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Abstract— Medication therapy seems to be an effective
treatment for major depressive disorder (MDD). However,
although the efficacies of various medicines are equal or
similar on average, they vary widely among individuals.
Therefore, an understanding of methods for the timely
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evaluation of short-term therapeutic response and
prediction of symptom improvement after a specific course
of medication at the individual level at the initial stage of
treatment is very important. In our present study, we sought
to identify a neurobiological signature of the response to
short-term antidepressant treatment. Related brain network
analysis was applied in resting-state electroencephalogram
(EEG) datasets from patients with MDD. The corresponding
EEG networks were constructed accordingly and then
quantitatively measured to predict the efficacy after
eight weeks of medication, as well as to distinguish the
therapeutic responders from non-responders. The results of
our present study revealed that the corresponding resting-
state EEG networks became significantly weaker after one
week of treatment, and the eventual medication efficacy
was reliably predicted using the changes in those network
properties within the one-week medication regimen.
Moreover, the corresponding resting-state networks at
baseline were also proven to precisely distinguish those
responders from other individuals with an accuracy of
96.67% when using the spatial network topologies as the
discriminative features. These findings consistently provide
a deeper neurobiological understanding of antidepressant
treatment and a reliable and quantitative approach for
personalized treatment of MDD.

Index Terms— Major depressive disorder, resting-state
EEG, clinical therapy, prediction.

I. INTRODUCTION

AJOR depressive disorder (MDD) is a severe mental

disorder characterized by sustained negative mood [1],
a persistent lack of motivation, and difficulty experiencing
pleasure that substantially affects patients’ quality of daily
life [2]. Overall, 78% of patients with severe depression were
diagnosed with at least one comorbid psychiatric disorder,
such as psychotic disorder, past panic disorder, anxiety, and
even suicide risk [3], [4]. MDD is not a homogeneous
disorder but a complex disease with a variety of etiolo-
gies. Many studies have also shown dysfunctions in the
areas of the brain modulated by corresponding systems,
including the frontal cortex, amygdala, hippocampus, and
basal ganglia, in depression patients. These specific brain
regions are highly vulnerable to the effects of stress, prob-
ably accounting for the adverse effects of life events on
MDD [5]. The severity of MDD is indexed by a com-
posite of several behavioral measures or aspects of depres-
sive perception. Therefore, clinicians score the degree of
depressive symptoms using the 17-item clinician-administered

For more information, see https://creativecommons.org/licenses/by/4.0/
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Hamilton Depression Rating Scale (HAMD17), which classi-
fies patients with MDD into 4 grades on a 54-point scale using
a l7-item questionnaire ranging from normal (0-7 points),
mild depression (8-16 points), and moderate depression
(17-23 points) to severe depression (> 24 points) [6].

Multiple therapies have been proposed and verified to be
available and effective for MDD, among which psychotherapy
and medications have been widely used [7]. For patients
suffering from dysthymia, medication is more effective than
psychotherapy, whereas blended treatment does not result in
greater efficacy than either medication or psychotherapy [8].
Sertraline and escitalopram are often considered the first-line
medicines for the treatment of depression [9]. Although
different antidepressants display similar efficacy on average
[10], the treatment selection is not effective for all patients
with MDD [11]. Since the efficacy of different medicines
is highly divergent, patients who exhibit a poor response to
one treatment, up to one-half, attain a benefit after changing
to another medicine [12]. Unfortunately, more than half of
patients do not complete follow-up visits, leading them to fail
to receive additional medication options [13]. Even for patients
who return to pursue further treatment and finally benefit from
second-line medicines, failing to obtain effective therapy at the
initial stage of treatment substantially extends their treatment
period (the time lag is up to 6 weeks), imposing a substantial
burden on them [14]. Therefore, accurately matching patients
with the best initial treatment might provide tremendous
advantages to people suffering from MDD.

Recently, researchers have tried to identify biomarkers that
will inform the choice of specific medications [8], [15]. For
example, Wu and colleagues designed a latent-space machine-
learning algorithm that utilized band power as the feature
to predict symptom improvement in a manner specific to
the antidepressant sertraline [16]. This approach, however,
is unable to show the overall relationship among related brain
regions. Band power did not work effectively in distinguish-
ing non-responders from responders at baseline. In essence,
in addition to the local band power, the global interregional
couplings in the brain measured using electroencephalogram
(EEG) have been reported to be a more objective measure for
quantitatively evaluating therapeutic efficacy [17], [18]. In fact,
analyzing the inherent information recorded by EEG provides
the opportunity to investigate the network architecture of the
brain, revealing the information propagation and exchange
among different regions [19], [20], [21], [22]. Specifically, the
corresponding information is usually processed among those
spatially distributed but functionally interacting brain areas
[22], [23], [24], which maps the spatial topological archi-
tecture that illustrates the neurophysiological pathogenicity
of MDD [2], [25]. As reported previously, Shim and col-
leagues obtained a broader view of the brain with longer path
length and decreased clustering coefficient in alpha and theta
bands, which illustrated the deficient connectivity in patients
with depression [26]. In another study, Li and colleagues
reported abnormally increased synchronization consisting of
denser short-range frontal and temporal-parietal connections
for an n-back task, explaining the compensatory mechanism
for memory impairment in patients with depression [27].

