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Deep Reinforcement Learning for Control of
Time-Varying Musculoskeletal Systems With

High Fatigability: A Feasibility Study
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Abstract— Functional electrical stimulation (FES) can be1

used to restore motor function to people with paralysis2

caused by spinal cord injuries (SCIs). However, chronically-3

paralyzed FES-stimulated muscles can fatigue quickly,4

which may decrease FES controller performance. In this5

work, we explored the feasibility of using deep neural net-6

work (DNN) controllers trained with reinforcement learn-7

ing (RL) to control FES of upper-limb muscles after SCI.8

We developed upper-limb biomechanical models that exhib-9

ited increased muscle fatigability, decreased muscle recov-10

ery, and decreased muscle strength, as observed in people11

with chronic SCIs. Simulations confirmed that controller12

training time and controller performance are impaired to13

varying degrees by muscle fatigability. Also, the simu-14

lations showed that large muscle strength asymmetries15

between opposing muscles can substantially impair con-16

troller performance. However, the results of this study17

suggest that controller performance for highly-fatigable18

musculoskeletal systems can be preserved by allowing for19

rest between movements. Overall, the results suggest that20

RL can be used to successfully train FES controllers, even21

for highly-fatigable musculoskeletal systems.22

Index Terms— Reinforcement learning, functional23

electrical stimulation, motor control, spinal cord injury,24

biomechanical model.25

I. INTRODUCTION26

EVERY YEAR, over 130,000 people worldwide develop27

paralysis as a result of spinal cord injuries (SCIs) [1],28

and over half of these injuries affect mobility in all four29

limbs [2]. Most of the people with upper extremity paralysis30

indicate that regaining the ability to manipulate objects is their31

highest priority [3], [4]. Also, people with SCI would prefer to32

regain control of their own limbs, as opposed to using external33

assistive devices [5]. By eliciting contractions in paralyzed34
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muscles, functional electrical stimulation (FES) can satisfy 35

these design objectives. 36

Many studies have demonstrated that FES can restore some 37

degree of upper-limb motor function to people with paral- 38

ysis [6], [7], [8], [9]. People with SCIs have been able to 39

complete functional tasks by controlling FES systems with few 40

degrees of freedom and pre-programmed hand grasps [10]. 41

Yet, the FES systems that have been demonstrated to date 42

provide low-dimensional control, which falls short of approx- 43

imating natural upper-limb function. Also, the implementa- 44

tion of FES systems requires continuous intervention from 45

highly-skilled clinicians and engineers. Therefore, FES sys- 46

tems to restore upper-limb motor function to individuals with 47

SCIs have not been widely translated into clinical practice. 48

If FES neuroprostheses are to be more widely used, they 49

will require controllers that can address the aforementioned 50

limitations. FES controllers should be easy to train, and 51

they should maintain performance with minimal intervention 52

from experts. Ideally, FES controllers should be effective in 53

coordinating multiple actuators, providing multidimensional 54

control that approximates natural movement. Since chronic 55

paralysis causes muscles to become substantially weaker and 56

more fatigable [11], [12], [13], [14], FES controllers should 57

be effective even for highly fatigable and atrophied muscles. 58

While many of these needs have been addressed individually 59

by previous studies [15], [16], [17], there are no FES controller 60

architectures, to the best of our knowledge, that can meet these 61

requirements simultaneously. 62

Recently, deep reinforcement learning (DRL) has been 63

used to train FES controllers that can meet many of these 64

needs. By emulating natural learning, RL automatically 65

adjusts controller parameters to maximize performance. There- 66

fore, RL may prevent labor-intensive manual adjustments 67

of controller parameters. RL has been used to control a 68

multi-actuator biomechanical model [18], [19], an upper-limb 69

FES system [20], and robotic arms performing complex motor 70

tasks [21]. More recently, an RL technique called Hindsight 71

Experience Replay (HER) [22] has been used to train FES 72

controllers in as little as 15 minutes [23]. DRL controllers 73

were able to effectively control a multi-input, multi-output 74

biomechanical model of the arm in a large workspace, and 75

trained controllers required minimal retraining for consid- 76

erable changes in biomechanical properties [24]. However, 77

previous studies did not consider musculoskeletal systems with 78

highly fatigable and atrophied muscles, such as those observed 79
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Fig. 1. Arm Model and Motor Task. (A): Diagram representing the
musculoskeletal model of the arm and the motor task. The controller
was tasked with moving the arm towards a target region T inside the
workspace (light green). For some experiments, we chose to artificially
link the fatigue levels in opposing muscles (in matching colors) to assess
the effects of muscle strength asymmetries on controller performance.
(a) anterior deltoid, (b) posterior deltoid, (c) brachialis, (d) short head
of the triceps, (e) biceps, (f) long head of the triceps. (B): Visual
representation of the compartment model of fatigue implemented in this
work, adapted from [27]. The fatigue model was incorporated into the
musculoskeletal model, allowing for the estimation of fatigue levels for
each muscle during arm control.

