on only one joint, roughly approximating the
functions of the anterior deltoid (a) and the posterior deltoid
(b) on the shoulder, and the functions of the brachialis (c) and
the short head of the triceps (d) on the elbow. Two actuators
acted on both joints, approximating the functions of the biceps
(e) and the long head of the triceps (f). Simulations were
performed using forward Euler approximation with model
states updated every 20 ms, which has been found to provide
accurate control in previous studies [15], [18], [19], [23], [24],
and in preliminary simulations in the current study.

B. Modeling Fatigue

To investigate the impact of fatigability on controller
performance, we implemented a previously-validated fatigue
model [27], [32], [33]. The fatigue model was incorporated
into the musculoskeletal model of the arm, enabling the
continuous estimation of fatigue levels during arm control
for each muscle. Since the added computational burden was
proportional to the number of controlled muscles, we pri-
oritized fatigue models that were reasonably accurate and
computationally efficient. In spite of its simplicity, the model
proposed by [27] could accurately predict fatigue levels for
isometric [32] and intermittent motor tasks [33], and it did not
affect simulation times in any noticeable manner in this study.
Figure. 1B shows a visual representation of the fatigue model,
adapted from [27]. The fatigue model included three com-
partments representing three possible states for motor units:
(1) resting motor units Mg, (2) activated motor units My, and
(3) fatigued motor units MF.

Egs. 1 describe the mathematical representation of
the compartment model. C(f) is a bidirectional muscle
activation-deactivation drive function, as described previ-
ously [27]. R and F are the recovery and fatigue coefficients,
respectively. R determines the rate at which fatigued motor
units become available to perform contractions, and F deter-
mines the rate at which activated motor units become fatigued.

dMpg
— —C(t)+RxM

dt (O + R x Mr

dM 4

A _Cc)-FxM

7 (@) X My

dM

thzFxMA—RxMF (1)
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TABLE |
MODEL PARAMETERS (SEE SECTION II-C)

Maximum
Model R F Muscle Force
(%)
Avg. Male 0.0051 0.0111 100
Chronic SCI 0.0018 0.0323 30
SCI Exercised 0.0034 0.0217 50

Table I summarizes the fatigue parameters of the models
implemented in this work. We used hand grip force data
available in [34] to estimate R and F coefficients representing
a healthy person with no SCI. The hand grip data was digitized
from Figure. 9 [34], and fit to the fatigue compartment
model using a least squares regression to extract R and F.
To estimate the R and F coefficients for people with chronic
SCIs, we used plantar flexion torque data available from a
study investigating fatigue in the soleus muscle of people
with SCI [12]. The torque data was digitized and fit to the
fatigue compartment model to extract R and F, as described
above. Simulations that use the R and F coefficients obtained
from [12] should be considered conservative estimators
of DRL performance, because current FES systems use
FES-induced exercise to strengthen the muscles and decrease
fatigability [35].

Exercise leads to increased blood flow to the muscles, which
is likely to result in faster recovery from fatigue [33]. Also,
previous studies demonstrated that FES-induced exercise can
substantially reduce the fatigability of paralyzed muscles [35].
To model the effect of long-term exercise on the fatigability
and recovery of paralyzed muscles, we averaged the R and F
coefficients between the healthy model and the model repre-
senting chronic SCI, as shown in Table I (see Supplementary
Figures. 4 and 5 for a sensitivity analysis on the R and F
coefficients). For all conditions, fatigue was applied by scaling
the output forces of the Hill-type actuators [23], [24].

C. Modeling Atrophy

To model muscle atrophy, we scaled the output forces of
the Hill-type actuators of the Chronic SCI and SCI Exercised
models, as shown in Table I. For each model, all muscles
were weakened by the same percentage. The Chronic SCI
model was scaled using previously reported atrophy levels
(approximately 70%) for the triceps muscles of people with
cervical SCI [13]. The SCI Exercised model was scaled using
the ratio between the soleus torques produced by people
with SCI after long-term FES exercise [35], and the soleus
torques produced by average males [36]. Atrophy levels that
were estimated using quantitative plantarflexion torque data
agree with our own qualitative observations of upper-limb
atrophy after FES exercise in people with tetraplegia [10], [37].
Anecdotally, our group observed that exercised upper extrem-
ity muscle strength in chronically paralyzed individuals is typ-
ically 50% of non-paralyzed individuals [10], [37]. To assess
the impact of this assumption, we performed a sensitivity
analysis measuring the effect of different levels of atrophy