Furthermore, investigators have recently utilized related
brain networks to distinguish the differences between patients
with MDD and healthy controls, assisting in providing a
better understanding of the mechanism underlying depression
[28], [29]. For example, in a previous study conducted by
Mohammadi and Moradi, the potential relationship between
the regional activity in patients with MDD and their depression
severity was not only identified but also provided a quantitative
depression severity prediction [30]. Gamma wave coherence
has also been found to help discriminate patients with mild
depression from healthy controls, as they manifested lower
gamma coherence than healthy controls [31]. However, studies
of the treatment response, especially short-term treatment
response, thus far, are not yet sufficient and still await
further investigation by performing EEG network analyses.
Consequently, the identification of robust predictors provides
significant benefits in terms of understanding and predicting
that variation [15].

In the present study, the data we utilized were
downloaded from a public data archive, the National
Institute of Mental Health Data Archive (NDA). The
data are publicly available through the official website
(https://nda.nih.gov/edit_collection.html?id=2199). Recently,
multiple studies have been conducted using these datasets. For
example, Zhang and colleagues identified clinically relevant
MDD subtypes using (un)supervised machine learning based
on distinct network patterns [1]. Yu and colleagues investi-
gated network differences within and between resting-state
networks in patients with MDD and healthy controls and
found that traumatic childhood experiences and dimensional
symptoms are linked to abnormal network architecture in these
patients with MDD [32]. Although these studies have been
implemented, the treatment response, especially short-term
treatment response, has not yet been studied extensively and is
still awaiting further investigation by performing EEG network
analyses. Therefore, in our present study, we analyzed the
resting-state EEG datasets from patients with MDD collected
before and after their one-week antidepressant medication
therapy. Related brain networks of these patients with MDD
were constructed and then statistically compared to explore
the brain fluctuations after one-week medication, as well as
predict its eight-week efficacy.

Il. MATERIALS AND METHODS
A. EEG Data

The EEG data were selected from the study “Establishing
Moderators and Biosignatures of Antidepressant Response in
Clinic Care (EMBARC)” in the National Institute of Mental
Health Data Archive (NDA). In this study, patients were
recruited from different centers. However, in addition to
Columbia University, data from fewer qualified subjects were
obtained from the other centers due to the poor quality of
EEG data and failure of follow-up visits in the later stage of
medication therapy. Therefore, only the EEG data from 30
patients treated at Columbia University were included in our
current study. The 30 participants with MDD participated in a
randomized trial and received sertraline, and their clinical and
biological markers of outcomes were evaluated [33]. In detail,
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Fig. 1. Procedures used to analyze resting-state EEG datasets. (a) Preprocessing of the resting-state EEG datasets, (b) Prediction of the treatment
outcome based on resting-state EEG networks, and (c) Discrimination of responders and non-responders based on resting-state EEG networks.

the 30 subjects were assigned to an 8-week treatment of
sertraline of up to 200 mg daily. Sertraline dose adjustments
occurred at weeks 1, 2, 3, 4, 6, and 8 to ensure delivery of
the appropriate dose and to record the symptom reduction
(measured by HAMDj7). The raw data for each patient
included two 2-min blocks of eyes-opened resting EEG. The
EEG datasets were collected at Columbia University/Stony
Brook (Data Center) in the United States at baseline (0 W) and
one week after the treatment (1 W) using a high-density EEG
system (BioSemi, 72 channels). During online data recording,
patients were seated in a quiet and electrically shielded room
with their eyes open and relaxed as much as possible, and
electrodes PPO1 and PPO2 served as the reference. EEG
signals were sampled at 256 Hz and online bandpass filtered
at 0-251.3 Hz. At week 8, the 30 patients were assessed with
the Clinical Global Improvement scale (CGI), and subjects
who received a CGI score worse than “much improved”
(i.e., having a CGI score greater than 2) were deemed non-
responders, while the remaining patients who scored “much
improved” or “very much improved” (i.e., having a CGI score
of 1 or 2) were considered responders.

B. Methods

In this study, resting-state EEG datasets were used to
construct the corresponding brain networks with MATLAB

v2014a software (The MathWorks Inc.). The data analysis
procedure is presented in Fig. 1. Detailed descriptions of data

processing are provided in the subsequent sections.
1) EEG Preprocessing: In the present study, we mainly

focused on investigating the potential capacity of the
resting-state brain network to quantitatively evaluate the
brain fluctuations after short-term medication and distinguish
responders from non-responders. Therefore, concerning these
resting-state EEG datasets, before preprocessing, the first and
last ten seconds of EEG signals were first excluded, and mul-
tiple preprocessing procedures were then applied to complete
data preprocessing, which included averaging-referencing, [1],
[42] Hz bandpass filtering, and 5-s-length data segmentation.
Thereafter, a threshold of 100 xV was subsequently used
to automatically exclude segments with absolute magnitudes
exceeding 100 x4V from any recorded electrode. Additionally,
as denser electrodes might provoke more severe volume con-
duction effects on connectivity, sparse electrodes were used
to reduce the effect of volume conduction on EEG networks.
Concretely, 21 of 72 channels, according to the international
10-20 system, were selected in our present study to perform

the analyses described below.
2) Functional Brain Networks: As proven in previous studies,

brain network analysis is remarkably helpful in explaining
the neurophysiological pathogenicity of MDD [2], and a
related analysis was thus implemented in our study. Actually,
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an EEG network has been typically modeled as a collection
of nodes (i.e., EEG electrodes) and edges that are evaluated
between paired electrodes [34], [35]. When constructing the
corresponding EEG network for all patients with MDD, the
same definition of the EEG network is considered. Specifically,
we set 21 electrodes as the network nodes, and after extracting
the EEG signal for each electrode, the estimated paired-
electrode interactions were then regarded as the network edges.
Here, when constructing resting-state networks for patients
with MDD, the synchronization likelihood between pairwise
electrodes was considered [36], [37]. As suggested in previous
studies, the phase locking value (PLV) [38], [39] that experts in
estimating the phase synchronization among pairwise signals
was thus adopted, leading to an adjacency matrix with the
dimension of electrodes x electrodes. Within the PLV net-
work, the PLV value is defined within the range of [0, 1],
and higher PLV values represent a stronger strength of phase
synchronization.

