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Abstract— Exoskeletonrobot is an essential tool in active
rehabilitation training for patients with lower limb motor
dysfunctions. Accurate and real-time recognition in human
motion intention is a great challenge in exoskeleton robot,
which can be implemented by continues estimation of
human joint angles. In this study, we innovatively proposed
a novel feature-based convolutional neural network-bi-
directional long-short term memory network (CNN-BiLSTM)
model to predict the knee joint angles more accurately
and in real time. We validated our method on a public
dataset, including surface electromyography(sEMG) and
inertial measurement unit (IMU) data of 10 healthy sub-
jects during normal walking. Initially, features extraction
from each modal data achieved feature-level fusion. Then
the importance of each sEMG and IMU signal feature for
knee joint angle prediction was quantified by ensemble
feature scorer (EFS) and the number of features required
for prediction while ensuring accuracy was simplified by
profile likelihood maximization (PLM) algorithm. Finally, the
CNN-BiLSTM model was created by using the determined
simplest features to further fuse the spatio-temporal cor-
relation of signals. The results indicated that the EFS and
PLM algorithm could remove the feature redundancy per-
fectly and estimation performance would become better
when bi-modal gait data were fused. For the estimation
performance, the average root mean square error (RMSE),
adjusted R2 and pearson correlation coefficient (CC) of
our algorithm were 4.07, 0.95, and 0.98, respectively, which
was better than CNN, BiLSTM and other three traditional
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machine learning methods. In addition, the model test time
was 62.47 ± 0.29 ms, which was less than the predicted
horizon of 100 ms. The real-time performance and accuracy
are satisfactory.Compared with previous works, our method
has great advantages in feature selection and model design,
which further improves the prediction accuracy. These
promising results demonstrate that the proposed method
has considerable potential to be applied to exoskeleton
robot control.

Index Terms— Surface electromyography (sEMG), inertial
measurement unit (IMU), ensemble feature scorer (EFS),
CNN-BiLSTM, prediction.

I. INTRODUCTION

FOR individuals suffering from spinal cord injury, children
with developmental disabilities, and adults with neuromo-

tor impairment, it is increasingly crucial to identify lower limb
activities in order to implement active training in the reha-
bilitation process [1], [2], [3]. Exoskeleton robots instead of
artificial rehabilitation exercising have achieved initial results
[4], [5]. The key technology of exoskeleton robot is to realize
human-like control, which requires the ability to recognize
human motion intention in real time and formulates reasonable
control strategies. The commonly used control signal sources
are biomechanical signals and bioelectric signals. The biome-
chanical signals obviously lag behind the human movement,
which cannot realize the regular and natural human-computer
interaction. Surface electromyography (sEMG) is generated by
the contraction of the muscles on the surface of the human
body. It is directly related to the movement of the limbs and
can be collected from the superficial muscles through elec-
trodes. Owing to the rich kinematic information and mature
non-invasive acquisition technology of sEMG, it has been
widely used in human motion intention recognition in recent
years [6], [7].

Many researchers focused on the classification problem of
gait patterns, such as literatures [8], [9], [10], [11]. They
employed different classification algorithms to automatically
identify pathological or normal gait patterns based on myo-
electric, kinematic, or kinetic data. Although these studies had
excellent classification results, discrete motion classification
is essentially a qualitative analysis method. It is the lack of
ability to monitor continuous changes in movement. When
the complex motion types appear, they will not recognize
the human’s intention. The discrete movements classification
have limited application prospects [12]. In recent years, sev-
eral studies have designed new methods for joint trajectory

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-8944-6305


SUN et al.: CONTINUOUS ESTIMATION OF HUMAN KNEE JOINT ANGLES 2447

estimation [13], [14]. However, joint kinematic regression
based on sEMG is more valuable, especially in the field
of rehabilitation robots. The realization of human-computer
interaction based on sEMG signal will help to improve the
comprehensive performance of rehabilitation robots, thereby
improving the life quality of patients with lower limb move-
ment disorders. Some researchers tried to use machine learning
methods to estimate the joint angles of lower limbs based
on sEMG signal [15], [16]. However, these studies usually
reduced the feature redundancy phenomenon by principal
component analysis (PCA), which cannot better retain the
original information of the data and leads the lower prediction
accuracy.