in people with SCIs [11], [12], [13]. Fatigue is well-recognized80

as a major challenge for effective and robust FES control [17],81

[25], [26]. Because time-varying fatigue levels cannot be easily82

estimated in real time, they cannot be used as controller inputs.83

Consequently, for fatigable systems, the same control input is84

likely to result in time-varying muscle forces. Therefore, it is85

unclear if existing DRL controllers will be effective for people86

with SCI.87

In this study, we demonstrate DRL for control of a time-88

varying, fatigable musculoskeletal arm model representing the89

biomechanical properties of people with SCIs. We explore the90

impact of muscle fatigue and muscle atrophy on controller91

performance. Also, we characterize the impact of muscle92

strength (i.e. maximum muscle force) asymmetries on DRL93

controllers. This study supports the feasibility of using DRL94

to train FES controllers for people with SCI.95

II. METHODS96

A. Musculoskeletal Model97

To evaluate controller performance, we used an existing98

musculoskeletal model of the human arm, as described pre-99

viously [15], [19], [23]. Figure. 1A shows a diagram of the100

model. The model contained two segments representing the 101

forearm and the upper arm. The segments were connected by 102

2 pin joints representing the shoulder and the elbow. The arm 103

model included two degrees of freedom: horizontal flexion 104

and extension of the shoulder, and flexion and extension of 105

the elbow. The movement of the arm was constrained to a 106

horizontal plane and the weight of the arm was supported, as if 107

moving on a tabletop with no friction. The model included a 108

total of 6 actuators represented by Hill muscle models [28]. 109

Hill muscle parameters were extracted from [29], [30], and 110

limb segment dimensions were calculated from [31] for a male 111

subject with a height of 177 cm and weighting 80 kg, as in 112

similar RL studies that demonstrated suitable motor behav- 113

ior [19], [23] and robustness changes in biomechanical prop- 114

erties [24]. See Supplementary Tables I and II for an overview 115

of key musculoskeletal parameters. As shown in Figure. 1A, 116

4 actuators acted on only one joint, roughly approximating the 117

functions of the anterior deltoid (a) and the posterior deltoid 118

(b) on the shoulder, and the functions of the brachialis (c) and 119

the short head of the triceps (d) on the elbow. Two actuators 120

acted on both joints, approximating the functions of the biceps 121

(e) and the long head of the triceps (f). Simulations were 122

performed using forward Euler approximation with model 123

states updated every 20 ms, which has been found to provide 124

accurate control in previous studies [15], [18], [19], [23], [24], 125

and in preliminary simulations in the current study. 126

B. Modeling Fatigue 127

To investigate the impact of fatigability on controller 128

performance, we implemented a previously-validated fatigue 129

model [27], [32], [33]. The fatigue model was incorporated 130

into the musculoskeletal model of the arm, enabling the 131

continuous estimation of fatigue levels during arm control 132

for each muscle. Since the added computational burden was 133

proportional to the number of controlled muscles, we pri- 134

oritized fatigue models that were reasonably accurate and 135

computationally efficient. In spite of its simplicity, the model 136

proposed by [27] could accurately predict fatigue levels for 137

isometric [32] and intermittent motor tasks [33], and it did not 138

affect simulation times in any noticeable manner in this study. 139

Figure. 1B shows a visual representation of the fatigue model, 140

adapted from [27]. The fatigue model included three com- 141

partments representing three possible states for motor units: 142

(1) resting motor units MR , (2) activated motor units MA , and 143

(3) fatigued motor units MF . 144

Eqs. 1 describe the mathematical representation of 145

the compartment model. C(t) is a bidirectional muscle 146

activation-deactivation drive function, as described previ- 147

ously [27]. R and F are the recovery and fatigue coefficients, 148

respectively. R determines the rate at which fatigued motor 149

units become available to perform contractions, and F deter- 150

mines the rate at which activated motor units become fatigued. 151

d MR

dt
= −C(t) + R × MF 152

d MA

dt
= C(t)−F × MA 153

d MF

dt
= F × MA−R × MF (1) 154
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TABLE I
MODEL PARAMETERS (SEE SECTION II-C)

