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Abstract— Medication therapy seems to be an effective1

treatment for major depressive disorder (MDD). However,2

although the efficacies of various medicines are equal or3

similar on average, they vary widely among individuals.4

Therefore, an understanding of methods for the timely5
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evaluation of short-term therapeutic response and 6

prediction of symptom improvement after a specific course 7

of medication at the individual level at the initial stage of 8

treatment is very important. In our present study, we sought 9

to identify a neurobiological signature of the response to 10

short-term antidepressant treatment. Related brain network 11

analysis was applied in resting-state electroencephalogram 12

(EEG) datasets from patients with MDD. The corresponding 13

EEG networks were constructed accordingly and then 14

quantitatively measured to predict the efficacy after 15

eight weeks of medication, as well as to distinguish the 16

therapeutic responders from non-responders.The results of 17

our present study revealed that the corresponding resting- 18

state EEG networks became significantly weaker after one 19

week of treatment, and the eventual medication efficacy 20

was reliably predicted using the changes in those network 21

properties within the one-week medication regimen. 22

Moreover, the corresponding resting-state networks at 23

baseline were also proven to precisely distinguish those 24

responders from other individuals with an accuracy of 25

96.67% when using the spatial network topologies as the 26

discriminative features. These findings consistently provide 27

a deeper neurobiological understanding of antidepressant 28

treatment and a reliable and quantitative approach for 29

personalized treatment of MDD. 30

Index Terms— Major depressive disorder, resting-state 31

EEG, clinical therapy, prediction. 32

I. INTRODUCTION 33

MAJOR depressive disorder (MDD) is a severe mental 34

disorder characterized by sustained negative mood [1], 35

a persistent lack of motivation, and difficulty experiencing 36

pleasure that substantially affects patients’ quality of daily 37

life [2]. Overall, 78% of patients with severe depression were 38

diagnosed with at least one comorbid psychiatric disorder, 39

such as psychotic disorder, past panic disorder, anxiety, and 40

even suicide risk [3], [4]. MDD is not a homogeneous 41

disorder but a complex disease with a variety of etiolo- 42

gies. Many studies have also shown dysfunctions in the 43

areas of the brain modulated by corresponding systems, 44

including the frontal cortex, amygdala, hippocampus, and 45

basal ganglia, in depression patients. These specific brain 46

regions are highly vulnerable to the effects of stress, prob- 47

ably accounting for the adverse effects of life events on 48

MDD [5]. The severity of MDD is indexed by a com- 49

posite of several behavioral measures or aspects of depres- 50

sive perception. Therefore, clinicians score the degree of 51

depressive symptoms using the 17-item clinician-administered 52
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Hamilton Depression Rating Scale (HAMD17), which classi-53