As formulated, the Hilbert transform (HT) is used to form
the analytical signal H(f) and estimate the corresponding
instantaneous phases ¢, (¢) and ¢, (¢) of two given time series
x(t) and y(¢) as follows:

H,(t) = x(t) +iHT(1)
Hy, (1) = y(t) +iHT,(t)

where HT,(t) and HT,(t) are the HTs of both time series,
x(t) and y(t), which are defined as follows:

(1

1 © x(t
HT, (1) = —P.V./ x( )/dt/

1 2 2
HTy(r) = —P.V./ dr

T e

where the P.V. denotes the Cauchy principal value. Afterward,
the corresponding analytical signal phases, i.e., ¢.(¢f) and
@y(t), were computed as follows:

HT:(1)

@x (1) = arctan (0
HTy(1) (3)
y(1)

Finally, the PLV was formulated as follows:

@y(t) = arctan

N-1
1 o
wPlv = 5 E eiex (1 AN =0y (jAD)) 4)
j=0

where wP™ is the connection weight estimated using the PLV,
At is the sampling period, and N denotes the sample number.

Concretely, based on those artifact-free resting-state EEG
segments from each patient, the PLV was first applied to
each segment to acquire the corresponding 21 x 21 adjacency
matrix. For each patient with MDD, the final weighted resting-
state brain network was obtained by averaging matrices across
all artifact-free resting-state segments. Thereafter, based on
these EEG networks, either paired or independent ¢-tests were
used to elucidate potential differences in brain architectures
between baseline (0 W) and one week after the treatment
(1 W) or between responders and non-responders, respectively.

Furthermore, two weighted network properties were cal-
culated using these constructed EEG networks, the clus-
tering coefficient (C) and characteristic path length (L),
to quantitatively measure the network efficiency in processing
information. Here, these properties were calculated from the
weighted EEG networks without any thresholding processing.
Concretely, d;; represents the shortest weighted path length
between nodes i and j, n represents the number of network
nodes, and ¥ represents the total set of network nodes. The
two parameters were formulated as follows:

1/3
plo  plo  plo
2 (wij Wi Wip

1 j,he'
c=->1 )
n ie¥ plo plo
> w;; > w;; -1
je¥ je¥
. > dij
jeY, j#i
L=- - 6
n z n—1 ©®

ie¥

Afterward, we statistically analyzed the potential differences
in these weighted network properties between responders and
non-responders using an independent ¢-test and between 0 W
and 1 W using a paired z-test, which was then corrected
for multiple tests using the Bonferroni correction to further
validate treatment response in patients with MDD.

3) The Prediction of Medication Efficacy Using a Multiple
Linear Regression Model: In the present study, the changes
in the two resting-state network properties (i.e., AC and AL)
were selected as the variables in the multiple linear regression
model for building a model to predict medication efficacy.
Based on both AC and AL, the corresponding prediction
model was formulated as follows:

Y = o+ BIACH+ foAL + ¢ (7)

where Y denotes the predicted eight-week medication efficacy,
Po..» denotes the regression coefficients of the network prop-
erty changes, and ¢ denotes the error term.

Here, the leave-one-out cross-validation (LOOCYV) strategy
was used to predict the eight-week medication efficacy in all
patients with MDD [40]. Specifically, for N samples (N =
30 in this study), N-1 samples were used for training, and
the remaining 1 sample was used for testing in each LOOCV
run. The regression coefficient for each variable was estimated
to build a prediction model for the current N-1 samples,
which was then used to predict the treatment outcome of an
individual in the test set. This procedure was repeated N times
until all samples served as testing sets one time.

4) Discrimination of Responders From Non-Responders
Based on Resting-State Networks: Eventually, these
resting-state networks were further tested to prove whether
they also promote the clinical selection of optimal therapeutic
strategies for MDD, which were validated using two different
types of network features. First, these resting-state network
properties were adopted. In detail, all of these patients with
MDD were divided into training and testing subgroups.
During the training process, the corresponding training
weighted network properties (i.e., C and L) were calculated
using Egs. (5) and (6). Second, the linear discriminant
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analysis (LDA) classifier was trained on these training
features. Thereafter, during the testing process, those
testing network properties were also calculated accordingly
and then input into the trained LDA classifier, which
finally discriminated the testing data into responders or
non-responders, and output the classification accuracy.

As proven previously, these network properties are direct
statistical measurements of brain networks. Although they
might also quantitatively capture the overall network dif-
ferences under our conditions of interest, the corresponding
spatial network information is still unmined [41]. Thus, the
network property can be used to describe the overall brain
network but does not encompass all features contained in the
network topology. In our previous studies, we developed the
spatial pattern of the network (SPN) [42] to extract the dis-
criminative spatial pattern contained in a given brain network
[42]. As the SPN was described in detail in our previous
studies [42], a brief introduction to this method was primarily
provided here.