Table I summarizes the fatigue parameters of the models155

implemented in this work. We used hand grip force data156

available in [34] to estimate R and F coefficients representing157

a healthy person with no SCI. The hand grip data was digitized158

from Figure. 9 [34], and fit to the fatigue compartment159

model using a least squares regression to extract R and F .160

To estimate the R and F coefficients for people with chronic161

SCIs, we used plantar flexion torque data available from a162

study investigating fatigue in the soleus muscle of people163

with SCI [12]. The torque data was digitized and fit to the164

fatigue compartment model to extract R and F , as described165

above. Simulations that use the R and F coefficients obtained166

from [12] should be considered conservative estimators167

of DRL performance, because current FES systems use168

FES-induced exercise to strengthen the muscles and decrease169

fatigability [35].170

Exercise leads to increased blood flow to the muscles, which171

is likely to result in faster recovery from fatigue [33]. Also,172

previous studies demonstrated that FES-induced exercise can173

substantially reduce the fatigability of paralyzed muscles [35].174

To model the effect of long-term exercise on the fatigability175

and recovery of paralyzed muscles, we averaged the R and F176

coefficients between the healthy model and the model repre-177

senting chronic SCI, as shown in Table I (see Supplementary178

Figures. 4 and 5 for a sensitivity analysis on the R and F179

coefficients). For all conditions, fatigue was applied by scaling180

the output forces of the Hill-type actuators [23], [24].181

C. Modeling Atrophy182

To model muscle atrophy, we scaled the output forces of183

the Hill-type actuators of the Chronic SCI and SCI Exercised184

models, as shown in Table I. For each model, all muscles185

were weakened by the same percentage. The Chronic SCI186

model was scaled using previously reported atrophy levels187

(approximately 70%) for the triceps muscles of people with188

cervical SCI [13]. The SCI Exercised model was scaled using189

the ratio between the soleus torques produced by people190

with SCI after long-term FES exercise [35], and the soleus191

torques produced by average males [36]. Atrophy levels that192

were estimated using quantitative plantarflexion torque data193

agree with our own qualitative observations of upper-limb194

atrophy after FES exercise in people with tetraplegia [10], [37].195

Anecdotally, our group observed that exercised upper extrem-196

ity muscle strength in chronically paralyzed individuals is typ-197

ically 50% of non-paralyzed individuals [10], [37]. To assess198

the impact of this assumption, we performed a sensitivity199

analysis measuring the effect of different levels of atrophy200

Fig. 2. Reinforcement Learning Controller. We used an actor-critic
RL algorithm where the actor was a DNN that observed kinematic
state variables and controlled muscle activations, while the critic was a
DNN that mapped state-action pairs to expected rewards. The expected
rewards were used by a parameter update function to adapt the actor
network and maximize the rewards received during controller training.

on controller performance for the SCI Exercised model (see 201

Supplementary Figure. 6). 202

D. DRL Controller Implementation 203

We used reinforcement learning (RL) [38] to train a DNN 204

to control the muscle activations in a musculoskeletal arm 205

model. Figure. 2 shows the implemented controller training 206

paradigm. At each time step, the controller received the 207

kinematic state of the system, described by the joint angular 208

positions and joint angular velocities of the arm, as well as 209

the target posture in angular coordinates. The action space was 210

a 6-dimensional vector containing commanded muscle activa- 211

tions over a range of [0, 1] for each of the 6 actuators in the 212

musculoskeletal model. The reinforcement learning agent was 213

given a reward at each step according to Equation 2, where 214

Iat was a boolean that was 1 if the endpoint of the arm was 215

inside the target region T (see Figure. 1A) and 0 otherwise, 216

and �a was a 6 dimensional vector containing the muscle 217

activations of the arm. The first term rewarded the controller 218

for moving the arm into the target region, the second term 219

penalized movement duration, and the third term penalized 220

higher muscle activations to encourage lower levels of muscle 221

fatigue. The second and the third terms were included to 222

promote controller training convergence, as described in [23] 223

and [24]. 224

r = 1 × Iat − 0.1 − 0.245 × ||�a||2 225

�a ∈ R
6, ai ∈ [0, 1] ∀i ∈ {1, 2, . . . , 6} (2) 226

To train the arm controller, we used an actor-critic RL algo- 227

rithm incorporating Twin-Delayed Deep Deterministic Pol- 228

icy Gradients (TD3) [39] and Hindsight Experience Replay 229

(HER) [22], as described previously [23], [24]. Briefly, the 230

actor observed kinematic state variables and target kinematic 231

state variables and chose muscle activation values, as shown 232

in Figure. 2. The critic mapped action-state pairs to expected 233

rewards. The expected rewards were used to update the actor 234

in order to maximize rewards. Both the actor and the critic 235

were feedforward DNNs containing 2 layers and 64 nodes per 236

layer. 237

We used the stable-baselines3 implementation of the 238

TD3-HER algorithm [40] (see a visual representation of 239
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the algorithm in Supplementary Figure. 8). The RL con-240