' ™ R
> Actor aﬁcﬂgg; Environment
| (Arm Contrdler) ) Activations) (Arm Model)
2
Parameter < Observation
Update Function (Joint Angles
(Including Critic) Reward Angular Velocities
A Function Target Posture)
Fig. 2. Reinforcement Learning Controller. We used an actor-critic

RL algorithm where the actor was a DNN that observed kinematic
state variables and controlled muscle activations, while the critic was a
DNN that mapped state-action pairs to expected rewards. The expected
rewards were used by a parameter update function to adapt the actor
network and maximize the rewards received during controller training.

on controller performance for the SCI Exercised model (see
Supplementary Figure. 6).

D. DRL Controller Implementation

We used reinforcement learning (RL) [38] to train a DNN
to control the muscle activations in a musculoskeletal arm
model. Figure. 2 shows the implemented controller training
paradigm. At each time step, the controller received the
kinematic state of the system, described by the joint angular
positions and joint angular velocities of the arm, as well as
the target posture in angular coordinates. The action space was
a 6-dimensional vector containing commanded muscle activa-
tions over a range of [0, 1] for each of the 6 actuators in the
musculoskeletal model. The reinforcement learning agent was
given a reward at each step according to Equation 2, where
1,; was a boolean that was 1 if the endpoint of the arm was
inside the target region 7 (see Figure. 1A) and O otherwise,
and a was a 6 dimensional vector containing the muscle
activations of the arm. The first term rewarded the controller
for moving the arm into the target region, the second term
penalized movement duration, and the third term penalized
higher muscle activations to encourage lower levels of muscle
fatigue. The second and the third terms were included to
promote controller training convergence, as described in [23]
and [24].

r=1x Iy —0.1—0.245 x ||d||»
aeRl a4 €[0,1]1 Vie{l,2,...,6) (2)

To train the arm controller, we used an actor-critic RL algo-
rithm incorporating Twin-Delayed Deep Deterministic Pol-
icy Gradients (TD3) [39] and Hindsight Experience Replay
(HER) [22], as described previously [23], [24]. Briefly, the
actor observed kinematic state variables and target kinematic
state variables and chose muscle activation values, as shown
in Figure. 2. The critic mapped action-state pairs to expected
rewards. The expected rewards were used to update the actor
in order to maximize rewards. Both the actor and the critic
were feedforward DNNs containing 2 layers and 64 nodes per
layer.

We used the stable-baselines3 implementation of the
TD3-HER algorithm [40] (see a visual representation of
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the algorithm in Supplementary Figure. 8). The RL con-
troller was implemented using stable-baselines3 and custom
software written in Python 3.7. The musculoskeletal model
was implemented in C [15]. RL hyperparameters were as
described in a similar study [23], and they are available in
Supplementary Table III.

E. Motor Task

For all simulations, the controller was tasked with reaching
to arbitrary target locations in a 2D workspace, as shown in
Figure. 1A. The targets were circular regions with radii of
7.5 cm [18], [19], [23], [24]. Target locations were randomly
sampled from a continuous uniform distribution across the
workspace. Since the arm was supported against gravity, the
motion of the arm could be described as reaching across
a frictionless tabletop or moving within a horizontal planar
region using a mobile arm support [37]. The controller was
given 1 second to complete the task, and most successful
reaches took less than 0.4 seconds. The endpoint of the arm
had to remain in the target area for 100 ms in order for the
task to be considered successful. To model natural arm use,
the arm started at the end state of the previous reach, as if
continuously moving across the workspace.

While the theoretical joint angle ranges for the elbow and
the shoulder in this model were [5°, 170°] and [—20°, 130°]
respectively, these ranges included passive postures that could
only be maintained with the aid of external forces. To esti-
mate the actual workspace of the arm, we used data from
previous RL controller implementations using the same arm
model [23], [24]. We only included regions where previous
RL controllers could acquire targets with greater than 95%
probability. By choosing this workspace, we could represent
controller performance for different simulation conditions as
fractions of the maximum controller performance. The result-
ing workspace is shown in green in Figure. 1A.