Deep learning algorithms are widely used in various clas-
sification and regression tasks because of the ability to obtain
the high-level abstract features from large-scale data. Liu
et al. [17] proposed to use CNN to realize the knee joint
angles prediction. They proved that feature-based CNN had
higher estimation accuracy than original data-based CNN.
A large number of recent studies have shown that the LSTM
has achieved good results in terms of movement intention
[18], [19]. Therefore, to fully consider the spatio-temporal
correlation of gait data, some researchers used the CNN-LSTM
model for gait pattern recognition [20], [21], [22]. Among
them, LSTM extracted the temporal features of the data, and
CNN extracted the spatial features of the data. But these
studies were usually calculated based on only a single modal
data source, which cannot fully reflect the human’s movement
intention. In addition, the normal LSTM only considers the
information in the previous moment, but does not consider the
information of the future moment. At present, the regression
of lower limb joint dynamics based on deep learning is still
immature, and the prediction accuracy needs to be improved.

For addressing the limitations of the above methods, we pro-
posed the CNN-BiLSTM model with ensemble feature scorer
(EFS) based on IMU and sEMG data. Initially, features
extraction from each modal data achieved feature-level fusion.
Then the importance of each sEMG and IMU signal feature
for knee joint angle prediction was quantified by EFS and the
number of features required for prediction was simplified by
profile likelihood maximization (PLM) algorithm. Finally, the
CNN-BiLSTM which can fully learn the spatial and temporal
features of signals was created for knee angle prediction. Com-
pared with the CNN, BiLSTM and other traditional machine
learning algorithms for prediction, our model had a greater
advantage in prediction accuracy. It will provide a theoretical
basis for the efficient use of sEMG as a stable and good signal
source to control the lower limbs exoskeleton robots.

The main contributions of this study include:
1) We used the fused feature signal of sEMG and IMU as

the input of the model. The fusion signals have highly feature
complementary and avoid the limitations of single mode data.
Most previous studies have focused on a single sEMG signal
or IMU signal.

2)We innovatively used the feature selection method com-
bining PLM and EFS to better remove feature redundancy.
The importance of each sEMG and IMU signal feature for
knee joint angle prediction was quantified by EFS and the

TABLE I
THE CLINICAL INFORMATION OF 10 HEALTHY SUBJECTS

number of features required for prediction was simplified by
PLM algorithm.

3) CNN-BiLSTM model was built to fully consider the
spatio-temporal correlation of gait data. Compared with the
CNN, BiLSTM and other three traditional machine learning
algorithms for prediction, our model had a greater advantage
in prediction accuracy.

II. METHOD

A block diagram of the proposed method is illustrated in
Fig. 1. We conducted feature selection with EFS and PLM on
the preprocessed kinematic data and sEMG, obtaining more
valuable features used to train the CNN-BiLSTM model. The
trained model was used to predict knee joint angle.

A. Dataset

To validate the proposed framework, we employed a public
Benchmark Dataset [23]. The dataset consists of kinematic
data and sEMG collected from 10 healthy subjects in the
task of walking on flat ground. Specific information of
subjects is shown in Table I. Fourteen channels of sEMG
signals were collected at 1000 Hz by a bipolar surface elec-
trodes (DE2.1; Delsys, Boston, MA, USA). The monitored
muscles involved the tibialis anterior (TA), medial gastroc-
nemius (MG), soleus (SOL), vastus lateralis (VL), rectus
femoris (RF), biceps femoris (BF), and semitendinosus (ST) of
both lower limbs. At the same time, inertial measurement units
(IMUs) were placed bilaterally on the subjects’ thigh (below
rectus femoris) and shank (next to anterior tibial) and sampled
at 500 Hz ((MPU-9250; Invensense, San Jose, CA, USA),
which can record acceleration (ACC) and gyroscope (GYRO)
in three axes. In this study, the kinematic data were resampled
to 1000 Hz. Joint kinematic signals (sagittal plane only)
were recorded using electrogoniometers (SG150; Biometrics
Ltd., Newport, UK) placed on the knee. The data with first
120 segments of walking in every subject were selected as the
experimental dataset. The description of the dataset is detailed
in the study [23].

B. Data Preprocessing and Feature Extraction

sEMG is mostly concentrated in the frequency range of
20∼500 Hz. So raw sEMG data were first bandpass filtered
(20∼500 Hz) through a 6th order butterworth filter, then
processed by 6th order butterworth notch filter ( fc = 60,
180, 300 Hz) to remove motion artifacts and environmental
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Fig. 1. Block diagram of the proposed method for knee angle prediction.

