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Abstract— The natural interaction between the prosthetic
hand and the upper limb amputationpatient is important and
directly affects the rehabilitation effect and operation ability.
Most previous studies only focused on the interaction of
gestures but ignored the force levels. This paper proposes
a simultaneous recognition method of gestures and forces
for interaction with a prosthetic hand. The multitask clas-
sification algorithm based on a convolutional neural net-
work (CNN) is designed to improve recognition efficiency
and ensure recognition accuracy. The offline experimental
results show that the algorithm proposed in this study
outperforms other methods in both training speed and accu-
racy. To prove the effectiveness of the proposed method,
a myoelectric prosthetic hand integrated with tactile sen-
sors is developed, and surface electromyography (sEMG)
datasets of healthy persons and amputees are built. The
online experimental results show that the amputee can
control the prosthetic hand to continuously make gestures
under different force levels, and the effect of hand coordi-
nation on the hand perception of amputees is explored. The
results show that gesture classificationoperation tasks with
different force levels based on sEMG signals can be accu-
rately recognized and comfortably interact with prosthetic
hands in real time. It improves the amputees’ operation
ability and relieves their muscle fatigue.

Index Terms— sEMG, CNN, multitask classification algo-
rithm, gesture, force level, amputees.

I. INTRODUCTION

UPPER limb amputees’ daily operations in life become
inconvenient and uncoordinated after losing their hands.
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Therefore, to regain their ability to grasp, it is necessary to help
them wear prosthetic hands. Upper limb amputees will receive
rehabilitation training and fit prosthetic hands after surgery.
However, due to the high failure rate, inflexible operation,
and excessive weight of the current affordable commercial
prosthetic hands for ordinary families, another limitation of the
current commercial surface electromyography(sEMG) hand is
that the prosthetic hand will return to a neutral position from
the previous gesture, usually a completely open position [1],
which is not able to continuously and smoothly control the
prosthetic hands. Upper limb amputees cannot achieve friendly
human-computer interaction in the process of using prosthetic
hands. Therefore, most upper limb amputees choose to use
cosmetic prosthetic hands (only the appearance is similar to
normal hands for viewing purposes). They prefer to use a
healthy hand instead of a prosthetic hand to complete daily
operations [2], [3]. Using a prosthetic hand to complete some
daily operations could improve the physical and psychological
aspects of the amputee person’s quality of life and could
avoid atrophy of upper extremity muscles due to prolonged
inactivity. Therefore, it is a meaningful topic to allow amputees
to comfortably use a prosthetic hand to maintain normal daily
life and continuous rehabilitation of residual limbs. At present,
there are two main ways to control the prosthetic hand: nonin-
vasive surface electromyography (sEMG) and targeted sensory
reinnervation (TSR) and targeted-muscle reinnervation (TMR)
surgically invasive sensors [4], [5]. Invasive sensors obtain a
less noisy and higher quality signal [6], but sEMG is more
convenient and does not cause harm to upper limb amputees.
Many amputees are unwilling to undergo reoperation or use
invasive sensors, and invasive sensors need to be replaced after
a period of time due to electrode wear or displacement. This
paper develops a prosthetic hand control system that assists
amputees who are not willing to use invasive sensors.

A major application scenario for sEMG signals is decoding
gestures [7], [8]. Reference [9] collected the sEMG data of
twelve subjects with five gestures, and the average recognition
accuracy reached 98.7% by the neural network. [10] proposed
the sEMG compression scheme to classify gestures based on
compressed covariance sensing. The proposed method was
verified by NinaPro open-source data that contained forty-nine
gestures and achieved good results. Reference [11] studied the
influence of convolutional neural network (CNN) algorithm
parameters on gesture recognition. By studying the effect
of hyperparameters on each gesture of eighteen subjects,
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they found that no matter what the network configuration
is, some actions such as handshake or hand extension are
better recognized. Reference [12] proposed a new method for
automatically identifying the most important sEMG channels
for classifying gestures. The proposed method generates dis-
criminative codes based on the regularization of time series
sEMG data. Compared with the case of using all channels, the
identified significant sEMG channels increase the classification
accuracy by 11%. Reference [13] collected sEMG data of
fourteen gestures and found that misjudgments of gestures
often occurred in daily life. And there is a wide range
of scenarios where gestures are used in daily applications.
Moreover, gestures are used in a wide range of scenarios
in daily applications. Reference [14] maps the classification
recognition of gestures to audio playback control and controls
the control operation of the audio armband through different
gestures. Reference [15] proposes a new multisensor guided
gesture recognition system for the remote operation of sur-
gical robots, which uses long short-term memory (LSTM)
networks to recognize gestures and uses the detected gestures
to perform a set of human-robot collaboration tasks on a
surgical robot platform, which shows that gesture recognition
has great potential in daily applications as well as human-robot
interaction scenarios.