troller was implemented using stable-baselines3 and custom241

software written in Python 3.7. The musculoskeletal model242

was implemented in C [15]. RL hyperparameters were as243

described in a similar study [23], and they are available in244

Supplementary Table III.245

E. Motor Task246

For all simulations, the controller was tasked with reaching247

to arbitrary target locations in a 2D workspace, as shown in248

Figure. 1A. The targets were circular regions with radii of249

7.5 cm [18], [19], [23], [24]. Target locations were randomly250

sampled from a continuous uniform distribution across the251

workspace. Since the arm was supported against gravity, the252

motion of the arm could be described as reaching across253

a frictionless tabletop or moving within a horizontal planar254

region using a mobile arm support [37]. The controller was255

given 1 second to complete the task, and most successful256

reaches took less than 0.4 seconds. The endpoint of the arm257

had to remain in the target area for 100 ms in order for the258

task to be considered successful. To model natural arm use,259

the arm started at the end state of the previous reach, as if260

continuously moving across the workspace.261

While the theoretical joint angle ranges for the elbow and262

the shoulder in this model were [5◦, 170◦] and [−20◦, 130◦]263

respectively, these ranges included passive postures that could264

only be maintained with the aid of external forces. To esti-265

mate the actual workspace of the arm, we used data from266

previous RL controller implementations using the same arm267

model [23], [24]. We only included regions where previous268

RL controllers could acquire targets with greater than 95%269

probability. By choosing this workspace, we could represent270

controller performance for different simulation conditions as271

fractions of the maximum controller performance. The result-272

ing workspace is shown in green in Figure. 1A.273

F. Simulations274

1) Control of Fatigable Time-Varying Models: In this simula-275

tion, we measured controller performance and muscle fatigue276

in musculoskeletal models representing an average male sub-277

ject, a person with SCI, and a person with SCI after FES278

exercise, as described in sections II-B and II-C. A fourth279

condition, included as a control, used a musculoskeletal model280

with no fatigue or atrophy, as described in previous works [18],281

[19], [23], [24]. Here, the goal was to assess the feasibility of282

using existing DRL controller architectures for FES systems283

in individuals with chronic SCIs.284

2) Assessing the Impact of Muscle Atrophy and Muscle285

Strength Asymmetry: We noticed that the DRL algorithm had286

difficulty converging on successful controllers if the flexor and287

extensor muscles fatigued in an asymmetrical manner. This288

could be due to the fact that (1) muscle forces after fatigue289

were not sufficient to move the arm to the target location290

and/or (2) the RL algorithm had difficulty with directionally291

asymmetrical actuator strengths. To test these hypotheses,292

we implemented models with non-fatigable (time-invariant)293

muscles, but with varying levels of maximum muscle forces. 294

We tested 3 conditions: 295

• Symmetrical muscle strength: all maximum muscle forces 296

were scaled by the same factor. 297

• Flexor force decrease: flexor muscles were weaker than 298

extensor muscles, and all maximum flexor muscle forces 299

were scaled by the same factor. 300

• Extensor force decrease: extensor muscles were weaker 301

than flexor muscles, and all maximum extensor muscle 302

forces were scaled by the same factor. 303

3) Controller Performance With Symmetrical Time-Varying 304

Muscle Strengths: To demonstrate that muscle strength asym- 305

metries can impair controller performance, we controlled for 306

muscle strength asymmetries by artificially linking muscle 307

fatigue levels between opposing muscles, as illustrated in 308

Figure. 1A. Since flexor muscles displayed higher levels of 309

fatigue than extensor muscles in preliminary simulations, 310

we chose to have extensor fatigue track flexor fatigue. We used 311

the same musculoskeletal models described in Simulation 1. 312

4) Rest-Reach Controller Training Protocol: In this simu- 313

lation, we implemented a controller training protocol that 314

included rests of 3 to 6 seconds between reaches to reduce 315

overall levels of fatigue. We assessed the impact of rest dura- 316

tion on controller training times and controller performance. 317

We evaluated the rest-reach protocol using the SCI Exercised 318

model described above. 319

G. Controller Evaluation 320

For each condition, the controller training process shown in 321

Figure. 2 was repeated 32 times, as was shown to provide 322

an accurate assessment of controller performance in previ- 323

ous studies implementing the same motor task [23], [24]. 324

Controller performance during training was measured every 325

5 minutes of simulated time for all simulations, except for 326

the simulation where opposing muscles were artificially kept 327

at the same levels of fatigue. For that simulation, we per- 328

formed evaluations every minute to allow for a more thorough 329

assessment of transient changes in controller performance 330

due to time-varying muscle forces. During evaluations, DNN 331

parameters were held constant while the controller performed 332

100 reaches. The success rate for an evaluation of a single 333

controller was calculated as the number of successful reaches 334

divided by the total number of reaches. The success rate for 335

a condition was estimated as the median success rate of all 336

controllers trained in that condition. Controller performance 337

plots display the median success rate and the interquartile 338

range during controller training. Training time was defined as 339

the time taken for success rates to reach the maximum median 340

performance for each condition. In workspace performance 341

plots, evaluations included 2,000 reaches. The workspace was 342

discretized into pixels of 0.3 × 0.3 cm, and performance was 343

measured as the number of successful reaches divided by the 344

total number of targets spawned within each pixel. 345

III. RESULTS 346

A. DRL Control of Fatigable Musculoskeletal Models 347

Figure. 3A shows controller success rates as a function of 348

training time for fatigable musculoskeletal models, in addition 349
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Fig. 3. Controller training for fatigable musculoskeletal models. (A): Controller success rates (successful reaches/total reaches) as a function
of controller training time for different biomechanical models. (B): Effect of fatigue on relative muscle strength during controller training. Muscle
strength decreases rapidly at the beginning of training for all conditions because of muscle fatigue.

