
2474 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Orthogonal Features Based EEG Signals
Denoising Using Fractional and Compressed

One-Dimensional CNN Autoencoder
Subham Nagar and Ahlad Kumar , Senior Member, IEEE

Abstract— This paper presents a fractional one-
dimensional convolutional neural network (CNN)
autoencoder for denoising the Electroencephalogram
(EEG) signals which often get contaminated with noise
during the recordingprocess, mostly due to muscle artifacts
(MA), introduced by the movement of muscles. The existing
EEG denoising methods make use of decomposition,
thresholding and filtering techniques. In the proposed
approach, EEG signals are first transformed to orthogonal
domain using Tchebichef moments before feeding to
the proposed architecture. A new hyper-parameter (α)
is introduced which refers to the fractional order with
respect to which gradients are calculated during back-
propagation. It is observed that by tuning α, the quality of
the restored signal improves significantly. Motivated by the
high usage of portable low energy devices which make use
of compressed deep learning architectures, the trainable
parameters of the proposed architecture are compressed
using randomized singular value decomposition (RSVD)
algorithm. The experiments are performed on the standard
EEG datasets, namely, Mendeley and Bonn. The study
shows that the proposed fractional and compressed
architecture performs better than existing state-of-the-art
signal denoising methods.

Index Terms— EEG signal denoising, convolutional
neural networks, autoencoder, Tchebichef moments,
compression.

I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is the recording
of electrical activity inside the human brain [1]. It is

during the recording process that the EEG signals often get
contaminated with various types of artifacts, due to muscle
activity, eye movements and heart rhythms, which are mea-
sured by electromyogram (EMG), electrooculogram (EOG)
electrocardiogram (ECG) signals, respectively [2]. Among

Manuscript received 6 October 2021; revised 1 March 2022 and 9 July
2022; accepted 21 August 2022. Date of publication 24 August 2022;
date of current version 2 September 2022. (Corresponding author:
Ahlad Kumar.)

Subham Nagar is with DA-IICT, Gandhinagar, Gujarat 382007, India
(e-mail: subhamnagar@gmail.com).

Ahlad Kumar is with the Department of Information and Communica-
tion Technology, DA-IICT, Gandhinagar, Gujarat 382007, India (e-mail:
ahlad_kumar@daiict.ac.in).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TNSRE.2022.3201197.

Digital Object Identifier 10.1109/TNSRE.2022.3201197

these, the Electromyogram/muscle artifact (EMG/MA) is one
such type of noise that is generally found to bes challenging
to eliminate, mainly due to its high amplitude and its broad
frequency and anatomical distributions [3].

Different approaches have been reported in the existing
literature to remove muscle artifacts (MA) from the conta-
minated EEG signals. Numerous decomposition techniques
like wavelet transform [4], empirical mode decomposi-
tion (EMD) [5], ensemble empirical mode decomposition
(EEMD) [6] have also been employed to achieve good
results. Canonical correlation analysis has also been success-
fully used with the above decomposition techniques [7], [8].
Sweeny et al. [7] has used both EMD and EEMD with canon-
ical correlation analysis. Recently, variational mode decompo-
sition (VMD) was proposed [9], to yield superior results.

The application of machine learning and deep learning
architectures have also been found to be very effective in
the area of EEG signals [10]. Temporal spectral based fusion
network [11] and attention based networks [12] have been
used in EEG domain. Denoising auto-encoder produced a
major breakthrough in the problem of signal denoising [13].
However, the effect of compression was not studied on sig-
nal denoising. Pruning was proposed in [14] to remove the
least important trainable weights from the neural network.
Calculation of the low-rank approximation of weight matrices
simultaneously reduced storage and time complexity during
the training and testing phases [15]. The concept of random-
ized singular valued decomposition (RSVD) was introduced
in [16], which represented a faster way of calculating low-rank
approximations. Its effectiveness was also explored in [17].
In this paper, the RSVD algorithm is used for compressing
the trainable weight matrices of the proposed architecture.

The discrete cosine transform (DCT) coefficients of the
input images was used with neural networks for achieving
high speed deep learning architectures [18] and also for
improving it’s image denoising performance [19]. Recently,
orthogonal moment domain, has also been recently explored
to address common problems in image processing [20].
One such kind of orthogonal moments, namely, Tchebichef
moments (TM) exhibit an essential property of energy com-
paction, that led to promising results in denoising images [21].
This research finding has motivated us to exploit the advan-
tage of feeding these TM based orthogonal features to the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2496-6275

NAGAR AND KUMAR: ORTHOGONAL FEATURES BASED EEG SIGNALS DENOISING 2475

proposed one-dimensional convolution neural network (CNN)
architecture.

Fractional calculus is now getting popular for solving sig-
nificant problems in the image processing domain like image
denoising [22] and texture enhancement [23]. It has also found
a place in the neural networks where gradients are calculated
using differentiation with respect to a particular fractional
order (α) and has given a performance boost in classification
problems as compared to conventional neural networks [24].
We have also used fractional calculus in the back-propagation
phase of the proposed architecture for improved performance
in the case of EEG signal denoising.

This paper is organized as follows. Section II provides some
mathematical preliminaries that are useful in understanding the
underlying mechanics of our architecture. Section III and IV
propose the workflow of our fractional one-dimensional CNN
and it’s compressed form respectively. Experimental results are
provided in Section V that contains the details of the datasets
used, data preparation for training, performance metrics and
evaluation of our proposed model under compression and
in frequency domain, followed by discussion on the results
obtained. Section VI concludes this work.

II. MATHEMATICAL PRELIMINARIES

A. Tchebichef Moments (TM)

Let x(n) be an EEG signal with n = 1, 2, . . . ,N . The
relationship between the noisy signal y(n) and the original
signal x(n) corrupted by noise is given as follows:

y(n) = x(n)+ ζ(n) (1)

where ζ(n) is the muscle artifacts (MA) noise. This paper pro-
poses a deep learning architecture which recovers an estimate
of the original signal from its noisy observation y(n).