fies patients with MDD into 4 grades on a 54-point scale using54

a 17-item questionnaire ranging from normal (0-7 points),55

mild depression (8-16 points), and moderate depression56

(17-23 points) to severe depression (> 24 points) [6].57

Multiple therapies have been proposed and verified to be58

available and effective for MDD, among which psychotherapy59

and medications have been widely used [7]. For patients60

suffering from dysthymia, medication is more effective than61

psychotherapy, whereas blended treatment does not result in62

greater efficacy than either medication or psychotherapy [8].63

Sertraline and escitalopram are often considered the first-line64

medicines for the treatment of depression [9]. Although65

different antidepressants display similar efficacy on average66

[10], the treatment selection is not effective for all patients67

with MDD [11]. Since the efficacy of different medicines68

is highly divergent, patients who exhibit a poor response to69

one treatment, up to one-half, attain a benefit after changing70

to another medicine [12]. Unfortunately, more than half of71

patients do not complete follow-up visits, leading them to fail72

to receive additional medication options [13]. Even for patients73

who return to pursue further treatment and finally benefit from74

second-line medicines, failing to obtain effective therapy at the75

initial stage of treatment substantially extends their treatment76

period (the time lag is up to 6 weeks), imposing a substantial77

burden on them [14]. Therefore, accurately matching patients78

with the best initial treatment might provide tremendous79

advantages to people suffering from MDD.80

Recently, researchers have tried to identify biomarkers that81

will inform the choice of specific medications [8], [15]. For82

example, Wu and colleagues designed a latent-space machine-83

learning algorithm that utilized band power as the feature84

to predict symptom improvement in a manner specific to85

the antidepressant sertraline [16]. This approach, however,86

is unable to show the overall relationship among related brain87

regions. Band power did not work effectively in distinguish-88

ing non-responders from responders at baseline. In essence,89

in addition to the local band power, the global interregional90

couplings in the brain measured using electroencephalogram91

(EEG) have been reported to be a more objective measure for92

quantitatively evaluating therapeutic efficacy [17], [18]. In fact,93

analyzing the inherent information recorded by EEG provides94

the opportunity to investigate the network architecture of the95

brain, revealing the information propagation and exchange96

among different regions [19], [20], [21], [22]. Specifically, the97

corresponding information is usually processed among those98

spatially distributed but functionally interacting brain areas99

[22], [23], [24], which maps the spatial topological archi-100

tecture that illustrates the neurophysiological pathogenicity101

of MDD [2], [25]. As reported previously, Shim and col-102

leagues obtained a broader view of the brain with longer path103

length and decreased clustering coefficient in alpha and theta104

bands, which illustrated the deficient connectivity in patients105

with depression [26]. In another study, Li and colleagues106

reported abnormally increased synchronization consisting of107

denser short-range frontal and temporal-parietal connections108

for an n-back task, explaining the compensatory mechanism109

for memory impairment in patients with depression [27].110

Furthermore, investigators have recently utilized related 111

brain networks to distinguish the differences between patients 112

with MDD and healthy controls, assisting in providing a 113

better understanding of the mechanism underlying depression 114

[28], [29]. For example, in a previous study conducted by 115

Mohammadi and Moradi, the potential relationship between 116

the regional activity in patients with MDD and their depression 117

severity was not only identified but also provided a quantitative 118

depression severity prediction [30]. Gamma wave coherence 119

has also been found to help discriminate patients with mild 120

depression from healthy controls, as they manifested lower 121

gamma coherence than healthy controls [31]. However, studies 122

of the treatment response, especially short-term treatment 123

response, thus far, are not yet sufficient and still await 124

further investigation by performing EEG network analyses. 125

Consequently, the identification of robust predictors provides 126

significant benefits in terms of understanding and predicting 127

that variation [15]. 128

In the present study, the data we utilized were 129

downloaded from a public data archive, the National 130

Institute of Mental Health Data Archive (NDA). The 131

data are publicly available through the official website 132

(https://nda.nih.gov/edit_collection.html?id=2199). Recently, 133

multiple studies have been conducted using these datasets. For 134

example, Zhang and colleagues identified clinically relevant 135

MDD subtypes using (un)supervised machine learning based 136

on distinct network patterns [1]. Yu and colleagues investi- 137

gated network differences within and between resting-state 138

networks in patients with MDD and healthy controls and 139

found that traumatic childhood experiences and dimensional 140

symptoms are linked to abnormal network architecture in these 141

patients with MDD [32]. Although these studies have been 142

implemented, the treatment response, especially short-term 143

treatment response, has not yet been studied extensively and is 144

still awaiting further investigation by performing EEG network 145

analyses. Therefore, in our present study, we analyzed the 146

resting-state EEG datasets from patients with MDD collected 147

before and after their one-week antidepressant medication 148

therapy. Related brain networks of these patients with MDD 149

were constructed and then statistically compared to explore 150

the brain fluctuations after one-week medication, as well as 151

predict its eight-week efficacy. 152

II. MATERIALS AND METHODS 153

A. EEG Data 154

The EEG data were selected from the study “Establishing 155

Moderators and Biosignatures of Antidepressant Response in 156

Clinic Care (EMBARC)” in the National Institute of Mental 157

Health Data Archive (NDA). In this study, patients were 158

recruited from different centers. However, in addition to 159

Columbia University, data from fewer qualified subjects were 160

obtained from the other centers due to the poor quality of 161

EEG data and failure of follow-up visits in the later stage of 162

medication therapy. Therefore, only the EEG data from 30 163

patients treated at Columbia University were included in our 164

current study. The 30 participants with MDD participated in a 165

randomized trial and received sertraline, and their clinical and 166

biological markers of outcomes were evaluated [33]. In detail, 167
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Fig. 1. Procedures used to analyze resting-state EEG datasets. (a) Preprocessing of the resting-state EEG datasets, (b) Prediction of the treatment
outcome based on resting-state EEG networks, and (c) Discrimination of responders and non-responders based on resting-state EEG networks.

the 30 subjects were assigned to an 8-week treatment of168

sertraline of up to 200 mg daily. Sertraline dose adjustments169

occurred at weeks 1, 2, 3, 4, 6, and 8 to ensure delivery of170

the appropriate dose and to record the symptom reduction171

(measured by HAMD17). The raw data for each patient172

included two 2-min blocks of eyes-opened resting EEG. The173

EEG datasets were collected at Columbia University/Stony174

Brook (Data Center) in the United States at baseline (0 W) and175

one week after the treatment (1 W) using a high-density EEG176

system (BioSemi, 72 channels). During online data recording,177

patients were seated in a quiet and electrically shielded room178

with their eyes open and relaxed as much as possible, and179

electrodes PPO1 and PPO2 served as the reference. EEG180

signals were sampled at 256 Hz and online bandpass filtered181

at 0-251.3 Hz. At week 8, the 30 patients were assessed with182

the Clinical Global Improvement scale (CGI), and subjects183

who received a CGI score worse than “much improved”184

(i.e., having a CGI score greater than 2) were deemed non-185

responders, while the remaining patients who scored “much186

improved” or “very much improved” (i.e., having a CGI score187

of 1 or 2) were considered responders.188

B. Methods189

In this study, resting-state EEG datasets were used to190

construct the corresponding brain networks with MATLAB191

v2014a software (The MathWorks Inc.). The data analysis 192

procedure is presented in Fig. 1. Detailed descriptions of data 193

processing are provided in the subsequent sections. 194

1) EEG Preprocessing: In the present study, we mainly 195

focused on investigating the potential capacity of the 196

resting-state brain network to quantitatively evaluate the 197

brain fluctuations after short-term medication and distinguish 198

responders from non-responders. Therefore, concerning these 199

resting-state EEG datasets, before preprocessing, the first and 200

last ten seconds of EEG signals were first excluded, and mul- 201

tiple preprocessing procedures were then applied to complete 202

data preprocessing, which included averaging-referencing, [1], 203

[42] Hz bandpass filtering, and 5-s-length data segmentation. 204

Thereafter, a threshold of ±100 μV was subsequently used 205

to automatically exclude segments with absolute magnitudes 206

exceeding 100 μV from any recorded electrode. Additionally, 207

as denser electrodes might provoke more severe volume con- 208

duction effects on connectivity, sparse electrodes were used 209

to reduce the effect of volume conduction on EEG networks. 210

Concretely, 21 of 72 channels, according to the international 211

10-20 system, were selected in our present study to perform 212

the analyses described below. 213

2) Functional Brain Networks: As proven in previous studies, 214

brain network analysis is remarkably helpful in explaining 215

the neurophysiological pathogenicity of MDD [2], and a 216

related analysis was thus implemented in our study. Actually, 217
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an EEG network has been typically modeled as a collection218