M and M correspond to the adjacency matrices for respon-
ders and non-responders estimated using PLV, respectively.
The SPN filters are the projections derived by maximizing
the following function:

MM T AT

MoMI T zAeT
where z denotes the SPN filter (an objective projection) and A
and A are the covariance matrices of the adjacency matrices
M and M», respectively.

Because the scaling of projection z will have no effect on

the object value, Eq. (8) can be rewritten as the following
constrained optimization problem:

arg max ZAz"
z ©)

subject to A2zt =1

J(2) ()

By introducing the Lagrange multiplier, Eq. (9) can be
further rewritten as follows:

L(z,A) = zA1zT — A(zA2z" = 1) (10)

Then, the objective projection z is estimated utilizing the
generalized eigenvalue equation by taking the derivative of
Eq. (10) with respect to z under the condition % =0,

Azl = AAyZT (11)

where A denotes the eigenvalue of the generalized eigenvalue
equation, and z is the corresponding eigenvector.
For multiple i SPN filters, Eq. (11) is solved as follows:

A'AZT = Z zT (12)

where Z is composed of the eigenvectors of A-1 2A; and > =
diag (41, 42, ..., 4;) with 1 representing the corresponding
singular values.

Additionally, given the adjacency matrices of the depres-
sion patients, the corresponding SPN features (Fspy) were
calculated using the following equation:

Fspy = log(var(V{pyM))

withVspn = [z1,22, .- -, 2i] (13)

where M denotes the adjacency matrix of patients with MDD,
z denotes the SPN filter (an objective projection), and Vspy
is a 21 x i matrix composed of SPN filters.

As clarified in previous studies, the increasing pairs of
SPN filters might facilitate the classification of situations of
interest [41], [42]; for example, different pairs of SPN features
(i.e., 1 pair, 2 pairs, and 3 pairs) have been used to achieve
the classification of psychogenic nonepileptic seizures from
epilepsy, and 3 pairs of SPN features achieved the highest
classification accuracy [42]. Consistent with the protocols used
in previous studies [43], [44], in our present study, three
pairs of SPN filters were accordingly adopted to achieve the
classification of responders and non-responders. In particular,
for a 21 x 21 adjacency matrix, M, each SPN filter was
a 21-length vector, and therefore, three pairs of SPN filters
comprised a 21 x 6 matrix. Afterward, the corresponding
SPN features were acquired as a vector with a length of 6 by
applying these SPN filters to the constructed resting-state EEG
networks and then calculating the variance of each row of
weighted nodes.

When using the SPN features to classify the responders
and non-responders, protocols similar to those used to ana-
lyze network properties were performed. Specifically, after
acquiring the trained SPN filters during the training process,
we subsequently calculated the corresponding training SPN
features (Eq. (13)) that would be used to train the LDA
classifier. Additionally, the trained filters were further applied
to the testing sets to acquire the testing SPN features. Even-
tually, the testing SPN features were input into the trained
LDA classifier, and the related classification performance was
evaluated accordingly.

As the present dataset was relatively small, the LOOCYV test
was also used to recognize responders and non-responders,
as described in previous studies [45], [46]. Based on the
LOOCY, the corresponding indices, including accuracy (ACC),
sensitivity (SEN), and specificity (SPE), were then calculated
to evaluate the performance. Let Ng.s and Ny,, denote the
total number of responders and non-responders, respectively,
and let nges and nyo, denote the correctly discriminated
number of responders and non-responders, respectively. The
detailed equations used to calculate these indices were as
follows:

NRes + NNon
NRes + NNon
TRes o 100%

ACC = x 100% (14)

SENRes =

(15)
Res
NNon

SPENon = x 100% (16)

Non

I1l. RESULTS

A. Comparison of HAMD7 Scores Between Responders
and Non-Responders at Baseline and After One Week of
Medication

Medication treatment visits occurred at baseline and
weeks 1, 2, 3, 4, 6, and 8 to ensure that the delivery was
appropriate and to record the HAMDj7score. Although these
scales have some defects, they are still currently crucial for the
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Fig. 2. Statistical differences in HAMD{7 scores between non-

responders and responders. (a) HAMD47 score fluctuations after one
week of antidepressant medication. (b) HAMDq7 scores at baseline and
week 1.

clinical diagnosis of related diseases, and the classification in
the neuroscience field also uses clinical scales as the evalu-
ation criteria [47], [48]. Therefore, using the same protocol
described in previous studies [49], [50], these clinical scores
of all patients were also recorded as the “gold standard” when
evaluating and classifying the patients. Concretely, considering
the EEG datasets used in this study and methods reported
in previous studies [51], [52], 30 patients were assessed
with the CGI at the 8th week. In addition, expanding on
the CGI criteria, 9 patients who received a score worse
than “much improved” were deemed to be medication non-
responders, while the remaining 21 patients who scored “much
improved” or “very much improved” were then considered
responders [33]. The 0 W minus 1 W fluctuations in HAMD 7
scores were primarily calculated to quantify the efficacy of
the antidepressant medication; unfortunately, as displayed in
Fig. 2(a), no statistically significant differences were identi-
fied in HAMD7 score fluctuations for both patient groups.
Because resting-state EEG datasets were only collected at two
stages, i.e., at baseline and week 1, the efficacy within the
relatively short medication duration (i.e., only baseline and
week 1) was also considered. Concretely, the corresponding
differences in HAMDj; scores between the responders and
non-responders were statistically analyzed at both baseline
and week 1. Not surprisingly, no significant differences in
HAMD 7 scores were observed between the two groups at
either stage (p > 0.05), as shown in Fig. 2(b).