TABLE II
DRL CONTROLLER PERFORMANCE (NO REST)

to a non-fatigable model that was included as a control.350

Success rates decreased substantially for fatigable models351

(Avg. Male, SCI, SCI Exercised), particularly for models with352

higher levels of atrophy, lower levels of muscle recovery (R),353

and higher levels of muscle fatigability (F). Success rates were354

lowest for the SCI model, which has the highest level of355

muscle atrophy and muscle fatigability, and the lowest level356

of muscle recovery. Training times, defined as the time taken357

for success rates to reach the maximum median performance,358

increased for each of the three models that included the359

effects of fatigue. Table II summarizes the success rates after360

60 minutes of training for all conditions, as well as the training361

time for each condition.362

Figure. 3B shows changes in muscle strength during con-363

troller training for each of the three models that include the364

effects of fatigue. Muscle strengths decreased rapidly due to365

fatigue at the beginning of training and plateaued thereafter.366

B. DRL Control of Non-Fatigable Models Representing367

Atrophy368

Figure. 4 shows success rates as a function of training369

time for different levels of muscle strength in a muscu-370

loskeletal model that does not include the effects of fatigue.371

In Figure. 4A, all muscle forces were scaled by the same 372

factor, whereas in Figure. 4B, only the extensor muscles 373

were weakened, and in Figure. 4C, only the flexor muscles 374

were weakened. In Figures. 4A and 4B, the DRL controllers 375

achieve success rates above 95% for all conditions represent- 376

ing atrophy levels of up to 75%. In Figure. 4C, the DRL 377

controllers achieve success rates above 90% only when flexor 378

atrophy was below 15%. An imbalance where the flexors 379

were 30% weaker than the extensors (purple curve in Fig. 4C) 380

caused success rates in this task to drop to approximately 67%. 381

No targets were acquired when flexor forces were decreased 382

by 90% or more. 383

Figure. 5 shows that impairments in controller performance 384

were spatially isolated depending on the pattern of muscle 385

atrophy. Symmetrical decreases in muscle forces caused the 386

workspace to shrink symmetrically from the lateral regions 387

towards the medial region of the workspace. Flexor-only 388

atrophy caused the workspace to shrink from the contralateral 389

region of the workspace towards the ipsilateral region of the 390

workspace. Extensor-only atrophy caused the workspace to 391

shrink from the ipsilateral region of the workspace towards 392

the contralateral region of the workspace. Workspace decreases 393

were most pronounced for the flexor-only atrophy condition. 394

C. DRL Performance for Symmetrical, Fatigable 395

Musculoskeletal Models 396

Figure. 6A shows success rates during controller training 397

for fatigable musculoskeletal models where muscle strengths 398

from opposing muscles were artificially forced to be equal. 399

When muscle strengths for opposing muscles were forced 400

to be equal, controller performance was improved compared 401

to models where opposing muscle strengths were allowed to 402

be asymmetrical (compare Figure. 6A to Figure. 3A). 403
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Fig. 4. DRL controller training for non-fatigable muskuloskeletal models representing atrophy. (A): Muscle strength was scaled by the same
factor for all muscles. Note that the DRL controller requires only very low levels of muscle strength to operate effectively. DRL controllers perform well
when muscle atrophy is symmetrical. (B): Muscle strength was decreased only for the extensor muscles. Controller performance remained high, even
for high levels of muscle atrophy. (C): Muscle strength was decreased only for the flexor muscles. The controller was impaired by asymmetries where
the flexor muscles were weaker than the extensors. Success rates for flexor atrophy levels above 75% were nearly zero - notice that the learning
curves representing 90% and 95% atrophy coincide with the x-axis. Taken together, these results demonstrate that muscle strength asymmetries
can considerably impair controller performance, even in the absence of muscle fatigue during training.

Fig. 5. DRL controller performance throughout the workspace for non-fatigable models of atrophy. Each plot displays the unfatigued
workspace of the arm, with the colored shading indicating the success rate at each location within that workspace. Symmetrical decreases in muscle
strengths cause the workspace to shrink from the edges of the workspace towards the center as forces decrease. Asymmetrical decreases in muscle
strengths cause the workspace to shrink asymmetrically from the corresponding sides of the workspace.