of nodes (i.e., EEG electrodes) and edges that are evaluated219

between paired electrodes [34], [35]. When constructing the220

corresponding EEG network for all patients with MDD, the221

same definition of the EEG network is considered. Specifically,222

we set 21 electrodes as the network nodes, and after extracting223

the EEG signal for each electrode, the estimated paired-224

electrode interactions were then regarded as the network edges.225

Here, when constructing resting-state networks for patients226

with MDD, the synchronization likelihood between pairwise227

electrodes was considered [36], [37]. As suggested in previous228

studies, the phase locking value (PLV) [38], [39] that experts in229

estimating the phase synchronization among pairwise signals230

was thus adopted, leading to an adjacency matrix with the231

dimension of electrodes × electrodes. Within the PLV net-232

work, the PLV value is defined within the range of [0, 1],233

and higher PLV values represent a stronger strength of phase234

synchronization.235

As formulated, the Hilbert transform (HT) is used to form236

the analytical signal H (t) and estimate the corresponding237

instantaneous phases ϕx(t) and ϕy(t) of two given time series238

x(t) and y(t) as follows:239 �
Hx(t) = x(t) + i H Tx(t)

Hy(t) = y(t) + i H Ty(t)
(1)240

where HTx (t) and HTy(t) are the HTs of both time series,241

x(t) and y(t), which are defined as follows:242 ⎧⎪⎪⎨
⎪⎪⎩

H Tx(t) = 1

π
P.V .

� ∞

−∞
x(t �)
t − t �

dt �

H Ty(t) = 1

π
P.V .

� ∞

−∞
y(t �)
t − t �

dt �
(2)243

where the P.V. denotes the Cauchy principal value. Afterward,244

the corresponding analytical signal phases, i.e., ϕx(t) and245

ϕy(t), were computed as follows:246 ⎧⎪⎨
⎪⎩

ϕx(t) = arctan
H Tx(t)

x(t)

ϕy(t) = arctan
H Ty(t)

y(t)

(3)247

Finally, the PLV was formulated as follows:248

wplv =
������

1

N

N−1	
j=0

ei(ϕx ( j�t)−ϕy( j�t))

������ (4)249

where wplv is the connection weight estimated using the PLV,250

�t is the sampling period, and N denotes the sample number.251

Concretely, based on those artifact-free resting-state EEG252

segments from each patient, the PLV was first applied to253

each segment to acquire the corresponding 21 × 21 adjacency254

matrix. For each patient with MDD, the final weighted resting-255

state brain network was obtained by averaging matrices across256

all artifact-free resting-state segments. Thereafter, based on257

these EEG networks, either paired or independent t-tests were258

used to elucidate potential differences in brain architectures259

between baseline (0 W) and one week after the treatment260

(1 W) or between responders and non-responders, respectively.261

Furthermore, two weighted network properties were cal- 262

culated using these constructed EEG networks, the clus- 263

tering coefficient (C) and characteristic path length (L), 264

to quantitatively measure the network efficiency in processing 265

information. Here, these properties were calculated from the 266

weighted EEG networks without any thresholding processing. 267

Concretely, di j represents the shortest weighted path length 268

between nodes i and j , n represents the number of network 269

nodes, and � represents the total set of network nodes. The 270

two parameters were formulated as follows: 271

C = 1

n

	
i∈�



j,h∈�

�
w

plv
i j w

plv
ih w

plv
j h

�1/3



j∈�

w
plv
i j

 

j∈�

w
plv
i j − 1

� (5) 272

L = 1

n

	
i∈�



j∈�, j �=i

di j

n − 1
(6) 273

Afterward, we statistically analyzed the potential differences 274

in these weighted network properties between responders and 275

non-responders using an independent t-test and between 0 W 276

and 1 W using a paired t-test, which was then corrected 277

for multiple tests using the Bonferroni correction to further 278

validate treatment response in patients with MDD. 279

3) The Prediction of Medication Efficacy Using a Multiple 280

Linear Regression Model: In the present study, the changes 281

in the two resting-state network properties (i.e., �C and �L) 282

were selected as the variables in the multiple linear regression 283

model for building a model to predict medication efficacy. 284

Based on both �C and �L, the corresponding prediction 285

model was formulated as follows: 286

Y = β0 + β1�C + β2�L + ε (7) 287

where Y denotes the predicted eight-week medication efficacy, 288

β0...2 denotes the regression coefficients of the network prop- 289

erty changes, and ε denotes the error term. 290

Here, the leave-one-out cross-validation (LOOCV) strategy 291

was used to predict the eight-week medication efficacy in all 292

patients with MDD [40]. Specifically, for N samples (N = 293

30 in this study), N-1 samples were used for training, and 294

the remaining 1 sample was used for testing in each LOOCV 295

run. The regression coefficient for each variable was estimated 296

to build a prediction model for the current N-1 samples, 297

which was then used to predict the treatment outcome of an 298

individual in the test set. This procedure was repeated N times 299

until all samples served as testing sets one time. 300

4) Discrimination of Responders From Non-Responders 301

Based on Resting-State Networks: Eventually, these 302

resting-state networks were further tested to prove whether 303

they also promote the clinical selection of optimal therapeutic 304

strategies for MDD, which were validated using two different 305

types of network features. First, these resting-state network 306

properties were adopted. In detail, all of these patients with 307

MDD were divided into training and testing subgroups. 308

During the training process, the corresponding training 309

weighted network properties (i.e., C and L) were calculated 310

using Eqs. (5) and (6). Second, the linear discriminant 311
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analysis (LDA) classifier was trained on these training312