B. Brain Fluctuations After Short-Term Medication
Indexed by Resting-State EEG Networks

1) Network Differences Between 0 W and 1 W: Next,
we sought to identify a robust biomarker that quantitatively
evaluated patients’ brain fluctuations after one-week antide-
pressant treatment, which might help predict the final med-
ication efficacy in patients with MDD. Here, expanding upon
the constructed resting-state EEG networks for all patients,
the corresponding implicit spatial network topologies and
related network properties, were first statistically compared to
validate the sensitivity of network measures to antidepressant
treatment.

On the one hand, we concentrated on the corresponding
network topologies measured for responders in both stages.
Fig. 3(a) shows the significant differences in network topolo-
gies between baseline (i.e., 0 W) and one week of medication

Fig. 3. The significant differences in network topology and properties
in responders between 0 W and 1 W. (a) Network topology. (b) Network
properties.

(i.e., 1 W), in which the red solid lines denote the reduced
interelectrode connectivity (0 W > 1 W). Specifically, rela-
tively stronger connectivity (i.e., red long-range edges) among
the frontal and occipital lobes was observed at the baseline
stage (p < 0.05, Bonferroni-corrected) than at 1 W. Thereafter,
the network properties, including C and L, were calculated and
compared to quantitatively measure the network fluctuation
after one week of treatment, as shown in Fig. 3(b), in which
the red and blue bars denote the network properties corre-
sponding to 0 W and 1 W, respectively. Herein, to statistically
explore the potential differences, the linear mixed model was
adopted. In detail, the model included the network properties
(e.g., clustering coefficients) as the dependent variable, Time
(0 W and 1 W) and Group (responder and non-responder)
were then treated as independent variables. In addition, the
model included participants as the random factor. Models
were then compared using log-likelihood ratio tests to deter-
mine the best model, and backward algorithms were used
for model comparisons. The results showed that the best-fit
model included the main effect of Group and Group-x-Time
interactions. Herein, when taking the network properties of
Week 0 and the non-responders as the baselines, the statistics
demonstrated that for responders, C showed a decreasing trend
at 1 W compared to 0 W, while L showed an increasing
trend. Although the non-responders received one week of
antidepressant medication treatment, significant differences
(p > 0.05) were not observed either in network topology or
in properties between the two stages.

2) Prediction of the Medication Efficacy Based on
Resting-State Network Properties: Because these resting-state
network characteristics (both topologies and properties)
were identified to help evaluate the brain fluctuations after
one-week medication therapy, we then intended to explore
whether any potential relationship between the HAMDj7
score fluctuations and the corresponding network property
changes (AC and AL) would be identified. As shown
in Fig. 4, within the alpha band, AC (r = 0.426, p =
0.019) showed a significant positive correlation with the
change in the HAMDj7 score at one week, while AL was
negatively correlated with the change in the HAMDj7 score
(r = —0.428, p = 0.018). In fact, these patterns were
also observed within multiple bands, e.g., delta, theta, and
beta bands. As similar findings across multiple bands were
acquired and the activity of the alpha band in the brain at rest
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Fig. 4. Relationships between changes in the network properties and
changes in the HAMD17 score during one week of medication. In each
subfigure, the red line is the fitted curve, and the blue filled circles denote
the patients with MDD.
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has been proven to be a capable discriminator [2], as well
as the page limitation, further analyses, such as correlations
and predictions, were only reported for the alpha band in the
present study.

In addition to the potential relationship between network
property changes and changes in the HAMD7 score at one
week, related network properties were analyzed to clarify
whether they might also facilitate the prediction of treatment
outcomes; in particular, we predicted the treatment efficacy
after eight weeks of medication. Here, the eventual treatment
efficacy was quantified as the difference in HAMD17 scores
at baseline from the 8th week, and the differences in network
properties between the baseline and one-week medication
were used as the corresponding predicting features. By imple-
menting the linear prediction analysis, we then predicted the
changes in the HAMDj7 score for all patients with MDD.
Consequently, as displayed in Fig. 5, the predicted changes
in HAMD17 scores were significantly related to the actual
changes. The corresponding Pearson’s correlation coefficient
was r = 0.53 (p = 0.002), and the Root Mean Squared
Error (RMSE) was 5.973. Here, we randomly scrambled the
network properties and HAMD;7 scores of all patients and
then repeated the prediction 1000 times to further clarify
that the current prediction result was not achieved by chance
using the protocols described in previous studies [53]. Subse-
quently, by statistically investigating these permutation results,
we found that a correlation coefficient of 0.53 reached a
significance level of 0.001.

C. Medication Sensitivity of Patients With MDD Derived
From Resting-State Networks

1) Network Differences Between Responders and Non-
Responders: The differences in resting-state EEG networks
between responders and non-responders were also investigated
at the baseline and one-week medication stages to further
validate the great potential of network characteristics in deter-
mining the response of medication therapy in patients with
MDD. Fig. 6(a) and (b) illustrate the significant differences
in network topology and properties between the two groups.
Concretely, Fig. 6(a) displays the topological difference at
baseline, in which weaker linkages are identified for the
responders than for the non-responders. In addition, the corre-
sponding differences (p < 0.05) in network properties further
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Fig. 5. Prediction of eight-week medication efficacy (changes in the
HAMD+q7 scores) based on the resting-state network properties. The
black dashed line indicates the ideal prediction, the red line fits the scatter
points, and the blue filled circles denote the subjects.
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Fig. 6. The significant differences in network topology and properties
between responders and non-responders at 0 W and 1 W: (a) 0 W and
(b) 1 W.

clarified the smaller C and longer L for responders. At the one-
week medication stage, the potential differences (p < 0.05) in
both network topology and properties between the responders
and non-responders were further increased.