F. Simulations

1) Control of Fatigable Time-Varying Models: In this simula-
tion, we measured controller performance and muscle fatigue
in musculoskeletal models representing an average male sub-
ject, a person with SCI, and a person with SCI after FES
exercise, as described in sections II-B and II-C. A fourth
condition, included as a control, used a musculoskeletal model
with no fatigue or atrophy, as described in previous works [18],
[19], [23], [24]. Here, the goal was to assess the feasibility of
using existing DRL controller architectures for FES systems
in individuals with chronic SCIs.

2) Assessing the Impact of Muscle Atrophy and Muscle
Strength Asymmetry: We noticed that the DRL algorithm had
difficulty converging on successful controllers if the flexor and
extensor muscles fatigued in an asymmetrical manner. This
could be due to the fact that (1) muscle forces after fatigue
were not sufficient to move the arm to the target location
and/or (2) the RL algorithm had difficulty with directionally
asymmetrical actuator strengths. To test these hypotheses,
we implemented models with non-fatigable (time-invariant)

muscles, but with varying levels of maximum muscle forces.
We tested 3 conditions:

« Symmetrical muscle strength: all maximum muscle forces
were scaled by the same factor.

« Flexor force decrease: flexor muscles were weaker than
extensor muscles, and all maximum flexor muscle forces
were scaled by the same factor.

« Extensor force decrease: extensor muscles were weaker
than flexor muscles, and all maximum extensor muscle
forces were scaled by the same factor.

3) Controller Performance With Symmetrical Time-Varying
Muscle Strengths: To demonstrate that muscle strength asym-
metries can impair controller performance, we controlled for
muscle strength asymmetries by artificially linking muscle
fatigue levels between opposing muscles, as illustrated in
Figure. 1A. Since flexor muscles displayed higher levels of
fatigue than extensor muscles in preliminary simulations,
we chose to have extensor fatigue track flexor fatigue. We used
the same musculoskeletal models described in Simulation 1.

4) Rest-Reach Controller Training Protocol: In this simu-
lation, we implemented a controller training protocol that
included rests of 3 to 6 seconds between reaches to reduce
overall levels of fatigue. We assessed the impact of rest dura-
tion on controller training times and controller performance.
We evaluated the rest-reach protocol using the SCI Exercised
model described above.

G. Controller Evaluation

For each condition, the controller training process shown in
Figure. 2 was repeated 32 times, as was shown to provide
an accurate assessment of controller performance in previ-
ous studies implementing the same motor task [23], [24].
Controller performance during training was measured every
5 minutes of simulated time for all simulations, except for
the simulation where opposing muscles were artificially kept
at the same levels of fatigue. For that simulation, we per-
formed evaluations every minute to allow for a more thorough
assessment of transient changes in controller performance
due to time-varying muscle forces. During evaluations, DNN
parameters were held constant while the controller performed
100 reaches. The success rate for an evaluation of a single
controller was calculated as the number of successful reaches
divided by the total number of reaches. The success rate for
a condition was estimated as the median success rate of all
controllers trained in that condition. Controller performance
plots display the median success rate and the interquartile
range during controller training. Training time was defined as
the time taken for success rates to reach the maximum median
performance for each condition. In workspace performance
plots, evaluations included 2,000 reaches. The workspace was
discretized into pixels of 0.3 x 0.3 cm, and performance was
measured as the number of successful reaches divided by the
total number of targets spawned within each pixel.

I1l. RESULTS
A. DRL Control of Fatigable Musculoskeletal Models

Figure. 3A shows controller success rates as a function of
training time for fatigable musculoskeletal models, in addition
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Fig. 3. Controller training for fatigable musculoskeletal models. (A): Controller success rates (successful reaches/total reaches) as a function
of controller training time for different biomechanical models. (B): Effect of fatigue on relative muscle strength during controller training. Muscle
strength decreases rapidly at the beginning of training for all conditions because of muscle fatigue.