Fig. 2. Proposed ensemble feature scorer (EFS) structure.

interference. The IMU data were low-pass filtered at 20 Hz to
remove high-frequency noise. In this way, the data can meet
the research requirements.

Consulting the previous research theories [24], [25],
we extracted seven time-domain features and one time-
frequency domain feature. Time domain features included
mean absolute value (MAV), root mean square (RMS), slope
sign change (SSC), wave length (WL), log variance (Logvar),
willison amplitude (WAMP), and sEMG Profile (PF). Time-
frequency domain feature was the mean absolute value of
the DB7 wavelet decomposition coefficient (DB7-MAV). For
IMU signals, supposed that three-axis ACC and GYRO signals
as ax , ay , az , bx , by , bz , respectively, and the instantaneous
resultant ACC and GYRO signals can be computed according
to (1) and (2). Then we extracted the maximum value (max),
the minimum value (min), the mean value (mean) and the
standard deviation (std) as the IMU features. Specifically,
the above all used the moving average method with 100 ms
window length and 10ms sliding step to extract features.

ACC =
√

a2
x + a2

y + a2
z (1)

GY RO =
√

b2
x + b2

y + b2
z (2)

C. Ensemble Feature Scorer (EFS)

In this paper, we constructed an EFS as shown in Fig. 2.
It integrated three feature selection methods to score the

extracted features’ importance, and then profile likelihood
maximization (PLM) [26] simplified the feature dimension
required for prediction while ensuring accuracy.

1) Filter Method: We employed pearson correlation coeffi-
cient (CC) and maximal information coefficient (MIC) to test
the dependence between two variables. The value is between
0 and 1, and 1 means the feature has a strong correlation with
the result. The feature scoring steps of the filtering method
are as follows. For the given regression problem, the target
sequence is T , and the feature sequence is F = [ f1, f2,
f3, . . . , fk], where fj is the j th feature. The influence of the
feature on the result can be obtained by calculating CC ( fj,
T ) and MIC ( fj, T ) [27].

CC
(

f j , T
) = cov( f j , T )√

var( f j ) ∗ var(T )
(3)

I
(

f j , T
) =∑

f j ,T
p

(
f j , T

)
log2

p
(

f j , T
)

p
(

f j
)

p (T )
(4)

M IC
(

f j , T
) = I

(
f j , T

)
log2(min(| f j |, |T |)) (5)

where I ( fj, T ) is mutual information between fj and T ;
cov( fj, T ) is covariance between feature fj and target
sequence T ; var( fj) is variance of feature fj; var(T ) is variance
of target sequence T ; p( fj) is the mass probability; p( fj, T )
is the approximate probability density distribution.

2) Wrapper Method: For wrapper method, we used support
vector regression (SVR) and linear regression (LR) based on
recursive feature elimination (RFE) to select features. Feature
score process was divided into three steps. Firstly, SVR or LR
was trained on a training dataset. Then features were ranked
using weights from model results and the feature with the
smallest weight will be removed. Finally, the process was
repeated on the training set until the feature set was empty.

3) Embedded Method: The embedded method is to com-
plete the feature selection during the model training process.
We used machine learning algorithms such as ridge regression,
random forest (RF), eXtreme gradient boosting (XGBoost),
and LightGBM to obtain the weight of each feature.

In ridge regression, the coefficients of some features were
forced to be reduced to zero in the training process by adding
regularization, and only important features were retained. For
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given feature vectors X , the optimization objective was defined
as:

min
ω
||ωX − y||22 + α||ω||22 (6)

where α ≥ 0 is the complexity coefficient. We took the default
value of 0.058 for α.

RF achieves features selection by calculating the average
reduction of impurity. From the origin training data set, the
bootstrap method was used to randomly choose a certain
number of samples. For each sample, features were extracted
randomly at each node. Then a regression tree was built, and
the top features among them were selected for node splitting.
Finally, the importance of the features has recorded on each
node.

XGBoost computes feature importance score via informa-
tion gain. The larger the gain, the more important the feature is
[28]. LightBGM is an optimization algorithm for XGBboost
which greatly reduces storage space and computational cost
through histogram-based decision tree algorithm. The sum
information gains of all nodes are the importance of the
feature.