2) Categorization Into Responders and Non-Responders
Based on Resting-State Networks: Based on the statisti-
cally significant difference in network properties between
responders and non-responders at the baseline stage shown
in Fig. 6(a), we next examined whether the corresponding
network properties also discriminated non-responders from
responders before the actual treatment, which might facilitate
the precise treatment of MDD in the clinic if this medication
therapy was effective in these patients with MDD. These
results might guide the design of a more effective treatment
protocol. In fact, although significant differences in network
properties were identified between both groups, the 76.67%
classification accuracy acquired here was not as satisfying as
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Fig. 7. Topological distribution of the most discriminative first pair of SPN
filters between responders and non-responders. The subfigures in the
left and right columns denote the corresponding spatial Filters 1 and 2,
respectively.

expected, as well as the sensitivity of 76.19% for responders
and the specificity of 77.78% for non-responders.

In addition to the network properties, which mainly serve
as the direct statistical measures of brain networks, the corre-
sponding spatial network topologies [41] had been fully proven
to facilitate our classification analysis. Therefore, based on our
developed SPN method, related implicit and inherent spatial
network features (i.e., SPN features) were first extracted from
the resting-state EEG data from both responders and non-
responders at 0 W and further utilized to classify both groups.

Here, we primarily showed the most discriminative pair of
SPN filters (i.e., Filters 1 and 2), as shown in Fig. 7, in which
those network nodes (e.g., electrodes O1, O2, and Oz) that
exhibited significant edge differences in Fig. 6(a) displayed
with larger coefficients (i.e., marked with deep red or blue
color). We then used these SPN features as the discriminative
features to classify responders and non-responders. Here, the
LOOCV strategy was utilized to complete the categorization,
and as expected, an improved performance (i.e., an accuracy of
96.67%) was indeed acquired, along with a sensitivity of 100%
for responders and a specificity of 88.89% for non-responders.

D. Categorization of Merged Responders and
Non-Responders From Different Sites

Considering the EMBARC recorded EEG datasets from four
different sites, after testing on the participants of Columbia
University, participants of the other three sites were reviewed
following the same strategy used at Columbia University.
Even though the EEG datasets had fewer qualified patients,
both responders and non-responders could be still identified.
Eventually, a total of 80 participants were picked and then
included in the further categorization analysis. Just as dis-
played in Fig. 8, we extracted the scatter diagram of the
corresponding SPN features from the first pair of filters with
the most distinguishing power. From this scatter diagram,
we can see that the responders and non-responder can be
well distinguished; and the recognition of responders from
non-responders also obtained acceptable performance, as the
accuracy of 77.50% was achieved when using SPN features
as the discriminative features.

And based on these merged participants, the prediction
was also achieved. Herein, by further using related network

247
. P A Non-responder
-2.6 ° ® Responder
® ®
-2.8 °
&
-3 o o0 ° .' A
) [ 2N ]
< 32 o ° o
g ) [ J o %
£
S 34| o ®0 . ”, A
= [ ] ° A
Z ° [ ? A
& 36 ° o 4 ac A, A
A0 LA
A e e
-38 @
A " =
A i A, A
—4 A A
A A
4.2
A
—44 . . . .
42 -4 -38 -36 -34 -32 -3 -28 -26 24 -22

SPN Feature 1

Fig. 8.  Classification of responders and non-responders based on
related network topologies. The scatterplot corresponding to the SPN
features extracted from the first pair of the most discriminating filters
between the Responders and Non-responders.
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Fig. 9. Prediction of eight-week medication efficacy for site-merged
participants. The black dashed line indicates the ideal prediction, the
red-solid line fits the scatter points, and the blue-filled circles denote the
site-merged participants.

metrics to predict the efficacy after eight-week medication,
as displayed in Fig. 9, the predicted HAMD;; changes were
indeed correlated with diagnosed ones (r = 0.50, p = 0.001,
RMSE = 6.31).

IV. DISCUSSION

The HAMD;j; is the most widely used clinician-
administered depression assessment scale, containing 17 items
assessing depression experienced over previous weeks, which
provides an indication of depression and serves as a guide to
evaluate recovery. Considering the reliability and validity of
HAMD 7 [54], we analyzed HAMD7 scores recorded in the
first two stages to illustrate the treatment efficacy after a rela-
tively short-term medication period, as well as to explore if the
HAMD/7 was highly sensitive in identifying responders and
non-responders. Concretely, we sought to use the efficacy of
one week of medication to classify these patients with MDD.
As illustrated in our present study, although these patients
were divided into responders and non-responders based on
their eventual HAMD 17 scores recorded after eight weeks of
medication, no significant difference was observed when we
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first explored the potential fluctuations in HAMD;7 scores
between 0 W and 1 W of medication. Therefore, the model
failed to describe the one-week treatment efficacy and further
discriminate responders and non-responders. As changes in
the HAMD;7 score did not show an obvious difference in
distinguishing responders from non-responders, the HAMD 17
scores were then directly compared between responders and
non-responders at the two time points mentioned above.
Unfortunately, the responders did not show a significant dif-
ference from the non-responders at either stage, as shown in
Fig. 2(b). These results might be attributed to the fact that
the short-term treatment was not long enough to significantly
affect the brain of patients with MDD and failed to alter
the HAMDj7 score [55]. Clinical scales usually measure the
overall performance of relatively long-term medication but not
short-term results, and thus HAMD 17 is not sensitive enough
to detect short-term antidepressant efficacy and distinguish
responders from non-responders. In this case, at the begin-
ning of treatment, HAMD7 scores are not predictive at the
individual patient level.