TABLE Il
DRL CONTROLLER PERFORMANCE (NO REST)

Model Success Rate After 60 Minutes(%)  Training Time (min)
No Fatigue 99 15
Avg. Male 65 50
SCI Exercised 46 55
SCI Chronic 23 50

to a non-fatigable model that was included as a control.
Success rates decreased substantially for fatigable models
(Avg. Male, SCI, SCI Exercised), particularly for models with
higher levels of atrophy, lower levels of muscle recovery (R),
and higher levels of muscle fatigability (F). Success rates were
lowest for the SCI model, which has the highest level of
muscle atrophy and muscle fatigability, and the lowest level
of muscle recovery. Training times, defined as the time taken
for success rates to reach the maximum median performance,
increased for each of the three models that included the
effects of fatigue. Table II summarizes the success rates after
60 minutes of training for all conditions, as well as the training
time for each condition.

Figure. 3B shows changes in muscle strength during con-
troller training for each of the three models that include the
effects of fatigue. Muscle strengths decreased rapidly due to
fatigue at the beginning of training and plateaued thereafter.

B. DRL Control of Non-Fatigable Models Representing
Atrophy

Figure. 4 shows success rates as a function of training
time for different levels of muscle strength in a muscu-
loskeletal model that does not include the effects of fatigue.

In Figure. 4A, all muscle forces were scaled by the same
factor, whereas in Figure. 4B, only the extensor muscles
were weakened, and in Figure. 4C, only the flexor muscles
were weakened. In Figures. 4A and 4B, the DRL controllers
achieve success rates above 95% for all conditions represent-
ing atrophy levels of up to 75%. In Figure. 4C, the DRL
controllers achieve success rates above 90% only when flexor
atrophy was below 15%. An imbalance where the flexors
were 30% weaker than the extensors (purple curve in Fig. 4C)
caused success rates in this task to drop to approximately 67%.
No targets were acquired when flexor forces were decreased
by 90% or more.

Figure. 5 shows that impairments in controller performance
were spatially isolated depending on the pattern of muscle
atrophy. Symmetrical decreases in muscle forces caused the
workspace to shrink symmetrically from the lateral regions
towards the medial region of the workspace. Flexor-only
atrophy caused the workspace to shrink from the contralateral
region of the workspace towards the ipsilateral region of the
workspace. Extensor-only atrophy caused the workspace to
shrink from the ipsilateral region of the workspace towards
the contralateral region of the workspace. Workspace decreases
were most pronounced for the flexor-only atrophy condition.

C. DRL Performance for Symmetrical, Fatigable
Musculoskeletal Models

Figure. 6A shows success rates during controller training
for fatigable musculoskeletal models where muscle strengths
from opposing muscles were artificially forced to be equal.
When muscle strengths for opposing muscles were forced
to be equal, controller performance was improved compared
to models where opposing muscle strengths were allowed to
be asymmetrical (compare Figure. 6A to Figure. 3A).
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Controller Performance with Decreased Muscle Forces
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Fig. 4. DRL controller training for non-fatigable muskuloskeletal models representing atrophy. (A): Muscle strength was scaled by the same
factor for all muscles. Note that the DRL controller requires only very low levels of muscle strength to operate effectively. DRL controllers perform well
when muscle atrophy is symmetrical. (B): Muscle strength was decreased only for the extensor muscles. Controller performance remained high, even
for high levels of muscle atrophy. (C): Muscle strength was decreased only for the flexor muscles. The controller was impaired by asymmetries where
the flexor muscles were weaker than the extensors. Success rates for flexor atrophy levels above 75% were nearly zero - notice that the learning
curves representing 90% and 95% atrophy coincide with the x-axis. Taken together, these results demonstrate that muscle strength asymmetries

can considerably impair controller performance, even in the absence of muscle fatigue during training.
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Fig. 5. DRL controller performance throughout the workspace for non-fatigable models of atrophy. Each plot displays the unfatigued
workspace of the arm, with the colored shading indicating the success rate at each location within that workspace. Symmetrical decreases in muscle
strengths cause the workspace to shrink from the edges of the workspace towards the center as forces decrease. Asymmetrical decreases in muscle
strengths cause the workspace to shrink asymmetrically from the corresponding sides of the workspace.

For example, the success rates for the Avg. Male model
after 60 minutes of training went from 65% for asymmet-
rical models to almost 100% for symmetrical models. For
the SCI Exercised model, success rates after 60 minutes of

included rest periods between reaches. The musculoskeletal
model used in this simulation represented a subject with SCI
after FES exercise. Success rates were approximately 95%
after 120 minutes of training for rest periods of 5 seconds after

training went from 46% to approximately 90%. For the model
representing people with chronic SCI and no FES exercise,
the increase in success rates was less substantial - improving
from 23% to 33%.