features. Thereafter, during the testing process, those313

testing network properties were also calculated accordingly314

and then input into the trained LDA classifier, which315

finally discriminated the testing data into responders or316

non-responders, and output the classification accuracy.317

As proven previously, these network properties are direct318

statistical measurements of brain networks. Although they319

might also quantitatively capture the overall network dif-320

ferences under our conditions of interest, the corresponding321

spatial network information is still unmined [41]. Thus, the322

network property can be used to describe the overall brain323

network but does not encompass all features contained in the324

network topology. In our previous studies, we developed the325

spatial pattern of the network (SPN) [42] to extract the dis-326

criminative spatial pattern contained in a given brain network327

[42]. As the SPN was described in detail in our previous328

studies [42], a brief introduction to this method was primarily329

provided here.330

M1 and M2 correspond to the adjacency matrices for respon-331

ders and non-responders estimated using PLV, respectively.332

The SPN filters are the projections derived by maximizing333

the following function:334

J(z) = zM1 MT
1 zT

zM2 MT
2 zT

= zA1zT

zA2zT
(8)335

where z denotes the SPN filter (an objective projection) and A1336

and A2 are the covariance matrices of the adjacency matrices337

M1 and M2, respectively.338

Because the scaling of projection z will have no effect on339

the object value, Eq. (8) can be rewritten as the following340

constrained optimization problem:341 ⎧⎨
⎩

arg max
z

zA1zT

subject to zA2zT = 1
(9)342

By introducing the Lagrange multiplier, Eq. (9) can be343

further rewritten as follows:344

L (z, λ) = zA1zT − λ(zA2zT − 1) (10)345

Then, the objective projection z is estimated utilizing the346

generalized eigenvalue equation by taking the derivative of347

Eq. (10) with respect to z under the condition ∂L
∂z = 0,348

A1zT = λA2zT (11)349

where λ denotes the eigenvalue of the generalized eigenvalue350

equation, and z is the corresponding eigenvector.351

For multiple i SPN filters, Eq. (11) is solved as follows:352

A−1
2 A1 Z T =

	
Z T (12)353

where Z is composed of the eigenvectors of A-1 2A1 and

 =354

diag (λ1, λ2, …, λi) with λ representing the corresponding355

singular values.356

Additionally, given the adjacency matrices of the depres-357

sion patients, the corresponding SPN features (FS P N ) were358

calculated using the following equation:359

FS P N = log(var(V T
S P N M))360

wi thVS P N = [z1, z2, . . . , zi ] (13)361

where M denotes the adjacency matrix of patients with MDD, 362

z denotes the SPN filter (an objective projection), and VS P N 363

is a 21 × i matrix composed of SPN filters. 364

As clarified in previous studies, the increasing pairs of 365

SPN filters might facilitate the classification of situations of 366

interest [41], [42]; for example, different pairs of SPN features 367

(i.e., 1 pair, 2 pairs, and 3 pairs) have been used to achieve 368

the classification of psychogenic nonepileptic seizures from 369

epilepsy, and 3 pairs of SPN features achieved the highest 370

classification accuracy [42]. Consistent with the protocols used 371

in previous studies [43], [44], in our present study, three 372

pairs of SPN filters were accordingly adopted to achieve the 373

classification of responders and non-responders. In particular, 374

for a 21 × 21 adjacency matrix, M, each SPN filter was 375

a 21-length vector, and therefore, three pairs of SPN filters 376

comprised a 21 × 6 matrix. Afterward, the corresponding 377

SPN features were acquired as a vector with a length of 6 by 378

applying these SPN filters to the constructed resting-state EEG 379

networks and then calculating the variance of each row of 380

weighted nodes. 381

When using the SPN features to classify the responders 382

and non-responders, protocols similar to those used to ana- 383

lyze network properties were performed. Specifically, after 384

acquiring the trained SPN filters during the training process, 385

we subsequently calculated the corresponding training SPN 386

features (Eq. (13)) that would be used to train the LDA 387

classifier. Additionally, the trained filters were further applied 388

to the testing sets to acquire the testing SPN features. Even- 389

tually, the testing SPN features were input into the trained 390

LDA classifier, and the related classification performance was 391

evaluated accordingly. 392

As the present dataset was relatively small, the LOOCV test 393

was also used to recognize responders and non-responders, 394

as described in previous studies [45], [46]. Based on the 395

LOOCV, the corresponding indices, including accuracy (ACC), 396

sensitivity (SEN), and specificity (SPE), were then calculated 397

to evaluate the performance. Let NRes and NNon denote the 398

total number of responders and non-responders, respectively, 399

and let nRes and nNon denote the correctly discriminated 400

number of responders and non-responders, respectively. The 401

detailed equations used to calculate these indices were as 402

follows: 403

ACC = nRes + nNon

NRes + NNon
× 100% (14) 404

SE NRes = nRes

NRes
× 100% (15) 405

S P ENon = nNon

NNon
× 100% (16) 406

III. RESULTS 407

A. Comparison of HAMD17 Scores Between Responders 408

and Non-Responders at Baseline and After One Week of 409

Medication 410

Medication treatment visits occurred at baseline and 411

weeks 1, 2, 3, 4, 6, and 8 to ensure that the delivery was 412

appropriate and to record the HAMD17score. Although these 413

scales have some defects, they are still currently crucial for the 414
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Fig. 2. Statistical differences in HAMD17 scores between non-
responders and responders. (a) HAMD17 score fluctuations after one
week of antidepressant medication. (b) HAMD17 scores at baseline and
week 1.