Our EFS integrated all the above feature selection methods.
The process can be summarized as the following steps. Firstly,
we used all of the above methods to obtain feature scores based
on a single subject. The feature scores were then normalized
to [0, 1]. Finally, the average value of the feature importance
based on all subjects was calculated as the final feature
score. The grades of all features were sorted in descending
order to facilitate the subsequent calculation of the inflection
point.

4) Profile Likelihood Maximization (PLM): After the features
were scored by EFS, we used the PLM to determine the sim-
plest features. PLM was first proposed by Zhu and Ghodsi [26]
when using principal component analysis for data dimen-
sionality reduction. Next, we will introduce this method in
details.

Given the data points Q = {q1, q2, . . . , qn}, the purpose of
PLM is to assume that 1 ≤ k ≤ n exists, such that Q1 = {q1,
q2, . . . , qk} and Q2 = {qk+1, qk+2, . . . , qn} fit two different
probability density distribution functions f (q , θ1) and f (q ,
θ2). Based on this assumption, the algorithm can obtain the
value of k that maximizes the log-likelihood function:

L(k, θ1, θ2) =
k∑

i=1

log f (q;θ1)+
n∑

j=k+1

log f (q;θ2) (7)

The maximum likelihood estimates of θ1 and θ2 can be derived
from data point sets Q1 and Q2, respectively, as a function of
k. Thus, a profile likelihood for k can be calculated as:

Lk(k) =
k∑

i=1

log f (q; θ̂1(q))+
n∑

j=k+1

log f
(

q; θ̂2 (q)
)

(8)

We assumed that the two datasets Q1 and Q2 belong to
different gaussian models, and obtained the optimal value of
k by calculating the maximum profile likelihood estimation:

k̂ = argmi x
d=1,2,3,...,n

Lk (d) (9)

D. CNN-BiLSTM Model Structure

1) CNN Module: CNN is a kind of deep neural network,
which is mainly composed of convolution layer, pooling layer
and full connection layer. Among them, convolution layer
is the most important part of CNN. Each convolution layer
has multiple convolution kernels, which performs convolution
operations on the input information to capture the hidden
features of the data and then forms a feature map. Finally,
the output is completed by the nonlinear activation function.
The output of convolution layer is as follows:

hi = f (ωi ∗ xi + bi ) (10)

where xi denotes the input of convolution layer, hi is the i th

output feature map, ωi is a weight matrix, bi is the bias vector,
and f (·) represents the activation function. The rectified
linear unit (ReLU) function is widely chosen as the activation
function. The formula of ReLU can be expressed as:

hi = f (ci ) = max (0, ci ) (11)

where ci is the results of convolutional operations.
One-dimensional CNN (1D CNN) is essentially the same

as CNN, but its convolution kernel is one-dimensional, which
can well find the spatial correlation between one-dimensional
sequence and convolution kernel. In recent years, it has been
gradually applied to the field of sequential signal processing.

2) LSTM Module: The LSTM is good at processing time
series data and has been proved to be suitable for regression
problems in recent years. There are three gate units in each
LSTM units, called forget gate, memory gate and output gate,
respectively. These gates protect and control the state of a cell,
then complete computing in four steps. First, the forget gate
combines the state vector ht−1 of the previous hidden layer
and the input vector xt at the current moment, and determines
the forgotten information through the sigmoid function:

ft = σ
(
W f ·

[
ht−1, xt

]+ b f
)

(12)

Second, the memory gate and tanh function determine the
information to be memorized, and obtain the candidate cell
state vector C̃ :

it = σ
(
Wi ·

[
ht−1, xt

]+ bi
)

(13)

C̃t = tanh(WC [ht−1, xt ] + bC) (14)

Then, the cell state vector Ct at the current moment is
calculated as:

Ct = ft ∗ Ct−1 + it ∗ C̃t (15)

where ft is the forget gate vector. it is the memory gate vector.
Finally, the hidden layer state vector ht and the output gate
vector ot at the current moment are calculated as:

ot = σ (W0 [ht , xt ]+ b0) (16)

ht = ot ∗ tanh(Ct ) (17)

However, the normal LSTM only considers the information
in the previous moment, but does not consider the information
of the future moment. Therefore, the normal LSTM has lim-
itations when dealing with complex tasks [29]. We employed
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Fig. 3. Functional elements of the BiLSTM. The model includes both
forward and backward timesteps.