For example, the success rates for the Avg. Male model404

after 60 minutes of training went from 65% for asymmet-405

rical models to almost 100% for symmetrical models. For406

the SCI Exercised model, success rates after 60 minutes of407

training went from 46% to approximately 90%. For the model408

representing people with chronic SCI and no FES exercise,409

the increase in success rates was less substantial - improving410

from 23% to 33%.411

D. Rest-Reach Training Protocol412

Figure. 7 shows success rates and fatigue levels as functions413

of training time while using a controller training paradigm that414

included rest periods between reaches. The musculoskeletal 415

model used in this simulation represented a subject with SCI 416

after FES exercise. Success rates were approximately 95% 417

after 120 minutes of training for rest periods of 5 seconds after 418

every reach. After introducing a pause of at least 3 seconds 419

between reaches, muscle strengths remained above 70% for 420

all muscles included in this model. 421

IV. DISCUSSION 422

People with chronic paralysis have muscles that fatigue 423

more quickly [11] as well as high levels of disuse atrophy [13]. 424

In this work, we extended existing musculoskeletal models 425
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Fig. 6. DRL controller training for fatigable musculoskeletal models where muscle strengths were artificially linked between opposing
muscles. (A): Controller performance as a function of controller training time. Controllers are more successful when used for models with symmetrical
fatigue compared to models with asymmetrical fatigue (Figure 3). For comparison, the dashed lines represent the success rates after 60 minutes
of training in Figure 3. Note that controller performance for the SCI model remains poor, even when muscle strengths are symmetrical, because of
the combined negative effects of high levels of muscle atrophy and high levels of muscle fatigue. (B): Muscle fatigue during training. Fatigue levels
were linked between antagonistic muscle pairs to eliminate the effects of asymmetry, specifically the anterior deltoid and the posterior deltoid, the
brachialis and the short head of the triceps, and the long head of the triceps and the biceps.

to simulate these conditions and generated more realistic426

predictions of DRL controller performance for people with427

SCIs. Here, we demonstrated that DRL controllers work well428

under functionally realistic conditions (exercised SCI mus-429

cles), as long as short rests are provided in between reaches.430

Interestingly, we uncovered that the major challenge for DRL431

controllers was not decreased muscle strength in itself, but432

rather muscle strength asymmetries.433

A. Impact of Muscle Atrophy and Muscle Strength434

Asymmetries on DRL Controller Performance435

The simulations in the current study suggested that DRL436

controllers can effectively coordinate muscle activations to437

perform reaches in a large workspace, even with low maximum438

muscle forces due to muscle atrophy. However, very high439

rates of atrophy (> 70%) could impair controller performance440

if combined with high levels of muscle fatigue. Also, these441

simulations revealed that large asymmetries (> 30%) where442

flexor muscles are weaker than extensor muscles can impair443

DRL control for the task studied in this work.444

To the best of our knowledge, these are the first simulations445

that characterize the impact of muscle strength asymmetries on446

RL control of biomechanical systems. A previous study [19]447

obtained good results while using RL to control a biome-448

chanical model where flexor muscles were 50% weaker than449

extensor muscles. However, the workspace used in [19] was450

contained in a region where controllers in this work acquired451

more than 90% of the targets for flexor atrophy levels of 45%.452

The current study expanded on [19], not only by increasing453

the size of the workspace, but also by characterizing controller454

performance at various levels of asymmetrical atrophy. This 455

parameter sweep revealed that not all patterns of muscle 456

strength asymmetries impair controller performance. For this 457

arm model, flexor-only muscle atrophy impaired controller 458

performance far more than similar levels of extensor-only 459

atrophy, possibly because the workspace extended farther in 460

the direction of joint flexion. 461

Since the arm model was supported against gravity, 462

we encourage caution when predicting results for other tasks. 463

Nonetheless, these results are relevant to people with SCIs 464

who use mobile arm supports [10], [37]. 465

B. Impact of Muscle Strength Time-Variance Due to 466

Fatigue on DRL Controller Performance 467

The results from Figure. 6A suggest that muscle strength 468

time-variance due to muscle fatigue is unlikely to impair 469

DRL control if the remaining muscle strength is sufficient 470

to perform the task. Note that for the Chronic SCI model, 471

combined levels of atrophy and fatigue cause muscle strength 472

to drop below 4% of the muscle strength available to non- 473

disabled people. Considering the results in Figure. 4A, 4% 474

of non-disabled muscle strength is likely to be insufficient 475

to perform the task. This would explain why the Chronic 476

SCI condition, compared to other conditions, did not benefit 477

as much from forcing fatigue levels in opposing muscles to 478

be equal. These results highlight the importance of adequate 479

FES-exercise to increase muscle strength in chronically para- 480

lyzed muscles prior to controller deployment. 481

As discussed above, fatigue-induced performance decre- 482

ases were likely caused in large part by muscle strength 483
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Fig. 7. DRL controller training with rest between reaches for the SCI Exercised model. (A): Controller performance as a function of controller
training time. Allowing for rest between reaches considerably improves controller success rates. For example, a pause of 5 seconds between reaches
results in success rates of around 90% for the studied motor task. (B): Fatigue levels during training. Introducing short pauses in between reaches
allows muscle strengths to remain high, and nearly constant, throughout controller use.