D. Rest-Reach Training Protocol

Figure. 7 shows success rates and fatigue levels as functions
of training time while using a controller training paradigm that

every reach. After introducing a pause of at least 3 seconds
between reaches, muscle strengths remained above 70% for
all muscles included in this model.

IV. DISCUSSION

People with chronic paralysis have muscles that fatigue
more quickly [11] as well as high levels of disuse atrophy [13].
In this work, we extended existing musculoskeletal models
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Fig. 6. DRL controller training for fatigable musculoskeletal models where muscle strengths were artificially linked between opposing
muscles. (A): Controller performance as a function of controller training time. Controllers are more successful when used for models with symmetrical
fatigue compared to models with asymmetrical fatigue (Figure 3). For comparison, the dashed lines represent the success rates after 60 minutes
of training in Figure 3. Note that controller performance for the SCI model remains poor, even when muscle strengths are symmetrical, because of
the combined negative effects of high levels of muscle atrophy and high levels of muscle fatigue. (B): Muscle fatigue during training. Fatigue levels
were linked between antagonistic muscle pairs to eliminate the effects of asymmetry, specifically the anterior deltoid and the posterior deltoid, the
brachialis and the short head of the triceps, and the long head of the triceps and the biceps.

to simulate these conditions and generated more realistic
predictions of DRL controller performance for people with
SCIs. Here, we demonstrated that DRL controllers work well
under functionally realistic conditions (exercised SCI mus-
cles), as long as short rests are provided in between reaches.
Interestingly, we uncovered that the major challenge for DRL
controllers was not decreased muscle strength in itself, but
rather muscle strength asymmetries.

A. Impact of Muscle Atrophy and Muscle Strength
Asymmetries on DRL Controller Performance

The simulations in the current study suggested that DRL
controllers can effectively coordinate muscle activations to
perform reaches in a large workspace, even with low maximum
muscle forces due to muscle atrophy. However, very high
rates of atrophy (> 70%) could impair controller performance
if combined with high levels of muscle fatigue. Also, these
simulations revealed that large asymmetries (> 30%) where
flexor muscles are weaker than extensor muscles can impair
DRL control for the task studied in this work.

To the best of our knowledge, these are the first simulations
that characterize the impact of muscle strength asymmetries on
RL control of biomechanical systems. A previous study [19]
obtained good results while using RL to control a biome-
chanical model where flexor muscles were 50% weaker than
extensor muscles. However, the workspace used in [19] was
contained in a region where controllers in this work acquired
more than 90% of the targets for flexor atrophy levels of 45%.
The current study expanded on [19], not only by increasing
the size of the workspace, but also by characterizing controller

performance at various levels of asymmetrical atrophy. This
parameter sweep revealed that not all patterns of muscle
strength asymmetries impair controller performance. For this
arm model, flexor-only muscle atrophy impaired controller
performance far more than similar levels of extensor-only
atrophy, possibly because the workspace extended farther in
the direction of joint flexion.

Since the arm model was supported against gravity,
we encourage caution when predicting results for other tasks.
Nonetheless, these results are relevant to people with SCIs
who use mobile arm supports [10], [37].

B. Impact of Muscle Strength Time-Variance Due to
Fatigue on DRL Controller Performance

The results from Figure. 6A suggest that muscle strength
time-variance due to muscle fatigue is unlikely to impair
DRL control if the remaining muscle strength is sufficient
to perform the task. Note that for the Chronic SCI model,
combined levels of atrophy and fatigue cause muscle strength
to drop below 4% of the muscle strength available to non-
disabled people. Considering the results in Figure. 4A, 4%
of non-disabled muscle strength is likely to be insufficient
to perform the task. This would explain why the Chronic
SCI condition, compared to other conditions, did not benefit
as much from forcing fatigue levels in opposing muscles to
be equal. These results highlight the importance of adequate
FES-exercise to increase muscle strength in chronically para-
lyzed muscles prior to controller deployment.