The Tchebichef moments of order p for a signal x(n) of
length N samples is given by [25]:

Tp(x) =
N−1∑
n=0

tp(n;N)x(n) (2)

with p, n = 0, 1, 2N−1 and x(n) is of dimension 1× N .
For simplicity, tp(n) has been used to represent tp(n;N)
which is the orthonormal Tchebichef polynomials given by

tp(n) = β1(2n + 1−N)tp−1(n)+ β2tp−2(n) (3)

where the variables β1 and β2 are given by

β1 = 1

p

√
4(p2 − 1)

N 2 − p2 (4)

β2 = 1− p

p

√
2 p + 1

2 p + 3

√
N 2 − (p − 1)2

N 2 − p2 (5)

The initial conditions for the recurrence relations are

t0(n) = 1√N (6)

and

t1(n) = (2n + 1−N)

√
3

N (N 2 − 1)
(7)

The set of TMs upto order p in matrix form is given as

Tp(X) = X QT (8)

where X = [x(0), x(1), x(2), . . . , x(N − 1)] and

Q =
⎡
⎢⎣

t0(0) . . . t0(N − 1)
...

. . .
...

tp−1(0) . . . tp−1(N − 1)

⎤
⎥⎦ (9)

Here, Q is the Tchebichef polynomial matrix upto order p.
The original one-dimensional signal X can be reconstructed
from the set of Tchebichef moments using the following
equation

X = Tp(X)Q (10)

B. Compression Using RSVD

The compression of the kernel and weight matrices used
in the proposed architecture is carried out using low rank
approximation of these matrices. It is done using the RSVD
technique, which decomposes the original matrix A ∈ R

n×m

into a smaller randomized subspace B ∈ R
c×m , where c < n.

For kernel matrix K ∈ R
n×c× f , where n, c and f refer to the

number of filters, number of channels and feature dimension
respectively, we reshape it into a 2D matrix A of the form
R

n×m , where m = c ∗ f .
For calculating the low rank approximation, let O ∈

R
m×(r+p) be a normally distributed random matrix, where

r is the rank to be approximated, p denotes the number of
additional projections such that r + p < n. We define Qi as
the orthogonal basis after i iterations, where i = 1, 2, 3 . . . , k
and k denotes the number of subspace iterations. The value of
Q0 is set using the following equation

Q0 = AO (11)

The recurrence relation for calculating the orthogonal basis Qi
is given by

Gi = qr(ATQi-1) (12)

Qi = qr(AGi) (13)

where qr() is the function for the QR decomposition operation
which factorizes a matrix into an orthogonal matrix and an
upper triangular matrix. Here, we just take the orthogonal
matrix part. The above recurrence equations are applied over
k iterations, after which, we get the value Qk . The condensed
matrix B can be calculated as

B = Qk
T A (14)

The SVD decomposition of this condensed matrix is

[Ur , Sr , Vr] = SVD(B) (15)

Ur = QkUr (16)

where, Ur ∈ R
n×r , Vr ∈ R

m×r are the matrices with
orthonormal columns and Sr ∈ R

r×r is a diagonal matrix.

2476 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 1. Architecture of the proposed fractional CNN auto-encoder.

C. Fractional Order Processing

Unlike the integer order derivatives, various definitions
have been proposed for fractional order derivatives. The
three most commonly used fractional order derivatives are,
namely, Grunwald Letnikov (G-L), Riemann-Liouville (R-L)
and Caputo derivatives [24]. We have used Caputo fractional
derivative (CFD) of a function f (u) with order α, defined as
follows:

C
u0

Dα
u f (u) = 1

�(n − α)

∫ v

u0

f (n)(y)

(u − y)(1+α−n)
dy (17)

where n − 1 < α < n, n ∈ N
+, u0 is the initial value and

�(·) denotes the Gamma function. The CFD is found to be
consistent with the integer order derivatives used in neural
networks, because of which this derivative is applied in several
engineering problems [24]. This motivated us to employ it
during the back-propagation of our proposed model. Let α
be the fractional order for which the derivative needs to be
calculated and f (x) = (x − a)k be a polynomial function of
degree k. The Caputo fractional derivative is given by [26]:

dα f (x)

dxα
= �(k + 1)(x − a)k−α

�(k − α + 1
) (18)

For simplicity of the notation, the fractional derivative
∂α f (x)

∂xα

is denoted as Dα
x f (x) and will be used in calculating gradients

of the proposed architecture.

III. PROPOSED ARCHITECTURE

The proposed fractional CNN based architecture for denois-
ing EEG signals is shown in Fig. 1. The model is based on
the encoder-decoder architecture. The encoding of the EEG
signal is carried out and the information is represented in
the compressed form as latent vectors. This is followed by
up-sampling (decoder) operation that recovers the information
present in the EEG signal from the latent space. This can be
observed from Fig. 1, where each of the first two convolutional
layers followed by average pooling layers constitutes the
encoder block while each of the last two convolutional layers
followed by up-sampling layers constitutes the decoder block.
Here, the up-sampling layers are used for recovering structural
details present in the EEG signals.