asymmetries, rather than by muscle strength insufficiency.484

The impact of muscle strength asymmetries caused by fatigue485

was substantially ameliorated by introducing rests in between486

reaches (Figure. 7). For the motor task studied in this work,487

a 5 second rest was sufficient to limit muscle fatigue for a488

model representing people with SCI after FES-exercise, and it489

resulted in success rates above 95%.490

In clinical practice, it is unlikely that users would con-491

tinuously move their arms across the workspace. Normal492

upper-limb activity includes frequent periods of inactiv-493

ity. Therefore, we expect that sufficient muscle recovery494

should be achieved in naturally-occurring periods of inactivity.495

During controller training, rest duration in between reaches496

can be optimized considering patient biomechanics and task497

complexity.498

For non-fatigable models, training was completed in499

less than 20 minutes. When adding rest periods to avoid500

fatigue-induced muscle strength asymmetries, training time501

remained below 120 minutes. While this is a substantial502

increase in training time, training for 120 minutes is still503

practical. Additionally, training times might be decreased by504

using techniques such as transfer learning [24].505

C. Motor Behavior and Controller Strategy506

In this study, as in previous implementations of DRL507

controllers [23], [24], we observed that commanded muscle508

activations were frequently either below 5% or above 95%.509

Supplementary Figure. 1 shows a histogram of commanded510

muscle activations for the simulation in Figure. 3 after con-511

troller training. All other conditions implemented in this work512

displayed the same trend. An “all-or-nothing” controller strat-513

egy may have exacerbated the development of high levels of514

fatigue because fatigue increases exponentially with increasing515

muscle activation. Interestingly, increasing the penalty on mus- 516

cle activations did not result in a different controller strategy. 517

Higher muscle activation penalties caused minor shifts in the 518

muscle activation histogram, and they resulted in lower success 519

rates, as can be seen in Supplementary Figures. 2 and 3. 520

Qualitatively, the motor behavior observed for successfully 521

trained controllers could be described as smooth and fast with 522

deceleration as the endpoint of the arm approached the target 523

region. The arm was generally stable at the target region for 524

all conditions (see Supplementary Figure. 7). The duration 525

of the reaches for the fatigable models was approximately 526

0.4 seconds, which is slightly longer than the duration reported 527

in a similar study [23]. Yet, this is not surprising, since the 528

workspace used in this study was considerably larger, and 529

muscle strength was smaller due to the inclusion of atrophy 530

and fatigue. 531

D. DRL Controller Use in Patients With SCI 532

Chronic paralysis causes muscle atrophy [13], and more 533

rapid muscle fatigue [11]. Additionally, SCI is likely to cause 534

denervation in certain muscles [13], and FES exercise cannot 535

reverse atrophy caused by denervation. Furthermore, muscle 536

strength asymmetries between opposing muscles are common 537

even for non-disabled individuals [41]. Therefore, patients 538

with SCIs are likely to exhibit muscle strength asymme- 539

tries, and it is possible that these asymmetries are charac- 540

terized by large imbalances where flexors are weaker than 541

extensors. Since these results indicate that such imbalances 542

impair DRL controller performance, it may be necessary to 543

scale electrode stimulation ranges to compensate for flexor 544

weakness. 545

Figure. 5 shows that decreases in controller success rates 546

due to muscle atrophy are not evenly distributed across 547
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the workspace. Controller performance is impaired mostly548