clinical diagnosis of related diseases, and the classification in415

the neuroscience field also uses clinical scales as the evalu-416

ation criteria [47], [48]. Therefore, using the same protocol417

described in previous studies [49], [50], these clinical scores418

of all patients were also recorded as the “gold standard” when419

evaluating and classifying the patients. Concretely, considering420

the EEG datasets used in this study and methods reported421

in previous studies [51], [52], 30 patients were assessed422

with the CGI at the 8th week. In addition, expanding on423

the CGI criteria, 9 patients who received a score worse424

than “much improved” were deemed to be medication non-425

responders, while the remaining 21 patients who scored “much426

improved” or “very much improved” were then considered427

responders [33]. The 0 W minus 1 W fluctuations in HAMD17428

scores were primarily calculated to quantify the efficacy of429

the antidepressant medication; unfortunately, as displayed in430

Fig. 2(a), no statistically significant differences were identi-431

fied in HAMD17 score fluctuations for both patient groups.432

Because resting-state EEG datasets were only collected at two433

stages, i.e., at baseline and week 1, the efficacy within the434

relatively short medication duration (i.e., only baseline and435

week 1) was also considered. Concretely, the corresponding436

differences in HAMD17 scores between the responders and437

non-responders were statistically analyzed at both baseline438

and week 1. Not surprisingly, no significant differences in439

HAMD17 scores were observed between the two groups at440

either stage (p > 0.05), as shown in Fig. 2(b).441

B. Brain Fluctuations After Short-Term Medication442

Indexed by Resting-State EEG Networks443

1) Network Differences Between 0 W and 1 W: Next,444

we sought to identify a robust biomarker that quantitatively445

evaluated patients’ brain fluctuations after one-week antide-446

pressant treatment, which might help predict the final med-447

ication efficacy in patients with MDD. Here, expanding upon448

the constructed resting-state EEG networks for all patients,449

the corresponding implicit spatial network topologies and450

related network properties, were first statistically compared to451

validate the sensitivity of network measures to antidepressant452

treatment.453

On the one hand, we concentrated on the corresponding454

network topologies measured for responders in both stages.455

Fig. 3(a) shows the significant differences in network topolo-456

gies between baseline (i.e., 0 W) and one week of medication457

Fig. 3. The significant differences in network topology and properties
in responders between 0 W and 1 W. (a) Network topology. (b) Network
properties.

(i.e., 1 W), in which the red solid lines denote the reduced 458

interelectrode connectivity (0 W > 1 W). Specifically, rela- 459

tively stronger connectivity (i.e., red long-range edges) among 460

the frontal and occipital lobes was observed at the baseline 461

stage (p < 0.05, Bonferroni-corrected) than at 1 W. Thereafter, 462

the network properties, including C and L, were calculated and 463

compared to quantitatively measure the network fluctuation 464

after one week of treatment, as shown in Fig. 3(b), in which 465

the red and blue bars denote the network properties corre- 466

sponding to 0 W and 1 W, respectively. Herein, to statistically 467

explore the potential differences, the linear mixed model was 468

adopted. In detail, the model included the network properties 469

(e.g., clustering coefficients) as the dependent variable, Time 470

(0 W and 1 W) and Group (responder and non-responder) 471

were then treated as independent variables. In addition, the 472

model included participants as the random factor. Models 473

were then compared using log-likelihood ratio tests to deter- 474

mine the best model, and backward algorithms were used 475

for model comparisons. The results showed that the best-fit 476

model included the main effect of Group and Group-x-Time 477

interactions. Herein, when taking the network properties of 478

Week 0 and the non-responders as the baselines, the statistics 479

demonstrated that for responders, C showed a decreasing trend 480

at 1 W compared to 0 W, while L showed an increasing 481

trend. Although the non-responders received one week of 482

antidepressant medication treatment, significant differences 483

(p > 0.05) were not observed either in network topology or 484

in properties between the two stages. 485

2) Prediction of the Medication Efficacy Based on 486

Resting-State Network Properties: Because these resting-state 487

network characteristics (both topologies and properties) 488

were identified to help evaluate the brain fluctuations after 489

one-week medication therapy, we then intended to explore 490

whether any potential relationship between the HAMD17 491

score fluctuations and the corresponding network property 492

changes (�C and �L) would be identified. As shown 493

in Fig. 4, within the alpha band, �C (r = 0.426, p = 494

0.019) showed a significant positive correlation with the 495

change in the HAMD17 score at one week, while �L was 496

negatively correlated with the change in the HAMD17 score 497

(r = −0.428, p = 0.018). In fact, these patterns were 498

also observed within multiple bands, e.g., delta, theta, and 499

beta bands. As similar findings across multiple bands were 500

acquired and the activity of the alpha band in the brain at rest 501
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Fig. 4. Relationships between changes in the network properties and
changes in the HAMD17 score during one week of medication. In each
subfigure, the red line is the fitted curve, and the blue filled circles denote
the patients with MDD.

has been proven to be a capable discriminator [2], as well502

as the page limitation, further analyses, such as correlations503

and predictions, were only reported for the alpha band in the504

present study.505

In addition to the potential relationship between network506

property changes and changes in the HAMD17 score at one507

week, related network properties were analyzed to clarify508

whether they might also facilitate the prediction of treatment509

outcomes; in particular, we predicted the treatment efficacy510

after eight weeks of medication. Here, the eventual treatment511

efficacy was quantified as the difference in HAMD17 scores512

at baseline from the 8th week, and the differences in network513

properties between the baseline and one-week medication514

were used as the corresponding predicting features. By imple-515

menting the linear prediction analysis, we then predicted the516

changes in the HAMD17 score for all patients with MDD.517

Consequently, as displayed in Fig. 5, the predicted changes518

in HAMD17 scores were significantly related to the actual519

changes. The corresponding Pearson’s correlation coefficient520

was r = 0.53 (p = 0.002), and the Root Mean Squared521

Error (RMSE) was 5.973. Here, we randomly scrambled the522

network properties and HAMD17 scores of all patients and523

then repeated the prediction 1000 times to further clarify524

that the current prediction result was not achieved by chance525

using the protocols described in previous studies [53]. Subse-526

quently, by statistically investigating these permutation results,527

we found that a correlation coefficient of 0.53 reached a528

significance level of 0.001.529

C. Medication Sensitivity of Patients With MDD Derived530

From Resting-State Networks531

1) Network Differences Between Responders and Non-532

Responders: The differences in resting-state EEG networks533

between responders and non-responders were also investigated534

at the baseline and one-week medication stages to further535

validate the great potential of network characteristics in deter-536

mining the response of medication therapy in patients with537

MDD. Fig. 6(a) and (b) illustrate the significant differences538

in network topology and properties between the two groups.539

Concretely, Fig. 6(a) displays the topological difference at540

baseline, in which weaker linkages are identified for the541

responders than for the non-responders. In addition, the corre-542

sponding differences (p < 0.05) in network properties further543

Fig. 5. Prediction of eight-week medication efficacy (changes in the
HAMD17 scores) based on the resting-state network properties. The
black dashed line indicates the ideal prediction, the red line fits the scatter
points, and the blue filled circles denote the subjects.