The original EEG signal fragments are transformed into
TMs (orthogonal) space TN (X) using Eq. 8 where X is
the original signal fragment of dimension N . Similarly, the
transformation of the noisy signal TN (y) has also been done,
which is then fed as an input to the first convolutional
layer of the proposed architecture. The architecture has four
convolutional layers (CONV), two average pooling layers, two
upsampling layers and a flattened layer, which is connected to
the fully connected (FC) layer. The first convolutional layer
(CONV1) has 16 filters. The next two convolutional layers
(CONV2, CONV3) have 64 filters each while CONV4 has
16 filters. Rectified linear units (ReLU) have been employed
as activation functions for convolutional hidden layers. There
are 250 neurons in the fully connected layer (FC). All the
convolutional layers are having kernel of dimension 1×3 and
kernel stride is taken as 1. The average pooling layers have
kernel dimension of 2 and a stride of 2, while the up-sampling
layers have the up-sampling factor as 2. The padding ensures
the output dimension to be same as that of the input. Next,
the workflow of the architecture that involves forward and
proposed fractional backward propagation will be discussed.

A. Forward Propagation

1) Convolutional Layer: The input-output relationship for the
convolutional layer of the architecture is given as

S[i]m, j =
N [i−1]

C −1∑
n=0

F [i]−1∑
p=0

I [i−1]
n, j+p K [i]m,n,p + b[i]m (19)

where m = 0 . . . N [i]F − 1, j = 0 . . . N [i]W − 1. Here, I [i−1]
is the input of dimension N [i−1]

C × N [i−1]
W , being fed to the

i th convolutional layer with N [i−1]
C representing the number

of channels and N [i−1]
W being the feature dimension. For the

i th convolutional layer, we have the trainable kernel K [i]

of size N [i]F × N [i−1]
C × F [i], where F [i] is the kernel filter

dimension and N [i]F denotes the number of kernel filters.
The matrix b[i] denotes the bias for this layer of dimension
N [i]F × 1. S[i] is the output of the convolution layer and is of
size N [i]F × N [i]W , where the output feature dimension N [i]W is
given by

N [i]W = (N [i−1]
W − F [i] + 2 ∗ g[i])+ 1 (20)

NAGAR AND KUMAR: ORTHOGONAL FEATURES BASED EEG SIGNALS DENOISING 2477

Fig. 2. Illustration of im2col transformation on 1D input.

with g[i], denoting the padding size. In this paper, Tchebichef
vector of the noisy signal TN (y) is taken as the input features
denoted by I [0] (Eq. 19). This is fed to the first convolutional
layer of the architecture, with N [0]C = 1 and N [0]W = N .

For faster implementation of the above approach, we use
the method of matrix multiplication to represent convolution
operation given in Eq. 19. For this, input I [i−1] is converted
into matrix form using the following transformation:

I [i−1]
col = im2col(I [i−1]) (21)

where the dimension of I [i−1]
col is (N [i−1]

C × F [i] × N [i]W), with
N [i]W = (N [i−1]

W − F [i] + 2 ∗ g[i])+ 1
Here, im2col refers to the technique in which input of size

1 × F [i] is taken and stack it in the form of columns of a
matrix. The pictorial illustration of im2col has been shown in
Fig. 2. Now, Eq. (19) gets modified as

S[i] = K [i](∗)I [i−1]
col + b[i] (22)

where (*) denotes the matrix multiplication, b[i] is the bias
matrix of size (N [i]F × 1).

Each convolutional layer output S[i] is fed as an input to the
rectified linear unit activation function (ReLU), which gives
C [i] as the output governed by the following expression

C [i]m, j = ReLU(S[i]m, j) (23)

2) Average Pooling Layer: Average pooling operation is
applied on the activated feature maps of the i th convolutional
layer C [i] having dimension of N [i]F × N [i]W . In this study,
pooling filter size P[i]f = 2 and stride P[i]s = 2 is taken. The

pooling output P[i] of dimension N [i]F × N [i]P is given as

P[i]m,k =
C [i]m,2k + C [i]m,2k+1

2
(24)

where m = 0 . . . N [i]F − 1 and k = 0 . . . N [i]P − 1 with

N [i]P = N [i]W
2 .

3) Up-Sampling Layer: Up-sampling operation increases the
resolution of the activated feature maps, i.e, the i th convolu-
tional layer C [i]. The output of the up-sampling layer U [i] is
defined as

U [i]m, j = C [i]m,� j/2� (25)

where m = 0 . . . N [i]F − 1 and j = 0 . . . N [i]U − 1 with N [i]U =
2 ∗ N [i]W as the up-sampling factor U [i]f = 2. The dimension of

U [i] is N [i]F × N [i]U .

4) Flattened Layer: Before we feed the features to the FC
layer, it needs to be flattened into a one-dimensional format.
This process can be represented by the following equation

F = f latten(R) (26)

where R is the input for this layer and F is the flattened output
which can be used in the FC layer.

5) FC Layer: Now, the forward propagation can be
represented by

T̂N (x) = W (∗)F + B (27)

where F , W and B denote the output of the flattened layer,
weight matrix and bias respectively. Here, T̂N (x) is the esti-
mated denoised signal which will be used in the formulation
of the loss function discussed next.

B. Loss Function

The proposed loss function for the fractional CNN
auto-encoder is given as

L = 1

2M
M−1∑
i=0

(
T̂ (i)(x)
N − T (i)(x)

N
)2

+λ

2

⎛
⎝ E∑

j=1

∥∥∥K [j]
∥∥∥2

2
+ ‖W‖22

⎞
⎠ (28)

where, M represents the number of training samples, E is
the number of convolutional layers and λ represents the
regularization parameter. For back-propagation, the derivative
of loss with respect to T̂N (x) is calculated as

∂L

∂ T̂N (x)
= 1

M
M−1∑
i=0

(
T̂ (i)(x)
N − T (i)(x)

N
)

(29)

Eq. (29) is used during back-propagation process which is
discussed next.

C. Fractional Back-Propagation

The proposed back-propagation technique comes with the
advantage in the form of an extra hyper-parameter, i.e, frac-
tional order α which can be tuned to obtain the best denoising
performance and also plays an important role in training the
architecture.