Fig. 4. Proposed CNN-BiLSTM model architecture.

the bidirectional long short-term memory network (BiLSTM),
which consists of forward and backward LSTM networks.
Fig. 3 shows the structure of the expansion in BiLSTM
network model along the time axis at t-1, t, t+1. xt is the
model input and yt is the output. Bidirectional architecture
could extract the temporal correlations of signals from both
directions at the same time with forward hidden layers and

backward hidden layers. In Fig. 3, �ht and
←
ht are the hidden

layer state of the forward LSTM network and the hidden layer
state of the backward LSTM at time t, respectively. They are
calculated by the standard LSTM. The BiLSTM layer yields
the output at time t, which can be computed according to (18)

yt = σ
(�ht ,

←
ht

)
(18)

where yt is the output of BiLSTM, σ is the tanh activation
function.

3) CNN-BiLSTM: Considering the spatio-temporal correla-
tion of gait data, we proposed a novel CNN-BiLSTM model
for spatio-temporal modeling of kinematic data and sEMG to
achieve knee joint angles prediction. A graphical represen-
tation of the model architecture was provided in Fig. 4. The
model constructed in this paper mainly consisted of two parts:
1D CNN network and BiLSTM network.

Firstly, after EFS feature selection, we combined the fused
signal features extracted from 20 consecutive sliding time
windows into a feature time series X as the input of the deep
learning model. The input X can be expressed by (19). 1-D
convolutional operators slid 64 filters with the same window
size of 1 over input sequences to capture the low-level implicit
features from the raw fused feature sequences. Then, a batch
normalization layer (dropout = 0.5) was utilized to prevent
the overfitting of the CNN. ReLU was used as the nonlinear
activation function of this layer. Next, the feature sequences
output by CNN were respectively input into the BiLSTM

layers. Each BiLSTM with 64 cell units not only learned
the knowledge from the preceding term of current time point
but also obtained the knowledge from succeeding term. The
features extracted from the BiLSTM were fed to the last fully
connected layer whose activation function was ReLU. Finally,
the knee joint angle prediction value was output from the fully
connected layer.

X =

⎡
⎢⎢⎢⎣

x1
1 x2

1 . . . x W
1

x1
2 x2

2 . . . x W
2

...
...

...
...

x1
L x2

L . . . x W
L

⎤
⎥⎥⎥⎦ (19)

where the set xL = (x1
L, x2

L , . . . , x W
L ) is the attribute values

of W features at the Lth sliding time window. In this paper,
L = 20, W = 27. The row vector represents the 27 sEMG and
IMU fused feature values in the optimal feature subset, and the
column vector represents the temporal feature sequence com-
posed of fused feature values extracted from 20 consecutive
sliding time windows.

E. Dataset Partitioning Strategy

The training strategy of the multi-modal framework can be
summarized in the following steps. Take a single subject as
example, the bimodal data of level walking was divided into
the training and test set (training set: test set = 5:1). Then the
training set was utilized to build EFS through ten-fold cross-
validation. In order to obtain a reliable and stable model, the
training set needed to be split into two non-overlapping parts
(90% for training and 10% for validation) for constructing
CNN-BiLSTM. Finally, the test set was used to test the model
performance.

F. Evaluation

The evaluation module mainly had three parts. On the one
hand, one-way analysis of variance (one-way ANOVA) was
used to evaluate the effect of EFS feature selection. It was
designed to test whether there was a significant difference in
the mean prediction results before and after feature selection.

On the other hand, pearson correlation coefficient (CC),
root mean square error (RMSE) and adjusted R2 was used to
evaluate the model. RMSE can measure the deviation between
predicted angles and real angles while CC can measure the
similarity between signals. For eliminating the interference
of the sample size on the results, we use adjusted R2 as a
supplement. The calculation formulas are shown as follows:

RM SE =
√

1

N

∑
(θpre − θreal)2 (20)

CC = cov(θpre, θreal)

σpreσreal
(21)

R2 = 1−
∑

(θpre − θreal)
2∑

(θreal − mean (θreal))
(22)

ad justed R2 = 1−
(
1− R2

)
(N − 1)

N − p − 1
(23)

where θpre is the predicted angle, while θreal is the real angle.
p is the number of features. N is the number of samples.
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Fig. 5. Prediction effect of sEMG signal features, IMU signal features
and fusion signal feature as model input, respectively: (a): RMSE;
(b): CC; (c) adjusted R2.