As discussed above, fatigue-induced performance decre-
ases were likely caused in large part by muscle strength
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training time. Allowing for rest between reaches considerably improves controller success rates. For example, a pause of 5 seconds between reaches
results in success rates of around 90% for the studied motor task. (B): Fatigue levels during training. Introducing short pauses in between reaches
allows muscle strengths to remain high, and nearly constant, throughout controller use.

asymmetries, rather than by muscle strength insufficiency.
The impact of muscle strength asymmetries caused by fatigue
was substantially ameliorated by introducing rests in between
reaches (Figure. 7). For the motor task studied in this work,
a 5 second rest was sufficient to limit muscle fatigue for a
model representing people with SCI after FES-exercise, and it
resulted in success rates above 95%.

In clinical practice, it is unlikely that users would con-
tinuously move their arms across the workspace. Normal
upper-limb activity includes frequent periods of inactiv-
ity. Therefore, we expect that sufficient muscle recovery
should be achieved in naturally-occurring periods of inactivity.
During controller training, rest duration in between reaches
can be optimized considering patient biomechanics and task
complexity.

For non-fatigable models, training was completed in
less than 20 minutes. When adding rest periods to avoid
fatigue-induced muscle strength asymmetries, training time
remained below 120 minutes. While this is a substantial
increase in training time, training for 120 minutes is still
practical. Additionally, training times might be decreased by
using techniques such as transfer learning [24].

C. Motor Behavior and Controller Strategy

In this study, as in previous implementations of DRL
controllers [23], [24], we observed that commanded muscle
activations were frequently either below 5% or above 95%.
Supplementary Figure. 1 shows a histogram of commanded
muscle activations for the simulation in Figure. 3 after con-
troller training. All other conditions implemented in this work
displayed the same trend. An “all-or-nothing” controller strat-
egy may have exacerbated the development of high levels of
fatigue because fatigue increases exponentially with increasing

muscle activation. Interestingly, increasing the penalty on mus-
cle activations did not result in a different controller strategy.
Higher muscle activation penalties caused minor shifts in the
muscle activation histogram, and they resulted in lower success
rates, as can be seen in Supplementary Figures. 2 and 3.

Qualitatively, the motor behavior observed for successfully
trained controllers could be described as smooth and fast with
deceleration as the endpoint of the arm approached the target
region. The arm was generally stable at the target region for
all conditions (see Supplementary Figure. 7). The duration
of the reaches for the fatigable models was approximately
0.4 seconds, which is slightly longer than the duration reported
in a similar study [23]. Yet, this is not surprising, since the
workspace used in this study was considerably larger, and
muscle strength was smaller due to the inclusion of atrophy
and fatigue.

D. DRL Controller Use in Patients With SCI

Chronic paralysis causes muscle atrophy [13], and more
rapid muscle fatigue [11]. Additionally, SCI is likely to cause
denervation in certain muscles [13], and FES exercise cannot
reverse atrophy caused by denervation. Furthermore, muscle
strength asymmetries between opposing muscles are common
even for non-disabled individuals [41]. Therefore, patients
with SCIs are likely to exhibit muscle strength asymme-
tries, and it is possible that these asymmetries are charac-
terized by large imbalances where flexors are weaker than
extensors. Since these results indicate that such imbalances
impair DRL controller performance, it may be necessary to
scale electrode stimulation ranges to compensate for flexor
weakness.

Figure. 5 shows that decreases in controller success rates
due to muscle atrophy are not evenly distributed across
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the workspace. Controller performance is impaired mostly
at the lateral borders of the workspace, and the affected
area increases towards the center of the workspace with
increasing levels of atrophy. Even for the most challenging
condition, where flexors were considerably weaker than exten-
sors, a large portion of the workspace remained reachable.
Therefore, muscle strength asymmetries may decrease the
reachable workspace, but they do not seem to substantially
impair controller performance within the reachable workspace.
Taken together, these findings suggest that the task workspace
could be optimized by considering the anatomy of the
patient.

The results in this study (see Figures. 6A and 7A) indi-
cate that time-variance due to muscle fatigue is unlikely
to affect controller performance in reaching tasks with the
arm supported against gravity, as long as rest periods are
included between reaches. However, we evaluated DRL con-
troller performance in a motor task that did not require
precise movements. More complex motor tasks requiring
fine motor control may be affected by muscle strength
time-variance.