2478 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

1) FC Layer: The value obtained using Eq. (29) is used as
input to the FC layer. Using Eqs. (27) and (28), the fractional
gradients of weights, i.e, Dα

W L is calculated as follows:

Dα
W L =

(
∂L

∂ T̂N (x)

)
Dα

W T̂N (x)+ λ

2
Dα

W W 2 (30)

Using Eq. (18), the fractional gradients present on the right
hand side of Eq. (30) are calculated as follows

Dα
W T̂N (x) = F W 1−α

�(2 − α)
(31)

λ

2
Dα

W W 2 = λ
W 2−α

�(3 − α)
(32)

where, �(·) denotes the gamma function. Substituting these
values obtained in Eq. (30) results in

Dα
W L =

(
∂L

∂ T̂N (x)

)
F W 1−α

�(2 − α)
+ λ

W 2−α

�(3 − α)
(33)

Similarly, the fractional gradient with respect to the bias B is
given by

Dα
B L = ∂L

∂ T̂N (x)
Dα

B T̂N (x) = ∂L

∂ T̂N (x)

B1−α

�(2 − α)
(34)

2) Flattened Layer: This layer flattens the input during
forward propagation as mentioned in Eq.(26). So during
backward propagation, we can reshape the output gradient ∂L

∂F
in the shape of R[i] to get the input gradient ∂L

∂ R
3) Up-Sampling Layer: For backpropagating the gradients,

the successive gradients from
∂L

∂U [i]
are added and assigned

to each element in
∂L

∂C [i]
. This can be represented using the

following equation:
∂L

∂C [i]m, j

= ∂L

∂U [i]m,2 j

+ ∂L

∂U [i]m,2 j+1

(35)

where the up-sampling factor U [i]f = 2. The dimension of
∂L

∂C [i]
is N [i]F × N [i]W where N [i]W = N [i]U /2. The gradient

∂L

∂C [i]
for the mth feature map can also be represented in a matrix
form as in (36), shown at the bottom of the page, where,

∂L

∂U [i]m,k

refers to the kth element of mth feature map in
∂L

∂U [i]
.

4) Average Pooling Layer: Similar to the back-propagation
for Up-sampling layer, ∂L

∂C [i] is calculated from the pooling
gradient ∂L

∂ P[i] . Considering the fact that P[i] is the average
pooling output, here the operation will be slightly different.
Each element in ∂L

∂ P[i] is divided by the pooling size P[i]f and
proportionally back-propagate the error gradients to the input.
This can be represented using the following equation:

∂L

∂C [i]m, j

= 1

2

∂L

∂ P[i]m,� j/2�
(37)

where, P[i]f = 2. The gradient ∂L
∂C [i] for the mth feature map

calculated in Eq. (37) can also be represented in a matrix form

as in (38), shown at the bottom of the page, where,
∂L

∂ P[i]m,k

refers to the kth element of mth feature map in
∂L

∂ P[i]
. The

dimension of ∂L
∂C [i] is N [i]F × N [i]W , where N [i]W = 2 ∗ N [i]P .

5) Convolutional Layer: In this layer, backward propagation
of the errors is carried out to calculate the fractional gradients
for the kernel Dα

K [i]L and bias Dα
b[i] L matrices. The output

gradient ∂L
∂C [i] is used to calculate these gradients. Using

Eqs. (22) and (28) we obtain

Dα
K [i] L =

∂L

∂S[i]
Dα

K [i] S
[i] + λ

2
Dα

K [i] (K [i])2 (39)

Dα
b[i] L =

∂L

∂S[i]
Dα

b[i] S
[i] (40)

Here, the gradient ∂L
∂S[i] can be calculated using element-wise

multiplication of ∂L
∂C [i] and ∂C [i]

∂S[i] and is given as

∂L

∂S[i]
= ∂L

∂C [i]
∂C [i]

∂S[i]
(41)

Using Eq. (23), the value of ∂C [i]
∂S[i] can be obtained as follows

∂C [i]

∂S[i]
=

{
1, if S[i] > 0

0, if S[i] ≤ 0
(42)

Substituting the value of ∂C [i]
∂S[i] in Eq. (41), results in the

following expression

∂L

∂S[i]
=

⎧⎨
⎩

∂L

∂C [i]
, if S[i] > 0

0, if S[i] ≤ 0
(43)

∂L

∂C [i]m

=
[

∂L

∂U [i]m,0

+ ∂L

∂U [i]m,1

∂L

∂U [i]m,2

+ ∂L

∂U [i]m,3

· · · ∂L

∂U [i]
m,W [i]u −2

+ ∂L

∂U [i]
m,W [i]u −1

]
(36)

∂L

∂C [i]m

= 1

2

[
∂L

∂ P[i]m,0

∂L

∂ P[i]m,0

∂L

∂ P[i]m,1

∂L

∂ P[i]m,1

· · · ∂L

∂ P[i]
m,N [i]W −1

∂L

∂ P[i]
m,N [i]P −1

]
(38)

NAGAR AND KUMAR: ORTHOGONAL FEATURES BASED EEG SIGNALS DENOISING 2479

Fig. 3. Illustration of col2im transformation.