Furthermore, we designed a python program to calculate
the model prediction time based on the trained CNN-BiLSTM
model to preliminarily evaluate the real-time performance of
the algorithm. If the algorithm delay time is less than the time
to predict the knee joint angles in advance (100 ms), it means
that the real-time performance is better.

III. RESULTS

A. Influence of Fusion Features on Prediction Results

To study the effect of fusion features on the prediction
accuracy, we took the selected sEMG features alone, kinematic
signals features alone and fusion features respectively as the
input of SVR and XGBoost model, and mapped to the knee
joint angles at 100 ms after the end of the time window. For
performance evaluation, we adopted CC, RMSE and adjusted
R2 value as evaluation metrics. The average value of each
metric after ten-fold cross-validation was used as the final
calculation result. The prediction performance of the two

Fig. 6. Weighted average feature score curve.

TABLE II
KINEMATIC FEATURES SELECTED BY EFS

models with the selected three feature types is described in
Fig. 5. Fig. 5 (a)-(c) show the RMSE, CC, and adjusted R2

value corresponding to three different inputs, respectively.
It can be seen that no matter SVR model or XGBoost, the
results of the fusion signals are better than the single EMG and
IMU signal. The ∗ in the figure represents one-way variance
analysis P < 0.05, and ∗∗ represents one-way variance analysis
P < 0.01, which both have statistically significant differences.
Therefore, we chosen the fusion features of sEMG and IMU
signals as the input of the model.

B. The Result of EFS

The high dimensional data probably deteriorate the gen-
eralization performance of the algorithms when the number
of experimental samples is not very large [30]. To this end,
the EFS was used for each modal data to reduce redundant
information and extract effective signal features. After creating
the EFS for each subject, we add and average the scores to
get a list of weighted average scores based on all subjects.
Fig. 6 intuitively reflects the feature importance scores based
on all subjects. The horizontal axis is most sEMG and IMU
signal feature types, and the ordinate is the importance scores
of the features. As is shown in Fig. 6, we arrange the feature
importance scores in descending order to form a screen-plot
curve, then the inflection point is obtained by PLM method.
The first inflection point is at the 27th feature, which is located
at the arrow position in Fig. 6 and so we determined 27 best
and simplest features for knee angles prediction finally.

The muscles and features used for the prediction of knee
joint angles of human lower limbs are shown in Table II and
Table III, including 12 kinematic features and 15 sEMG signal
features. It can be seen that the most muscles are extracted the
WL and MAV features of sEMG, and the muscles with the
most extracted features is vastus lateralis. The thigh and shank
have the same kinematic features, including the maximum,
minimum and average values of acceleration and the maximum
and minimum values of angular velocity.
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TABLE III
SEMG FEATURES SELECTED BY EFS

Fig. 7. Prediction effect of sEMG signal features, IMU signal features
and fusion signal feature as model input, respectively: (a): RMSE;
(b): CC; (c) adjusted R2.

C. Influence of EFS on Prediction Results

To illustrate the effectiveness of EFS, we used the fused
features before and after feature screening as the input of
SVR, XGBoost and random forest models to forecast knee
joint angles. The evaluation metrics are the same as in Part
A. We used one-way ANOVA to analyze and compare the
evaluation results of different models. The results are shown in
Fig. 7. There is no statistical difference between the prediction
results before and after feature screening (P>0.05), indicating
that EFS reduced the input feature dimension while ensuring
that the prediction accuracy does not decrease.

D. The Performance of CNN-BiLSTM

Table IV shows the results of knee joint angles prediction
based on different models. Models were evaluated using
RMSE, adjusted R2 and CC on a separate test set. As is shown
in Table IV, compared with other methods, the prediction
performance of the CNN-BiLSTM model is the best. The

TABLE IV
RESULTS OF JOINT ANGLE PREDICTION BASED

ON DIFFERENT MODELS

Fig. 8. Comparison of prediction performance based on different models;
A: SVR, B: XGBoost, C: ELM, D: CNN, E: BiLSTM, F: CNN-BiLSTM.

average of RMSE, adjusted R2 and CC for all 10 healthy
subjects are 4.07, 0.95 and 0.98. Fig. 8 shows the comparison
of prediction results in different models. (a)-(c) represent the
RMSE, CC and adjusted R2 of different models, respec-
tively. The prediction results of BiLSTM are close to our
proposed model, but our model has lower RMSE and higher
adjusted R2.