High levels of muscle activation, which occur frequently
when using the control strategy implemented by this DRL
algorithm, could impair fine motor control, in addition to being
potentially unsafe and uncomfortable for patients. Therefore,
we recommend that the electrodes are profiled in order to set
safe and comfortable levels of stimulation before controller
training. Profiling electrodes to ensure safety is a standard
practice in neuroprosthesis implementation [10], [37].

We highlight the importance of exercising chronically para-
lyzed muscles using FES to partially reverse disuse atrophy
prior to controller deployment. Also, controller use should
include frequent periods of inactivity. When high levels of
muscle atrophy were combined with muscle fatigue, the
resulting muscle strengths were not sufficient to perform the
relatively simple task studied in this work. However, since
upper-limb use naturally includes periods of low activity,
we do not anticipate that this will affect the use of the
controllers, or cause inconvenience for the users.

Theoretically, the proposed RL controller can adapt to the
real-world properties of persons with SCI, which is a primary
benefit of this model-free approach. Therefore, the use of a
musculoskeletal model is not required. However, a subject-
specific musculoskeletal model could be used to pre-train the
controller and thus reduce the training time.

E. Limitations

In this work, we used a musculoskeletal model where the
arm was supported against gravity. The model only included
6 simple Hill-type actuators, and the model did not include
joint stiffness or muscle spasticity, which are common in
patients with SCI. Also, the motor task studied in this work
was relatively simple, and it involved 2 DoFs. These were
deliberate study design choices, as in previous works investi-
gating the early feasibility of DRL for motor control [18], [19],
[23], [24], [42], [43], [44], to limit the impact of confounding
variables. Here, the goal was to characterize the impact

of fatigue and time-varying muscle strength on DRL con-
trollers. Future studies should implement DRL control of more
complex musculoskeletal models that can more accurately
represent the biomechanics of people with chronic paraly-
sis, as well as more meaningful functional tasks. A recent
study demonstrated that similar RL controllers were robust
to changes in many biomechanical parameters [24], [45],
suggesting that these controllers can generalize across different
users with minimal retraining. However, we anticipate that
motor tasks involving object interaction will require major
adjustments to the reward function.

We used data from the literature to estimate levels of atro-
phy, as well as the R and F coefficients for the musculoskeletal
models in this work. However, these data, particularly the
fatigue curves used to estimate the R and F coefficients, were
recorded during motor tasks that differed in important ways.
Specifically, suitable data to extract R and F coefficients was
available either during MVC [34], or intermittent tasks involv-
ing full activation and complete rest [12]. Yet, previous studies
argue that R and F coefficients are likely to change depending
on the level of muscle contraction, due to physiological factors
such as increased blood flow in muscles that are relaxed [33].
Therefore, we anticipate that more accurate estimations of R
and F coefficients could lead to shifts in the expected success
rates (see Supplementary Figures. 4 and 5) and fatigue levels
for the conditions studied in this work, although we expect
that the main conclusions would remain unchanged.

Finally, the R and F coefficients representing people with
SCIs were estimated using soleus data. The non-paralyzed
soleus is substantially less fatigable than upper-limb muscles
due to its higher proportion of type I muscle fibers [14].
However, chronically-paralyzed muscles become primarily
composed of type II fibers [14], which fatigue more quickly.
Therefore, we assumed that different muscle groups displayed
similar fatigability after SCI. Yet, it is possible that small dif-
ferences in muscle composition remain after paralysis-driven
muscle adaptation.

V. CONCLUSION

In this study, we have implemented a musculoskeletal model
of the arm that allows for continuous estimation of muscle
fatigue during motor tasks. We have adapted this model to
represent patients with SCI before and after FES-exercise, and
we have used this model to investigate the feasibility of DRL
control of FES for people with chronic paralysis. The results
suggest that DRL controllers should provide good performance
if muscles are exercised to reverse disuse atrophy, and if there
are realistic rest periods between movements. However, the
simulations indicate that large muscle strength asymmetries
may impair DRL controllers. Muscle strength asymmetries that
occur due to fatigue may be alleviated by introducing frequent
rests during controller use. We recommend that electrodes
are carefully profiled and that stimulation ranges are scaled
to compensate for large asymmetries due to disuse atrophy
or denervation, and to ensure that movements are safe and
comfortable for the users. These results support the feasibility
of using DRL to control FES systems to reverse paralysis due
to SCL
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