Using Eqs. (22) and (18), the individual terms of Eq. (39)
can be written in the following way

Dα
K [i] S

[i] = I [i−1]
col

(
(K [i])1−α

�(2 − α)

)
(44)

λ

2
Dα

K [i]K
[i]2 = λ

(K [i])2−α

�(3 − α)
(45)

Substituting the above results in Eq. (39) the fractional
kernel gradient is given as

Dα
K [i]L

=

⎧⎪⎪⎨
⎪⎪⎩

∂L

∂C [i]
I [i−1]
col

(
(K [i])1−α

�(2 − α)

)
+ λ

(K [i])2−α

�(3 − α)
, if S[i] > 0

λ
(K [i])2−α

�(3 − α)
, if S[i] ≤ 0

(46)

Similarly, using Eqs. (41) and (43) the fractional gradient
with respect to the bias is given as

Dα
b[i] L =

⎧⎨
⎩

∂L

∂C [i]

(
(b[i])1−α

�(2 − α)

)
, if S[i] > 0

0, if S[i] ≤ 0
(47)

Next, for back-propagating the errors to the previous layers
such as average pooling or up-sampling layer, the input
gradient ∂L

∂ I [i−1] needs to be calculated. For this, first we need to
calculate the gradient ∂L

∂ I [i−1]
col

. It’s value can be obtained using

Eq. (22) and is given as

∂L

∂ I [i−1]
col

= ∂L

∂S[i]
(K [i]) (48)

with the dimension being N [i−1]
C × F [i] ×N [i]W . Now, the value

of ∂L
∂ I [i−1] is obtained as follows

∂L

∂ I [i−1] = col2im

(
∂L

∂ I [i−1]
col

)
(49)

with the dimension being N [i−1]
C × N [i−1]

W . Here, the inverse
transformation col2im (Fig. 3) is operated on ∂L

∂ I [i−1]
col

. Next,

we use ∂L
∂ I [i−1] as ∂L

∂U [i−1] or ∂L
∂ P[i−1] depending on whether the

previous layer is an average pooling layer or the up-sampling
layer. Once the gradients of all the trainable parameters

Fig. 4. Workflow of the proposed compressed fractional 1D-CNN.

are obtained, parameter update is carried out using gradient
descent of learning rate η as follows

K [i] ← K [i] − ηDα
K [i] L (50)

W ← W − ηDα
W L (51)

b[i] ← b[i] − ηDα
b[i] L (52)

B ← B − ηDα
B L (53)

We have mathematically proved the convergence of the
proposed algorithm, the details of which can be found in the
supplementary material.

IV. COMPRESSED ARCHITECTURE

The flowchart for the compressed version of the fractional
based CNN architecture is shown in Fig. 4. The training
phase consists of forward and backward propagation of the
fractional architecture discussed in Sec. III. This is followed
by updating the trainable weights using fractional gradient
descent. Next, the compression of the trained weights is carried
out using RSVD function discussed in algori thm 1. The
inputs required for the calculation of RSVD are θ and r .
Here, r denotes the rank of the matrix whereas θ ∈ {K [i], W }
denotes the trainable set consisting of kernels K [i], which
are used in convolution layers (CONV) and W is the inter-
connection weight between the flattened and FC layers. The
optimized rank (opt) is calculated as the rank at which 90%
of variance is covered for the singular vectors obtained using
SVD decomposition given in Eq. (15). This is carried out
using check_optimi zed_rank. The above description about
the compression procedure carried out during the training

2480 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

process is summarized in algori thm 1 and the steps are
repeated till the convergence is achieved.

Algorithm 1 RSVD Compression for Obtaining Optimized
Kernels and Weight Matrices

procedure RSV D_Opt_Compression(θ , r):
calculate [Ur , Sr , Vr] = RSVD (θ , r)
 from Eqs.
(11)-(16)
opt ← check_optimized_rank(Sr)
θopt ← UoptSoptV T

opt
return θopt

end procedure

During the testing phase shown in Fig. 4, the architecture
has the optimized trainable parameter θopt , obtained using
algori thm 1. Next, the compression of the θopt based on
the compression rate (CR) is performed using algori thm 2
resulting in θc which is a rank r approximation of the θopt .
Finally, the compressed parameter θc is used for denoising
the EEG signals. The process is summarized in algori thm 2.
Here, the compression rate CR is varied from 5% to 95%
for our observations and this is done for various values of
fractional order α ranging from 1 to 1.5.

Algorithm 2 Evaluating Denoising Performance on Testing
Dataset Using Compressed Kernels and Weight Matrices

Input: Trained parameter θopt ∈ {K [i], W }
Initialize compression rate CR
r = (1− CR) ∗ rank(θopt)
[Ur , Sr , Vr] = RSVD (θopt , r)
 from Eqs.(11)-(16)
θc ← Ur Sr V T

r
Estimated denoised signal x̂(n) using forward propagation

 from Eqs. (22)-(27)
return x̂(n)

V. RESULTS AND DISCUSSION

In this section, several experiments are conducted to validate
the efficiency of our proposed architecture. Firstly the standard
datasets on which evaluations are conducted is presented,
followed by experimental results including comparison with
existing MA removal methods. Next, a detail study in which
the performance of the architecture after compressing the
kernel weights using low rank approximation is examined. All
the experiments are performed on TESLA K80 GPU.

A. EEG Datasets

Now, we evaluate the architecture on two publicly available
databases, i.e., Mendeley [27] and epileptic Bonn [28] data-
base. Mendeley database contains clean EEG recordings of
40 subjects, each having 19 channels and sampled at 200 Hz.
The epileptic Bonn database contains five different sets of
databases, each representing a particular subject. The subjects
Z and O contains EEG recordings of five healthy subjects
with eyes open and closed, respectively, subjects N and F

contain inter-ictal recordings from seizure patients and S
represents the seizure-EEG signals. These EEG signals are
sampled at 173.61 Hz. For creating MA-contaminated EEG
signals, we take the help from examples of electromyograms
database [29], which has clean EMG signals recorded from
healthy subjects, and patients with myopathy and neuropathy.
The noisy signals are created by randomly mixing the clean
EEG signals with EMG signals after re-sampling all the signals
at 200 Hz.