Fig. 6. The significant differences in network topology and properties
between responders and non-responders at 0 W and 1 W: (a) 0 W and
(b) 1 W.

clarified the smaller C and longer L for responders. At the one- 544

week medication stage, the potential differences ( p < 0.05) in 545

both network topology and properties between the responders 546

and non-responders were further increased. 547

2) Categorization Into Responders and Non-Responders 548

Based on Resting-State Networks: Based on the statisti- 549

cally significant difference in network properties between 550

responders and non-responders at the baseline stage shown 551

in Fig. 6(a), we next examined whether the corresponding 552

network properties also discriminated non-responders from 553

responders before the actual treatment, which might facilitate 554

the precise treatment of MDD in the clinic if this medication 555

therapy was effective in these patients with MDD. These 556

results might guide the design of a more effective treatment 557

protocol. In fact, although significant differences in network 558

properties were identified between both groups, the 76.67% 559

classification accuracy acquired here was not as satisfying as 560
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Fig. 7. Topological distribution of the most discriminative first pair of SPN
filters between responders and non-responders. The subfigures in the
left and right columns denote the corresponding spatial Filters 1 and 2,
respectively.

expected, as well as the sensitivity of 76.19% for responders561

and the specificity of 77.78% for non-responders.562

In addition to the network properties, which mainly serve563

as the direct statistical measures of brain networks, the corre-564

sponding spatial network topologies [41] had been fully proven565

to facilitate our classification analysis. Therefore, based on our566

developed SPN method, related implicit and inherent spatial567

network features (i.e., SPN features) were first extracted from568

the resting-state EEG data from both responders and non-569

responders at 0 W and further utilized to classify both groups.570

Here, we primarily showed the most discriminative pair of571

SPN filters (i.e., Filters 1 and 2), as shown in Fig. 7, in which572

those network nodes (e.g., electrodes O1, O2, and Oz) that573

exhibited significant edge differences in Fig. 6(a) displayed574

with larger coefficients (i.e., marked with deep red or blue575

color). We then used these SPN features as the discriminative576

features to classify responders and non-responders. Here, the577

LOOCV strategy was utilized to complete the categorization,578

and as expected, an improved performance (i.e., an accuracy of579

96.67%) was indeed acquired, along with a sensitivity of 100%580

for responders and a specificity of 88.89% for non-responders.581

D. Categorization of Merged Responders and582

Non-Responders From Different Sites583

Considering the EMBARC recorded EEG datasets from four584

different sites, after testing on the participants of Columbia585

University, participants of the other three sites were reviewed586

following the same strategy used at Columbia University.587

Even though the EEG datasets had fewer qualified patients,588

both responders and non-responders could be still identified.589

Eventually, a total of 80 participants were picked and then590

included in the further categorization analysis. Just as dis-591

played in Fig. 8, we extracted the scatter diagram of the592

corresponding SPN features from the first pair of filters with593

the most distinguishing power. From this scatter diagram,594

we can see that the responders and non-responder can be595

well distinguished; and the recognition of responders from596

non-responders also obtained acceptable performance, as the597

accuracy of 77.50% was achieved when using SPN features598

as the discriminative features.599

And based on these merged participants, the prediction600

was also achieved. Herein, by further using related network601

Fig. 8. Classification of responders and non-responders based on
related network topologies. The scatterplot corresponding to the SPN
features extracted from the first pair of the most discriminating filters
between the Responders and Non-responders.

Fig. 9. Prediction of eight-week medication efficacy for site-merged
participants. The black dashed line indicates the ideal prediction, the
red-solid line fits the scatter points, and the blue-filled circles denote the
site-merged participants.

metrics to predict the efficacy after eight-week medication, 602

as displayed in Fig. 9, the predicted HAMD17 changes were 603

indeed correlated with diagnosed ones (r = 0.50, p = 0.001, 604

RMSE = 6.31). 605

IV. DISCUSSION 606

The HAMD17 is the most widely used clinician- 607

administered depression assessment scale, containing 17 items 608

assessing depression experienced over previous weeks, which 609

provides an indication of depression and serves as a guide to 610

evaluate recovery. Considering the reliability and validity of 611

HAMD17 [54], we analyzed HAMD17 scores recorded in the 612

first two stages to illustrate the treatment efficacy after a rela- 613

tively short-term medication period, as well as to explore if the 614

HAMD17 was highly sensitive in identifying responders and 615

non-responders. Concretely, we sought to use the efficacy of 616

one week of medication to classify these patients with MDD. 617

As illustrated in our present study, although these patients 618

were divided into responders and non-responders based on 619

their eventual HAMD17 scores recorded after eight weeks of 620

medication, no significant difference was observed when we 621
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first explored the potential fluctuations in HAMD17 scores622