Considering that the human brain functions as a large-
scale complex network whose information is transmitted and
integrated within spatially distributed but functionally coupled
regions [56], [57], potential differences in related brain net-
works of these responding and non-responding patients with
MDD were quantitatively analyzed to objectively evaluate
the therapeutic response. First, when identifying the network
changes after antidepressant treatment for one week, Fig. 3
shows the significant (p < 0.05) network differences in
responders between 0 W and 1 W. Specifically, those patients
who responded at 1 W experienced relatively decreased
long-range functional connectivity between the frontal and
occipital lobes (Fig. 3(a)), as well as smaller properties
(Fig. 3(b)) than their 0 W measures. As reported in previous
studies, abnormal activation or overloaded communication
among the frontal, temporal, and occipital lobes usually occurs
during the emotional and cognitive processing of patients
with MDD [58], [59]. For example, Leuchter and colleagues
examined coherence in the resting state and found that patients
with MDD displayed higher theta and alpha coherence pri-
marily in longer distance connections within and between
electrodes overlying frontal and parieto-occipital regions [60].
Their study revealed that the strong connectivity in brain
networks might be linked to impaired cognitive processing in
individuals with MDD [61], including attention and working
memory, as well as the processing of auditory, linguistic, and
social cognition information in individuals with a psychiatric
illnesses [62]. In detail, the ability to modulate alpha activity
was associated with the capacity to meet working memory
and executive demands and focus attention [63], [64], [65].
The increased beta activity was related to a deterioration in
cognitive flexibility and control [66]. Therefore, the decreased
network patterns and network properties in Fig. 3 consistently
indicated that one week of medication alleviated the abnormal
synchronization among those regions in patients with MDD,
ameliorating related impairments in cognitive function.

Moreover, resting-state brain activity has been proven to
comprise the basis of the related cognitive process [67], [68],

and many studies have performed related resting-state analyses
when investigating MDD dysfunction [69], [70]. In fact,
the increased resting-state multiregional synchronization in
patients with MDD has been proven to be accompanied
by increased self-rumination, which is considered a princi-
pal cause of the psychophysiology of depression [71], [72].
Antidepressant medicines are commonly utilized to enhance
monoaminergic neurotransmission and reverse some of these
stress-induced neurophysiological changes, further inhibiting
the abnormal activity of the amygdala, and are thus proposed
to be helpful for MDD therapy [73], [74]. Here, the decreased
network topologies and properties consistently clarified that
one week of medication worked for responders by significantly
alleviating their overall connectivity. Unfortunately, although
receiving the same therapeutic intervention, the networks
of those non-responding patients with MDD remained in
their initial state, as no significant differences were observed
between the 0 W and 1 W sessions. Here, the statistics relying
on the linear mixed model did report both main effects of
Group and Group-x-Time interactions for the explorations
into the brain networks. The decreased network parameters
consistently clarified that one week of medication worked for
responders by significantly alleviating their overall connec-
tivity. Unfortunately, although receiving the same therapeutic
intervention, the networks of those non-responding patients
with MDD remained in their initial state, as no significant
differences were observed between the 0 W and 1 W sessions.
And considering these findings, we thus assumed that the
network investigation performed in our present study might
be sensitive to capture the corresponding brain fluctuations
occurring after one week of medication.

As resting-state networks were validated to quantitatively
measure brain fluctuations after short-term treatment in
patients with MDD, even within one week, the corresponding
network metrics (e.g., network properties) were thus postulated
to be robust biomarkers to predict therapeutic efficacy in these
patients. Changes in both C and L (Fig. 4) were significantly
correlated with fluctuations in HAMD 7 scores between base-
line and one week of medication therapy, which primarily
illustrated the possibility of the subsequent prediction analy-
sis. Accordingly, the network properties were then utilized
to predict the long-term treatment outcome. Concretely, the
changes in network properties calculated by subtracting the
network properties at 1 W (after one week of medication)
from those at 0 W (baseline) were selected as the predictors
of the eight-week antidepressant treatment response. Fig. 5
shows the scatterplots of the actual and predicted changes
in the HAMD17 scores for all of these patients with MDD,
where the dashed diagonal line indicates the ideal prediction,
and the blue filled circles distributed along the dashed line
denote that the regression model estimated from the train-
ing set was capable of accurately predicting an individual’s
eight-week antidepressant outcome. In addition, considering
the close correlation between network property changes and
HAMD7 score fluctuations identified in the previous analysis,
this robust prediction of antidepressant outcome further vali-
dated that the network properties (C and L) indeed served as
influential features to predict individual long-term medication
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efficacy and verified the reliability of resting-state networks in
promoting personalized medication strategies.