B. Data Preparation and Performance Metrics

For Mendeley database, we took 1026 signals, each of
2000 samples, from which the training and testing data were
created after splitting the data into 80% training and 20%
testing set. Bonn database has five subjects each having
100 signals. We take those 100 signals and make a 80%-
20% train-test split across all the subjects, i.e., 80 signals
are taken from each of the five subjects for training, while
remaining 20 for testing. Accordingly, the contaminated sig-
nals are generated by randomly mixing EMG signals with
the original EEG ones. For comparison with existing MA
removal methods, we take the subject ‘Z’ from Bonn database
(represented by Bonn(Z)) for comparison while the whole
testing set is taken from Mendeley database.

The next step involves creating fragments of 250 samples
from both the noisy and original EEG signals. The number
of signals after taking each fragments is just 8 times more,
so it is not enough for training any deep neural network.
To combat this, we perform data augmentation by randomly
choosing a point from a particular signal to take 250 fragments
and repeat this process for few number of iterations such that
finally, we have around 20000 fragments for training. All these
fragments are then transformed into orthogonal domain using
TMs. After normalizing the fragments using standardscalar
function from sklearn [30] library, the resulting noisy
Tchebichef vectors are fed as an input to the proposed
architecture.

The evaluation of the proposed architecture is performed
using different performance metrics such as signal-to-noise
ratio (SN R), correlation coefficient (CC), percentage
root mean square difference (P RD), root mean square
error (RM SE) and mean absolute error (M AE) as
mentioned in [9].

To validate the effectiveness of the proposed architecture,
comparison of the results are carried out with the existing
MA removal methods, namely, Wavelet based EEG denois-
ing [4], EEMD [6], EMD-CCA [7], EEMD-CCA [7], EEMD-
MCCA [8] and VMD [9]

C. Denoising Performance

To validate the denoising performance of the architecture,
a comparative analysis is carried out with the existing MA
removal methods that have given good results on both the
databases. It can be observed from Table I, that the perfor-
mance metrics for the proposed fractional CNN architecture
outperforms all of the existing methods. Our model gives
an improvement of 8.5% and 12.7% in SNR values for

NAGAR AND KUMAR: ORTHOGONAL FEATURES BASED EEG SIGNALS DENOISING 2481

TABLE I
COMPARISON OF PROPOSED ARCHITECTURE WITH EXISTING MA REMOVAL METHODS ON MENDELEY AND BONN(Z) DATABASE

Mendeley and Bonn(Z), respectively, when compared to the
recently introduced variational mode decomposition (VMD)
method.

The optimal hyper-parameters for the convolutional neural
network were selected only after parameter tuning. It was
found that with batch size of 64, learning rate (η) of 0.0005,
regularization parameter (λ) of 0.00001 and training for
300 epochs was found to be optimal for Mendeley data-
base. For the Bonn database, training is performed using
200 epochs while the other hyper-parameters remains the
same.

Apart from the standard hyper-parameters listed in the
aforementioned paragraph, the proposed architecture provides
an extra hyper-parameter α that can be tuned to boost the
denoising performance. The fractional order (α) is used in
calculating the weight gradients in back-propagation discussed
in Sec. III-C. Experiments are conducted, where α value is
varied from 1 to 1.6 in steps of 0.1 and the optimal one
is taken for final evaluation. The performance metrics are
represented in Table II after calculating the average over all
the test data. It can be seen that for both the Mendeley
and Bonn(Z) database, α = 1.2 gives the best denoising
results. Compared to the traditional integer order CNN with
α = 1, fractional CNN with α = 1.2 gives around 7% and
4% performance boost in denoising for Mendeley and Bonn
database respectively.

The original, noisy and the denoised EEG signals in spatial
domain are visualized on left side of the Figs. (5) and (6)
for Mendeley and Bonn(Z) database, respectively. The cor-
responding signals in Tchebichef domain are plotted on the
right side. It can be observed from Figs. 5-6(d)-(f) that by
transforming signals into orthogonal space using TMs exhibits
sparse behaviour. These sparse signals are used as input feature
vectors that helps in accelerating the training process as the
architecture now requires fewer number of input coefficients
to work upon.

D. Compression Analysis

In this section, denoising results are presented when the
fractional auto-encoder is trained with RSVD compression

Fig. 5. EEG signals visualizations for Mendeley database. (A) Spa-
tial domain: (a) Original signal (b) Noisy signal (c) Denoised signal;
(B) Tchebichef moment: (d)-(f) Corresponding signals in Tchebichef
domain.

Fig. 6. EEG signals visualizations for Bonn(Z) database. (A) Spa-
tial domain: (a) Original signal (b) Noisy signal (c) Denoised signal;
(B) Tchebichef moment: (d)-(f) Corresponding signals in Tchebichef
domain.

carried out on trainable weights (see Sect. IV). The optimized
rank for the weights matrix in FC layer and kernel matrix
in CONV2 and CONV3 layer is selected such that 90% of
singular values can be retained. Table III shows the original
and the optimized rank for CONV2, CONV3 and FC lay-
ers calculated using algori thm 1. It can be seen that for

2482 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 7. SNR performance of the proposed architecture on Mendeley database after compression. Fractional order (α) used are: (a) 1, (b) 1.1,
(c) 1.2, (d) 1.3, (e) 1.4, (f) 1.5.

TABLE II
PERFORMANCE OF PROPOSED MODEL ON MENDELEY AND BONN(Z) DATABASE

TABLE III
LAYER WISE OPTIMIZED RANKS AFTER TRAINING THE PROPOSED ARCHITECTURE WITH

RSVD COMPRESSION FOR MENDELEY AND BONN(Z) DATABASE

Bonn(Z) database, the optimized rank for FC layer is higher
as compared to that of Mendeley database, which signifies that
this layer will be more sensitive to compression for Bonn(Z)
database.

The CONV2, CONV3 and FC layers are individually com-
pressed using the optimized ranks obtained in Table III and
the performance of the model is evaluated using algori thm 2.
Here, CONV1 layer is not compressed as it is directly inter-
acting with the input. Fig. 7 shows the effect of layer-wise
compression on denoising performance evaluated in terms of
SNR using the proposed model at various fractional orders.