between 0 W and 1 W of medication. Therefore, the model623

failed to describe the one-week treatment efficacy and further624

discriminate responders and non-responders. As changes in625

the HAMD17 score did not show an obvious difference in626

distinguishing responders from non-responders, the HAMD17627

scores were then directly compared between responders and628

non-responders at the two time points mentioned above.629

Unfortunately, the responders did not show a significant dif-630

ference from the non-responders at either stage, as shown in631

Fig. 2(b). These results might be attributed to the fact that632

the short-term treatment was not long enough to significantly633

affect the brain of patients with MDD and failed to alter634

the HAMD17 score [55]. Clinical scales usually measure the635

overall performance of relatively long-term medication but not636

short-term results, and thus HAMD17 is not sensitive enough637

to detect short-term antidepressant efficacy and distinguish638

responders from non-responders. In this case, at the begin-639

ning of treatment, HAMD17 scores are not predictive at the640

individual patient level.641

Considering that the human brain functions as a large-642

scale complex network whose information is transmitted and643

integrated within spatially distributed but functionally coupled644

regions [56], [57], potential differences in related brain net-645

works of these responding and non-responding patients with646

MDD were quantitatively analyzed to objectively evaluate647

the therapeutic response. First, when identifying the network648

changes after antidepressant treatment for one week, Fig. 3649

shows the significant (p < 0.05) network differences in650

responders between 0 W and 1 W. Specifically, those patients651

who responded at 1 W experienced relatively decreased652

long-range functional connectivity between the frontal and653

occipital lobes (Fig. 3(a)), as well as smaller properties654

(Fig. 3(b)) than their 0 W measures. As reported in previous655

studies, abnormal activation or overloaded communication656

among the frontal, temporal, and occipital lobes usually occurs657

during the emotional and cognitive processing of patients658

with MDD [58], [59]. For example, Leuchter and colleagues659

examined coherence in the resting state and found that patients660

with MDD displayed higher theta and alpha coherence pri-661

marily in longer distance connections within and between662

electrodes overlying frontal and parieto-occipital regions [60].663

Their study revealed that the strong connectivity in brain664

networks might be linked to impaired cognitive processing in665

individuals with MDD [61], including attention and working666

memory, as well as the processing of auditory, linguistic, and667

social cognition information in individuals with a psychiatric668

illnesses [62]. In detail, the ability to modulate alpha activity669

was associated with the capacity to meet working memory670

and executive demands and focus attention [63], [64], [65].671

The increased beta activity was related to a deterioration in672

cognitive flexibility and control [66]. Therefore, the decreased673

network patterns and network properties in Fig. 3 consistently674

indicated that one week of medication alleviated the abnormal675

synchronization among those regions in patients with MDD,676

ameliorating related impairments in cognitive function.677

Moreover, resting-state brain activity has been proven to678

comprise the basis of the related cognitive process [67], [68],679

and many studies have performed related resting-state analyses 680

when investigating MDD dysfunction [69], [70]. In fact, 681

the increased resting-state multiregional synchronization in 682

patients with MDD has been proven to be accompanied 683

by increased self-rumination, which is considered a princi- 684

pal cause of the psychophysiology of depression [71], [72]. 685

Antidepressant medicines are commonly utilized to enhance 686

monoaminergic neurotransmission and reverse some of these 687

stress-induced neurophysiological changes, further inhibiting 688

the abnormal activity of the amygdala, and are thus proposed 689

to be helpful for MDD therapy [73], [74]. Here, the decreased 690

network topologies and properties consistently clarified that 691

one week of medication worked for responders by significantly 692

alleviating their overall connectivity. Unfortunately, although 693

receiving the same therapeutic intervention, the networks 694

of those non-responding patients with MDD remained in 695

their initial state, as no significant differences were observed 696

between the 0 W and 1 W sessions. Here, the statistics relying 697

on the linear mixed model did report both main effects of 698

Group and Group-x-Time interactions for the explorations 699

into the brain networks. The decreased network parameters 700

consistently clarified that one week of medication worked for 701

responders by significantly alleviating their overall connec- 702

tivity. Unfortunately, although receiving the same therapeutic 703

intervention, the networks of those non-responding patients 704

with MDD remained in their initial state, as no significant 705

differences were observed between the 0 W and 1 W sessions. 706

And considering these findings, we thus assumed that the 707

network investigation performed in our present study might 708

be sensitive to capture the corresponding brain fluctuations 709

occurring after one week of medication. 710

As resting-state networks were validated to quantitatively 711

measure brain fluctuations after short-term treatment in 712

patients with MDD, even within one week, the corresponding 713

network metrics (e.g., network properties) were thus postulated 714

to be robust biomarkers to predict therapeutic efficacy in these 715

patients. Changes in both C and L (Fig. 4) were significantly 716

correlated with fluctuations in HAMD17 scores between base- 717

line and one week of medication therapy, which primarily 718

illustrated the possibility of the subsequent prediction analy- 719

sis. Accordingly, the network properties were then utilized 720

to predict the long-term treatment outcome. Concretely, the 721

changes in network properties calculated by subtracting the 722

network properties at 1 W (after one week of medication) 723

from those at 0 W (baseline) were selected as the predictors 724

of the eight-week antidepressant treatment response. Fig. 5 725

shows the scatterplots of the actual and predicted changes 726

in the HAMD17 scores for all of these patients with MDD, 727

where the dashed diagonal line indicates the ideal prediction, 728

and the blue filled circles distributed along the dashed line 729

denote that the regression model estimated from the train- 730

ing set was capable of accurately predicting an individual’s 731

eight-week antidepressant outcome. In addition, considering 732

the close correlation between network property changes and 733

HAMD17 score fluctuations identified in the previous analysis, 734

this robust prediction of antidepressant outcome further vali- 735

dated that the network properties (C and L) indeed served as 736

influential features to predict individual long-term medication 737
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efficacy and verified the reliability of resting-state networks in738