Further, we selected a segment random data in 001∼010
subject as the test set to visualize the performance of multiple
models. Due to the performance of traditional machine learn-
ing methods is worse, we do not visualize here. Fig. 9 shows
the visual comparison in 001∼005 between the actual knee
joint angles and the predicted knee joint angles based on the
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Fig. 9. Visual comparison of prediction results of 001∼005 based on
CNN-BiLSTM, CNN and BiLSTM.

Fig. 10. Visual comparison of prediction results of 006∼010 based on
CNN-BiLSTM, CNN and BiLSTM.

CNN-BiLSTM, BiLSTM and CNN model. The visualization
results of other subjects are in Fig.10. The actual knee angle is
represented by the black curve, and the predicted knee angles
of CNN-BiLSTM, BiLSTM and CNN are represented by the
red curve, green curve and blue curve respectively. The CNN
model has the worst prediction effect, and the BiLSTM and our
proposed model have better prediction effect. A closer look at
the 002 left leg, the 004 right leg and 007 right leg reveals that
the prediction results of our proposed CNN-BiLSTM model

are smoother and more precise. In addition, we preliminar-
ily verified the real-time performance of the algorithm. The
twenty experiments results showed that the model average
testing time was 62.47 ± 0.29 ms, and the algorithm delay
time was less than the time to predict the knee joint angles in
advance. In conclusion, our algorithm meets the requirements
in terms of real-time performance and accuracy.

IV. DISCUSSION

In this study, we proposed an CNN-BiLSTM model to
combine the information from sEMG and IMU for knee angles
prediction, which compensated for the one-sidedness of single
modality prediction methods that only learn gait changes in a
single measurement dimension. Meanwhile, we introduced the

EFS to perform feature screening and remove feature redun-
dancy. The CNN-BiLSTM, a spatio-temporal neural network
structure, can better mine the characteristics of bimodal data.
After testing on a separate test set, the average RMSE of
our algorithm was 4.07. In addition, the visualization results
show that it has the potential to realize the smooth control of
exoskeleton robot.

We used fusion information from multiple sensors to
achieve knee angles prediction. To compare multi-information
and single information, we carried out comparative exper-
iments of different input signals to the machine learning
model. The results of statistical analysis showed that there was
significant difference in prediction accuracy under different
signal fusion (sEMG, IMU, sEMG + IMU). As is shown in
Fig. 5, when IMU is used as input, the result of prediction
is better than that of sEMG alone. This may be because
the sEMG signal is weak, random and complex, and the
traditional machine learning algorithms are not enough to learn
deeper features. The prediction accuracy of sEMG + IMU is
significantly higher than that of IMU. The movement of the
human body is accomplished by the contraction and stretching
of muscle groups to pull the corresponding bones. The sEMG
has potential to identify earlier data response compared to IMU
data and reflects muscle strength. The feedback of IMU on
motion state and direction is more intuitive than sEMG and
reflects the amount of exercise [3]. The fusion signals have
highly feature complementary. Therefore, the method of multi-
source signal fusion greatly improves the prediction accuracy.

In our experiment, we hope to get the contribution of each
extracted feature to the result by EFS. The results showed
that the contribution of kinematic features was higher than
that of sEMG features. We speculate that the main reason
is sEMG has a low amplitude, which is susceptible to noise
interference, and it is difficult to learn deep-seated information
of sEMG features for traditional machine learning models.
From the final sEMG feature selection results, the main
features involved Logvar, WL, WAMP, RMS, SSC, PF and
MAV, among which the muscle feature combination of MAV
and WL appeared the most. Previous studies have shown
that these time-domain signal features are very effective in
motion pattern recognition of lower limbs [3], [24], [31],
[32], [33], [34]. MAV is often used to extract sEMG features
due to its better performance [35], which reflects the overall
activation of muscles. WL is a measure of the complexity of
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the sEMG. They represent the amplitude and power level of the
signal, respectively. From the final muscle combination, vastus
lateralis and semitendinosus contained more sEMG features,
followed by soleus, tibialis anterior, medial gastrocnemius
and rectus femoris. This is mainly related to the function
of the muscles, corresponding to the main muscle activity
in each phase of the gait. As a knee extensor, the vastus
lateralis controls and restricts the swing of the calf through
eccentric contraction, thus making it possible to swing the
lower limb forward [36]. It is the main muscle that produces
power in the gait cycle. However, rectus femoris, which is
also a knee extensor muscle, had only one feature preserved.
We speculate that this is because both rectus femoris and
vastus lateralis are components of the quadriceps muscle, the
sEMG signals influence and the features intersect each other.
This also reflects that EFS removes muscle feature redundancy
well. Semitendinosus has the function of flexion and internal
rotation of knee joint. Soleus and medial gastrocnemius are
components of the calf triceps. In the middle stage of stance
phase, the medial gastrocnemius contracts strongly and pro-
vides the driving force during walking, so the sEMG signal
is very obvious. Soleus immobilizes the ankle and knee joints
to prevent the body from leaning forward during the stance
phase of the gait. Moreover, biceps femoris, as a knee flexor,
was not present in the final muscle assemblage, possibly due
to the thicker thigh fat and weak sEMG, which cannot reflect
the actual muscle contraction well.