It can be observed that conventional CNN auto-encoder
network shown in Fig. 7(a) with α = 1 outperforms the exist-
ing state-of-the-art methods if CONV2 layer is compressed
up-to 25%. However, as shown in Fig. 7(c), the proposed
architecture at α = 1.2 gives higher SNR compared to the

conventional CNN even when the CONV2 layer is compressed
by 30%. Likewise for FC layer compression, the architecture at
α = 1.2 gives better SNR values compared to other state of the
art methods even at 60% compression, while the conventional
CNN outperforms other methods only upto 35% compression.
Moreover, the proposed architecture at α = 1.5 (Fig. 7(f))
gives good performance under compression upto 55% and
35% of FC and CONV2, respectively. Similar analysis is for
the Bonn(Z) database and the results are shown in Fig. 8.
It can be observed that the best SNR is obtained compared
to the existing methods at α = 1.2. This performance is
guaranteed even when the CONV2, CONV3 and FC layers
are compressed by 25%. For this database, it can be seen that
FC layer is more sensitive to compression. This is because
the optimized rank (see Table III) is 15% of the original rank,
as a result the compression at early stages leads to drop in

NAGAR AND KUMAR: ORTHOGONAL FEATURES BASED EEG SIGNALS DENOISING 2483

Fig. 8. SNR performance of the proposed architecture on Bonn(Z) database after compression. Fractional order (α) used are: (a) 1, (b) 1.1, (c) 1.2,
(d) 1.3, (e) 1.4, (f) 1.5.

Fig. 9. EEG signals visualization under compression at various rates: (a) Original EEG signal, (b) Noisy EEG signal; Denoised signals: (c) without
compression, (d) 25� compression, (e) 50� compression, (f) 75� compression.

Fig. 10. Five frequency bands of original EEG signal from Bonn
database, (a) Gamma band, (b) Beta band, (c) Alpha band, (d) Theta
band, (e) Delta band.

the SNR performance. This is not in the case of Mendeley
database as optimized rank is 25% of the original rank. For
further qualitative analysis, Fig. 9 shows the denoised signals
produced by the architecture at α = 1.2 when CONV2 layer
is subjected to various compression rates. It can be seen that
even at 50% compression the reconstructed signal resembles
the original one at most of the points. Lastly, two things can
be concluded from this study. Firstly, using hyper-parameter
α can boost the SNR values of the EEG signals significantly.

Fig. 11. Five frequency bands of original EEG signal from Mendeley
database, (a) Gamma band, (b) Beta band, (c) Alpha band, (d) Theta
band, (e) Delta band.

Secondly, by compressing the weights of the architecture does
not degrade the SNR performance too much and its still
better than the existing methods. Compressing the architecture
provides an advantage that it consumes less memory space and
is suitable for edge computing devices.

E. EEG Quality in Frequency Domain

We classify the EEG waveform into five frequency
bands,i.e, delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-14 Hz),

2484 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 12. Coherence with respect to five frequency bands for both
Mendeley and Bonn(Z) database.

Fig. 13. SNR with respect to five frequency bands for both Mendeley
and Bonn(Z) database.

beta (14-30 Hz) and gamma (over 30 Hz) [31]. Fig. 10 and 11
displays the five frequency bands for original EEG signal
from the Bonn and Mendeley database respectively. The same
is also done for the respective noisy and denoised EEG
signals. Coherence and SNR is then calculated by taking
the original and denoised EEG signals for the respective
frequency bands. Fig. 12 depicts the coherence between the
original and the denoised EEG signal. We get the best results
for alpha frequency band, while it decreases for higher fre-
quency bands like beta and gamma. The same trend can be
obtained in Fig. 13, where SNR is calculated for original and
denoised signals at respective frequency band for both the
databases.

VI. CONCLUSION

A fractional and compressed one-dimensional CNN auto-
encoder, which uses orthogonal features in the form of
Tchebichef moments has been proposed. The proposed method
gives superior results in denoising MA contaminated signals
when compared to existing MA removal methods with the
best result observed at α = 1.2. Moreover, increasing the
compression ratio (CR) for the weights of the architecture,
it beats the existing methods when evaluated using the per-
formance metrics. Another important observation is that a
compressed fractional architecture at α = 1.2 performs better
than the conventional CNN auto-encoder without compression,
i.e., with 60% compression of FC layer for Mendeley database
and 30% compression of the CONV2 layer for the Bonn(Z)
database. Compressing the architecture not only makes its
occupies less memory foot-print but also delivers superior
performance compared to other methods. Qualitative analysis
of the signals is presented at various stages of compression,
which showed that the denoised signals are close to the

original signals. Future work involves deployment of the
compressed architecture on portable low energy devices.

ACKNOWLEDGMENT

The authors would like to thank the support received from
Dr. Bakul Gohel at DA-IICT in providing relevant information
on frequency domain based metrics used in EEG denoising
application.

REFERENCES

[1] F. C. Morabito et al., “Enhanced compressibility of EEG signal
in Alzheimer’s disease patients,” IEEE Sensors J., vol. 13, no. 9,
pp. 3255–3262, Sep. 2013.

[2] X. Jiang, G.-B. Bian, and Z. Tian, “Removal of artifacts from EEG
signals: A review,” Sensors, vol. 19, no. 5, p. 987, Feb. 2019.

[3] X. Chen et al., “Removal of muscle artifacts from the EEG: A review
and recommendations,” IEEE Sensors J., vol. 19, no. 14, pp. 5353–5368,
Jul. 2019.

[4] N. Mammone, F. La Foresta, and F. C. Morabito, “Automatic artifact
rejection from multichannel scalp EEG by wavelet ICA,” IEEE Sen-
sors J., vol. 12, no. 3, pp. 533–542, Mar. 2012.