at the lateral borders of the workspace, and the affected549

area increases towards the center of the workspace with550

increasing levels of atrophy. Even for the most challenging551

condition, where flexors were considerably weaker than exten-552

sors, a large portion of the workspace remained reachable.553

Therefore, muscle strength asymmetries may decrease the554

reachable workspace, but they do not seem to substantially555

impair controller performance within the reachable workspace.556

Taken together, these findings suggest that the task workspace557

could be optimized by considering the anatomy of the558

patient.559

The results in this study (see Figures. 6A and 7A) indi-560

cate that time-variance due to muscle fatigue is unlikely561

to affect controller performance in reaching tasks with the562

arm supported against gravity, as long as rest periods are563

included between reaches. However, we evaluated DRL con-564

troller performance in a motor task that did not require565

precise movements. More complex motor tasks requiring566

fine motor control may be affected by muscle strength567

time-variance.568

High levels of muscle activation, which occur frequently569

when using the control strategy implemented by this DRL570

algorithm, could impair fine motor control, in addition to being571

potentially unsafe and uncomfortable for patients. Therefore,572

we recommend that the electrodes are profiled in order to set573

safe and comfortable levels of stimulation before controller574

training. Profiling electrodes to ensure safety is a standard575

practice in neuroprosthesis implementation [10], [37].576

We highlight the importance of exercising chronically para-577

lyzed muscles using FES to partially reverse disuse atrophy578

prior to controller deployment. Also, controller use should579

include frequent periods of inactivity. When high levels of580

muscle atrophy were combined with muscle fatigue, the581

resulting muscle strengths were not sufficient to perform the582

relatively simple task studied in this work. However, since583

upper-limb use naturally includes periods of low activity,584

we do not anticipate that this will affect the use of the585

controllers, or cause inconvenience for the users.586

Theoretically, the proposed RL controller can adapt to the587

real-world properties of persons with SCI, which is a primary588

benefit of this model-free approach. Therefore, the use of a589

musculoskeletal model is not required. However, a subject-590

specific musculoskeletal model could be used to pre-train the591

controller and thus reduce the training time.592

E. Limitations593

In this work, we used a musculoskeletal model where the594

arm was supported against gravity. The model only included595

6 simple Hill-type actuators, and the model did not include596

joint stiffness or muscle spasticity, which are common in597

patients with SCI. Also, the motor task studied in this work598

was relatively simple, and it involved 2 DoFs. These were599

deliberate study design choices, as in previous works investi-600

gating the early feasibility of DRL for motor control [18], [19],601

[23], [24], [42], [43], [44], to limit the impact of confounding602

variables. Here, the goal was to characterize the impact603

of fatigue and time-varying muscle strength on DRL con- 604

trollers. Future studies should implement DRL control of more 605

complex musculoskeletal models that can more accurately 606

represent the biomechanics of people with chronic paraly- 607

sis, as well as more meaningful functional tasks. A recent 608

study demonstrated that similar RL controllers were robust 609

to changes in many biomechanical parameters [24], [45], 610

suggesting that these controllers can generalize across different 611

users with minimal retraining. However, we anticipate that 612

motor tasks involving object interaction will require major 613

adjustments to the reward function. 614

We used data from the literature to estimate levels of atro- 615

phy, as well as the R and F coefficients for the musculoskeletal 616

models in this work. However, these data, particularly the 617

fatigue curves used to estimate the R and F coefficients, were 618

recorded during motor tasks that differed in important ways. 619

Specifically, suitable data to extract R and F coefficients was 620

available either during MVC [34], or intermittent tasks involv- 621

ing full activation and complete rest [12]. Yet, previous studies 622

argue that R and F coefficients are likely to change depending 623

on the level of muscle contraction, due to physiological factors 624

such as increased blood flow in muscles that are relaxed [33]. 625

Therefore, we anticipate that more accurate estimations of R 626

and F coefficients could lead to shifts in the expected success 627

rates (see Supplementary Figures. 4 and 5) and fatigue levels 628

for the conditions studied in this work, although we expect 629

that the main conclusions would remain unchanged. 630

Finally, the R and F coefficients representing people with 631

SCIs were estimated using soleus data. The non-paralyzed 632

soleus is substantially less fatigable than upper-limb muscles 633

due to its higher proportion of type I muscle fibers [14]. 634

However, chronically-paralyzed muscles become primarily 635

composed of type II fibers [14], which fatigue more quickly. 636

Therefore, we assumed that different muscle groups displayed 637

similar fatigability after SCI. Yet, it is possible that small dif- 638

ferences in muscle composition remain after paralysis-driven 639

muscle adaptation. 640

V. CONCLUSION 641

In this study, we have implemented a musculoskeletal model 642

of the arm that allows for continuous estimation of muscle 643

fatigue during motor tasks. We have adapted this model to 644

represent patients with SCI before and after FES-exercise, and 645

we have used this model to investigate the feasibility of DRL 646

control of FES for people with chronic paralysis. The results 647

suggest that DRL controllers should provide good performance 648

if muscles are exercised to reverse disuse atrophy, and if there 649

are realistic rest periods between movements. However, the 650

simulations indicate that large muscle strength asymmetries 651

may impair DRL controllers. Muscle strength asymmetries that 652

occur due to fatigue may be alleviated by introducing frequent 653

rests during controller use. We recommend that electrodes 654

are carefully profiled and that stimulation ranges are scaled 655

to compensate for large asymmetries due to disuse atrophy 656

or denervation, and to ensure that movements are safe and 657

comfortable for the users. These results support the feasibility 658

of using DRL to control FES systems to reverse paralysis due 659

to SCI. 660
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