By utilizing feature selection done by EFS and PLM, feature
redundancy information was removed, and robust prediction
results were also guaranteed while improving computational
performance. It has been confirmed that ensemble feature
selection is a stable feature selection method, which can com-
bine the advantages of different methods to generate feature
subsets and address the limitations of a single algorithm [37],
[38], [39]. This is consistent with our results. In addition, most
of the previous integration methods were aimed at one or two
of filtering, packaging and embedded selection. We properly
combined the three methods to concentrate the advantages of
more methods and improved the effect of feature selection.
However, we can find that the prediction results are still
slightly different from those before feature screening through
careful observation, but there is no statistical difference.
We speculate that this may be related to the inflection point
selection of PLM algorithm.

Although previous studies have confirmed that end-to-end
deep learning models can extract representative features from
sEMG signals [40], [41], [42], after all, deep learning models
are like a black box with poor interpretability. In our experi-
ment, we therefore first manually selected a large number of
features, filtered them through EFS, and then fed them into
a deep learning model for training. This enables the model
to extract deeper detailed descriptors from representative fea-
tures, increasing thephysiological interpretation. In addition,
the combination of CNN and BiLSTM can significantly
improve the regression accuracy and robustness. On the one
hand, the convolution operation enables the CNN to extract
the spatial characteristics of sEMG signals [43], thereby
representing the pattern of muscle activation. On the other

hand, the CNN essentially ignores the temporal dependence
of the signals. The introduction of BiLSTM can mine the
historical information of deep feature vectors, which is supe-
rior to LSTM. The bidirectional nature can effectively detect
the correlation between bimodal signals and joint angle sig-
nals [29]. Therefore, CNN-BiLSTM further improves the pre-
diction accuracy by effectively extracting the spatio-temporal
correlations of the fused signals.

During the normal gait, the knee joint will produce a large
flexion angle, which varies from 0 to 60◦ in the sagittal
plane. So, the joint angles prediction requires higher real-time
performance. In this study, we used the characteristic that the
sEMG signal is generated 30∼150 ms before the action to
predict the knee joint angle 100 ms in advance. The algorithm
delay is only about 62.47 ms. Our model is basically in line
with the satisfaction of the demand for real-time applications,
and can leave some time for other mechanical delays.

Nonetheless, there are a few limitations in our work. First,
knee, hip and ankle joint all place the key role in walking
rehabilitation. We will do multi joint prediction to achieve
more comprehensive rehabilitation robot control in future
research. Secondly, bi-modal data were fused in this study.
More modal data can further be fused to improve the accuracy
and real-time of prediction. Thirdly, our model has not been
tested in the actual control system. In the future, we will extend
our model to online testing and deeply explore its performance
in the real exoskeleton control system.

V. CONCLUSION

Accurate and real-time prediction of knee joint angles plays
an important role in the rehabilitation training of patients
with abnormal lower limb motor function. In the study,
we presented a feature-based CNN-BiLSTM model to predict
the lower limb knee angles after 100 ms in advance for
the subjects, using an EFS-based ensemble algorithm for
efficient feature selection of both sEMG features and IMU
features. The results indicated that the EFS and PLM algorithm
could remove the feature redundancy perfectly and estimation
performance would become better when bi-modal gait data
were fused. For the estimation performance, our model had
smaller estimation error and higher correlation coefficient
than well-established models based on the same subjects. The
model test time was 62.47 ± 0.29 ms, less than 100 ms. This
provesmm that our model has the potential to be applied to
exoskeleton robot control, and thereby improve the efficiency
of rehabilitation training for patients.
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