[5] N. E. Huang et al., “The empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time,” Proc. Roy. Soc. London
A, Math., Phys. Eng. Sci., vol. 454, pp. 903–995, Mar. 1998.

[6] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition:
A noise-assisted data analysis method,” Adv. Adapt. Data Anal., vol. 1,
no. 1, pp. 1–41, 2008.

[7] K. T. Sweeney, S. F. McLoone, and T. E. Ward, “The use of ensemble
empirical mode decomposition with canonical correlation analysis as a
novel artifact removal technique,” IEEE Trans. Biomed. Eng., vol. 60,
no. 1, pp. 97–105, Jan. 2013.

[8] X. Chen, C. He, and H. Peng, “Removal of muscle artifacts from
single-channel EEG based on ensemble empirical mode decomposition
and multiset canonical correlation analysis,” J. Appl. Math., vol. 2014,
pp. 1–10, Jun. 2014.

[9] M. Saini, U. Satija, and M. D. Upadhayay, “Effective automated method
for detection and suppression of muscle artefacts from single-channel
EEG signal,” IET Healthcare Technol. Lett., vol. 7, no. 2, pp. 35–40,
Apr. 2020.

[10] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,
“Extracting and composing robust features with denoising autoen-
coders,” in Proc. 25th Int. Conf. Mach. Learn. (ICML), 2008,
pp. 1096–1103.

[11] Y. Li, L. Guo, Y. Liu, J. Liu, and F. Meng, “A temporal-spectral-
based squeeze-and-excitation feature fusion network for motor imagery
EEG decoding,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29,
pp. 1534–1545, 2021.

[12] E. Eldele et al., “An attention-based deep learning approach for sleep
stage classification with single-channel EEG,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 29, pp. 809–818, 2021.

[13] D. Yu and L. Deng, “Deep learning and its applications to signal and
information processing [exploratory DSP],” IEEE Signal Process. Mag.,
vol. 28, no. 1, pp. 145–154, Jan. 2011.

[14] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 28. Red Hook, NY, USA: Curran Associates, 2015,
pp. 1–9.

[15] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in Proc. Brit. Mach. Vis.
Conf. (BMVA), 2014, pp. 1–12.

[16] N. B. Erichson, S. Voronin, S. L. Brunton, and J. N. Kutz, “Randomized
matrix decompositions using R,” J. Stat. Softw., vol. 89, no. 11, pp. 1–47,
2019.

[17] E. Clark, S. L. Brunton, and J. Nathan Kutz, “Multi-fidelity sensor
selection: Greedy algorithms to place cheap and expensive sensors
with cost constraints,” IEEE Sensors J., vol. 21, no. 1, pp. 600–611,
Jan. 2021.

[18] X. Zou, X. Xu, C. Qing, and X. Xing, “High speed deep networks
based on discrete cosine transformation,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Oct. 2014, pp. 5921–5925.

NAGAR AND KUMAR: ORTHOGONAL FEATURES BASED EEG SIGNALS DENOISING 2485

[19] J. Zhao, R. Xiong, J. Xu, F. Wu, and T. Huang, “Learning a deep
convolutional network for subband image denoising,” in Proc. IEEE
Int. Conf. Multimedia Expo (ICME), Jul. 2019, pp. 1420–1425.

[20] H. Wu and S. Yan, “Computing invariants of Tchebichef moments for
shape based image retrieval,” Neurocomputing, vol. 215, pp. 110–117,
Nov. 2016.

[21] A. Kumar, M. O. Ahmad, and M. N. S. Swamy, “Tchebichef and
adaptive steerable-based total variation model for image denoising,”
IEEE Trans. Image Process., vol. 28, no. 6, pp. 2921–2935, Jun. 2019.

[22] J. Yu, L. Tan, S. Zhou, L. Wang, and M. A. Siddique, “Image denoising
algorithm based on entropy and adaptive fractional order calculus
operator,” IEEE Access, vol. 5, pp. 12275–12285, 2017.

[23] Y.-F. Pu, J.-L. Zhou, and X. Yuan, “Fractional differential mask:
A fractional differential-based approach for multiscale texture enhance-
ment,” IEEE Trans. Image Process., vol. 19, no. 2, pp. 491–511,
Feb. 2010.

[24] J. Wang, Y. Wen, Y. Gou, Z. Ye, and H. Chan, “Fractional-order gradient
descent learning of BP neural networks with Caputo derivative,” Neural
Netw., vol. 89, pp. 19–30, May 2017.

[25] R. Mukundan, “Some computational aspects of discrete orthonormal
moments,” IEEE Trans. Image Process., vol. 13, no. 8, pp. 1055–1059,
Aug. 2004.

[26] C. Bao, Y. Pu, and Y. Zhang, “Fractional-order deep backpropaga-
tion neural network,” Comput. Intell. Neurosci., vol. 2018, pp. 1–10,
Jul. 2018.

[27] M. A. Klados and P. D. Bamidis, “A semi-simulated EEG/EOG dataset
for the comparison of EOG artifact rejection techniques,” Data Brief,
vol. 8, pp. 1004–1006, Sep. 2016.

[28] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David,
and C. E. Elger, “Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical activity: Depen-
dence on recording region and brain state,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 64, no. 6, pp. 1–8,
Nov. 2001.

[29] A. Goldberger et al., “PhysioBank, physiotoolkit, and physionet:
Components of a new research resource for complex physio-
logic signals,” Circulation, vol. 101, no. 23, pp. e215–e220,
2000.

[30] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[31] M. Abo-Zahhad, S. M. Ahmed, and S. N. Abbas, “A new EEG
acquisition protocol for biometric identification using eye blink-
ing signals,” Int. J. Intell. Syst. Appl., vol. 7, no. 6, pp. 48–54,
May 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