promoting personalized medication strategies.739

Due to the significant difference between 0 W and 1 W740

observed in responders, whereas no difference was observed741

in non-responders between these two stages, we further com-742

pared and analyzed the significant differences between respon-743

ders and non-responders at baseline and after one week of744

medication. Further analysis of the data from our current745

study revealed that brain networks illustrated the difference746

between both groups, even before antidepressant treatment.747

Additionally, this difference between the two groups increased748

significantly after one week of the therapeutic intervention.749

Concerning the pretreatment comparison, as displayed in750

the left panel of Fig. 6(a), non-responders showed enhanced751

network connectivity compared to responders, as mainly752

manifested as long-range connectivity between the tempo-753

ral lobe and occipital lobe. Corresponding network proper-754

ties further quantitatively revealed stronger brain activity in755

non-responders than in responders. As validated in previous756

studies [75], [76], [77], [78], non-responders experienced757

greater abnormal activation or overloaded communication than758

responders, especially within the alpha band, which might759

result in increased functional connectivity within the default760

mode network of non-responders and indeed coincided with761

the patterns of topological differences between responders762

and non-responders in Fig. 6(a). Those non-responders also763

received one week of antidepressant medication but failed to764

respond. Consequently, when further investigating the potential765

differences between responders and non-responders after one766

week of medication, increasing topological differences (i.e.,767

much stronger and denser linkages in non-responders than768

responders) were observed (Fig. 6(b)), which further validated769

the brain fluctuations given by antidepressant treatment in770

responding patients with MDD by inhibiting the interaction771

between the frontal and temporal-occipital lobes [79]. More-772

over, the difference in network properties between responders773

and non-responders also increased substantially after one week774

of medication. As observed in the two histograms, the network775

efficiency of non-responders remained at their initial state,776

while a significantly smaller C and longer L of responders777

are illustrated in the right panel of Fig. 6, indicating treatment778

response.779

In this regard, both resting-state network properties and780

topologies would help distinguish responders from non-781

responders. Unfortunately, when both types of information782

were separately applied in the present classification protocols,783

varying performances were achieved. Although the network784

properties were indeed different between these responders785

and non-responders, both C and L were direct statistical786

measurements and failed to capture the differences in net-787

work topological distributions between both groups. Therefore,788

a relatively low accuracy of 76.67% was achieved when the789

network properties were used as the discriminative features790

to distinguish patients with MDD in both groups. In con-791

trast, SPN was technically developed in our previous studies792

[41], which mainly focused on the network topologies. More793

specifically, within the brain networks investigated here, the794

SPN adopts varied strategies for important and less important795

network nodes by emphasizing those important nodes with 796

larger coefficients but suppressing others with much smaller 797

coefficients (close to zero). As displayed in Fig. 7, those 798

occipital electrodes (e.g., O1, O2, and Oz) are shown in a 799

deep red or blue color and implied that great differences 800

occurred at these electrodes, which indeed coincided with the 801

topological differences shown in Fig. 6(a). In fact, based on 802

these varying strategies, the SPN succeeds in extracting the 803

network spatial information exactly and guarantees its capacity 804

in classifying patients with MDD. Here, satisfactory perfor- 805

mance was achieved, as the accuracy was further improved 806

to 96.67% when using these SPN features as discriminative 807

features. Notably, this classification is based on the EEGs 808

recorded before the actual treatment, and it is very helpful to 809

instruct the clinician in designing a more efficient therapeutic 810

protocol for patients with MDD. Further, to evaluate the 811

generalizability of our method, a total of 80 participants from 812

four different sites were picked and then included in the 813

categorization analysis. The recognition of responders from 814

non-responders also obtained acceptable performance, as the 815

accuracy of 77.50% was achieved when using SPN features 816

as the discriminative features. Additionally, based on these 817

merged participants, we further used related network metrics to 818

predict the efficacy after eight-week medication; the predicted 819

HAMD17 changes were indeed correlated with diagnosed 820

ones (r = 0.50, p = 0.001, RMSE = 6.31). These results 821

further validated the generalizability of our proposed method 822

in treatment selection of MDD. 823

Considering these findings described above, the network 824

changes were indeed observed for the responders but not 825

for the non-responders after short-term antidepressant treat- 826

ment; and the differences between the two groups became 827

even greater after one-week medication. Replicated evidence 828

indicated that according to the HAMD17 scale, antidepressant 829

efficacy was not observed obviously until at least 4 weeks of 830

medication [80]. However, compared with the clinical scale, 831

the brain network seems to be a more sensitive biomarker and 832

has a great capacity for evaluating brain changes after short- 833

term medication, as well as distinguishing responders from 834

non-responders. Although the exact relationship between EEG 835

metrics and clinical scales was still unveiled, related EEG met- 836

rics Li et al.; Zhang et al. have been proved to reliably index 837

the deficits occurring in brain diseases, as well as evaluate 838

the treatment response from patients. Following the similar 839

protocol used previously [81], [82], in this study, we thus 840

utilized brain networks to quantify the brain fluctuations after 841

one-week medication for MDD patients, and further explored 842

the relationship between EEG metrics and clinical scale, which 843

aimed to provide potential early biomarkers for subsequent 844

prediction analysis and treatment selection. 845

However, although we have verified our method on the 846

EMBARC study and achieved good performance, the con- 847

clusions should be further verified, and the potential capacity 848

for big data analysis should also be confirmed. Meanwhile, 849

we will then develop related algorithms to mitigate the site 850

effect induced by different amplifiers and/or electrode mon- 851

tages to improve the generalizability and robustness of our 852

method. 853
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V. CONCLUSION854

Our present study investigated the differentiable resting-855

state networks in both responders and non-responders856

between 0 W and 1 W, revealing brain fluctuations after857

medication in patients with MDD. Although HAMD17 scores858

failed to evaluate the efficacy within the one week of859

medication therapy, the resting-state network properties suc-860

ceeded and predicted the eight-week antidepressant treat-861

ment response at the individual patient level. Moreover, the862

baseline network topologies also distinguished medication863

responders from non-responders with an accuracy of 96.67%.864

Taken together, these findings consistently suggested that the865

brain network emerges as a sensitive biomarker to determine866

short-term treatment response and distinguish responders from867

non-responders, which provides a new bridge for adjusting the868

clinical treatment strategy.869
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