Due to the significant difference between 0 W and 1 W
observed in responders, whereas no difference was observed
in non-responders between these two stages, we further com-
pared and analyzed the significant differences between respon-
ders and non-responders at baseline and after one week of
medication. Further analysis of the data from our current
study revealed that brain networks illustrated the difference
between both groups, even before antidepressant treatment.
Additionally, this difference between the two groups increased
significantly after one week of the therapeutic intervention.
Concerning the pretreatment comparison, as displayed in
the left panel of Fig. 6(a), non-responders showed enhanced
network connectivity compared to responders, as mainly
manifested as long-range connectivity between the tempo-
ral lobe and occipital lobe. Corresponding network proper-
ties further quantitatively revealed stronger brain activity in
non-responders than in responders. As validated in previous
studies [75], [76], [77], [78], non-responders experienced
greater abnormal activation or overloaded communication than
responders, especially within the alpha band, which might
result in increased functional connectivity within the default
mode network of non-responders and indeed coincided with
the patterns of topological differences between responders
and non-responders in Fig. 6(a). Those non-responders also
received one week of antidepressant medication but failed to
respond. Consequently, when further investigating the potential
differences between responders and non-responders after one
week of medication, increasing topological differences (i.e.,
much stronger and denser linkages in non-responders than
responders) were observed (Fig. 6(b)), which further validated
the brain fluctuations given by antidepressant treatment in
responding patients with MDD by inhibiting the interaction
between the frontal and temporal-occipital lobes [79]. More-
over, the difference in network properties between responders
and non-responders also increased substantially after one week
of medication. As observed in the two histograms, the network
efficiency of non-responders remained at their initial state,
while a significantly smaller C and longer L of responders
are illustrated in the right panel of Fig. 6, indicating treatment
response.

In this regard, both resting-state network properties and
topologies would help distinguish responders from non-
responders. Unfortunately, when both types of information
were separately applied in the present classification protocols,
varying performances were achieved. Although the network
properties were indeed different between these responders
and non-responders, both C and L were direct statistical
measurements and failed to capture the differences in net-
work topological distributions between both groups. Therefore,
a relatively low accuracy of 76.67% was achieved when the
network properties were used as the discriminative features
to distinguish patients with MDD in both groups. In con-
trast, SPN was technically developed in our previous studies
[41], which mainly focused on the network topologies. More
specifically, within the brain networks investigated here, the
SPN adopts varied strategies for important and less important

network nodes by emphasizing those important nodes with
larger coefficients but suppressing others with much smaller
coefficients (close to zero). As displayed in Fig. 7, those
occipital electrodes (e.g., O1, 02, and Oz) are shown in a
deep red or blue color and implied that great differences
occurred at these electrodes, which indeed coincided with the
topological differences shown in Fig. 6(a). In fact, based on
these varying strategies, the SPN succeeds in extracting the
network spatial information exactly and guarantees its capacity
in classifying patients with MDD. Here, satisfactory perfor-
mance was achieved, as the accuracy was further improved
to 96.67% when using these SPN features as discriminative
features. Notably, this classification is based on the EEGs
recorded before the actual treatment, and it is very helpful to
instruct the clinician in designing a more efficient therapeutic
protocol for patients with MDD. Further, to evaluate the
generalizability of our method, a total of 80 participants from
four different sites were picked and then included in the
categorization analysis. The recognition of responders from
non-responders also obtained acceptable performance, as the
accuracy of 77.50% was achieved when using SPN features
as the discriminative features. Additionally, based on these
merged participants, we further used related network metrics to
predict the efficacy after eight-week medication; the predicted
HAMD/7 changes were indeed correlated with diagnosed
ones (r = 0.50, p = 0.001, RMSE = 6.31). These results
further validated the generalizability of our proposed method
in treatment selection of MDD.

Considering these findings described above, the network
changes were indeed observed for the responders but not
for the non-responders after short-term antidepressant treat-
ment; and the differences between the two groups became
even greater after one-week medication. Replicated evidence
indicated that according to the HAMD7 scale, antidepressant
efficacy was not observed obviously until at least 4 weeks of
medication [80]. However, compared with the clinical scale,
the brain network seems to be a more sensitive biomarker and
has a great capacity for evaluating brain changes after short-
term medication, as well as distinguishing responders from
non-responders. Although the exact relationship between EEG
metrics and clinical scales was still unveiled, related EEG met-
rics Li et al.; Zhang et al. have been proved to reliably index
the deficits occurring in brain diseases, as well as evaluate
the treatment response from patients. Following the similar
protocol used previously [81], [82], in this study, we thus
utilized brain networks to quantify the brain fluctuations after
one-week medication for MDD patients, and further explored
the relationship between EEG metrics and clinical scale, which
aimed to provide potential early biomarkers for subsequent
prediction analysis and treatment selection.

However, although we have verified our method on the
EMBARC study and achieved good performance, the con-
clusions should be further verified, and the potential capacity
for big data analysis should also be confirmed. Meanwhile,
we will then develop related algorithms to mitigate the site
effect induced by different amplifiers and/or electrode mon-
tages to improve the generalizability and robustness of our
method.
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V. CONCLUSION

Our present study investigated the differentiable resting-
state networks in both responders and non-responders
between 0 W and 1 W, revealing brain fluctuations after
medication in patients with MDD. Although HAMD7 scores
failed to evaluate the efficacy within the one week of
medication therapy, the resting-state network properties suc-
ceeded and predicted the eight-week antidepressant treat-
ment response at the individual patient level. Moreover, the
baseline network topologies also distinguished medication
responders from non-responders with an accuracy of 96.67%.
Taken together, these findings consistently suggested that the
brain network emerges as a sensitive biomarker to determine
short-term treatment response and distinguish responders from
non-responders, which provides a new bridge for adjusting the
clinical treatment strategy.
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