Various of the research on the interactive control of pros-
thetic hands focuses on the recognition of gestures and online
classification control [16], [17]. Gesture control alone is not
enough to satisfy the daily life of amputees, and force control
is also very important. For example, when they want to grasp
fragile objects, satisfactory force control is needed. It can help
them complete daily operations better and avoid high-intensity
activities of the residual limb muscles all the time. The grasp-
ing types and forces of healthy subjects have been estimated
by sEMG signals [18]. The absolute error of the grasping
force estimated through 16 sEMG channels is 2.52%, but
currently, only offline prediction is achieved, and no online
test is performed. Four surface sEMG sensors are arranged in
the forearm muscles to predict the force of the wrist with two
degrees of freedom [19]. Reference [1] used a deep recurrent
neural network (RNN) network to train nine subjects, and
six gesture classifications of three different force levels were
obtained, but force levels and gestures were not recognized
at the same time. Furthermore, the deep long short-term
memory (LSTM) network training model used is relatively
large, and it is difficult to realize the online recognition and
control of the prosthetic hand. Reference [20] used sEMG
signals to estimate the force of the residual limb from 200 g
to 1000 g and carried out an online evaluation. Reference [21]
designed seven gestures for 31 healthy subjects and adopted
a hierarchical model. Seven gestures are recognized first, and
then two specific gestures are detected; only two force levels
of the two gestures are recognized.

In summary, the online recognition of simple gestures or
force levels is realized and the online synchronization of
the two needs further research. Therefore, we will design
a real time operating system for different force levels and
different gestures to control prosthetic hands to help amputees
complete their daily activities. The gesture and force level
control are combined and applied to the prosthetic hands

with tactile sensors. Compared with previous studies, force
level control will enable people to complete daily operations
more flexibly and have better human-computer interaction.
Feel more relaxed operations that require lower force levels
and relieve muscle fatigue. This research may improve the
usage rate of prosthetic hands.

The main contributions of this paper can be summarized in
the following points:

(1) A novel method of simultaneous sEMG recogni-
tion of gestures and force levels is proposed. The accu-
racy of gesture/force level recognition for healthy subjects
was 94.75%/86.5%, and that for amputee subjects was
78.3%/76.3%.

(2) The sEMG dataset of three gestures with three force lev-
els is established. This dataset includes four healthy subjects
and three amputee subjects.

(3) A series of grasping experiments of the prosthetic hand
with tactile sensors are implemented.

The paper is organized as follows. Section II introduces the
system design for the interaction between human and pros-
thetic hands. Section III introduces the recognition algorithms.
Section IV describes the EMG dataset, and the experimental
results are presented. This paper ends with the conclusion in
Section V.

II. SYSTEM DESIGN

The proposed method of simultaneous sEMG recognition
of gestures and force levels is shown in Fig.1. First, data are
collected using sEMG sensors and force sensors and then fed
into a neural network for offline training. The sEMG data are
then read in real time and fed into the trained model for online
control and prosthetic hand grasping. Next, the hardware and
the detailed experimental process are introduced.

A. Hardware Equipment

An sEMG acquisition system, a force device, and a pros-
thetic hand are used in the experiment.

The electromyographic activity of each subject was recorded
with the British Biometrics’ sEMG wireless acquisition kit.
It consists of a wireless receiver and 6 wireless sEMG sensors,
which are shown in Fig.1 and Fig.3. The sEMG sensor samples
data at 2000 Hz, the precision is 0.0001 mV, and the range is
−2 mV to 2 mV.

A force device is used to evaluate force levels, as shown
in Fig.1 and Fig.8. It consists of the force sensor and bracket.
The sensor is fixed on the bracket. Its precision is 0.1 N,
and the range is 0-200 N. While measuring the sEMG signal,
we simultaneously use a force sensor. For a healthy person,
although they have both healthy hands, the force sensor is
necessary to remain in one stable fore level. For example,
while they are wrapping, they can make the value of the force
sensor approximately 5 N to stay at a low force level. After
several actions, they can keep one stable fore level without a
force sensor, which is also a training process. For amputees,
their residual limb’s feelings are weaker, so the force sensor
is more important.

Furthermore, the prosthetic hand uses the blue tooth for
communication. The developed prosthetic hand has 6 degrees



2428 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 1. The proposed system of simultaneous sEMG recognition of gestures and force levels for interaction with prosthetic hand.

of freedom, and each fingertip is equipped with a tactile
sensor array that can help the prosthetic hand implement three
force levels of grasping force. Therefore, the subjects can use
different force levels, and their muscle will be less fatigued
compared to maintaining the same force level. The tactile
sensor adopts an array structure, which can collect the contact
force information of the fingertip more comprehensively. The
prosthetic hand can achieve a variety of grasping actions
in daily life, and the execution time of each action is less
than 2 s. Meanwhile, flexible silicone material is equipped
to the surface of the fingertip to increase friction and ensure
stability. The performance of the prosthetic hand is adequate
for our grasping experiments.

The prosthetic hand has a total of 5 fingertip tactile sensors.
The size of each tactile sensor is 15 mm × 15 mm × 0.2 mm.
Each tactile sensor includes 25 contacts, and the average
value of 25 contacts is taken to calculate the pressure with
an accuracy of 0.01 N, an acquisition frequency of 50 Hz,
a response speed of 2 ms, and a measurement range of 0-15 N.

B. Offline Recognition

Offline recognition is implemented, and 6 sEMG sensors are
first used to evaluate the influence of the number of channels
on the accuracy. On the advice of the doctor, we chose
6 locations to place the sensors, corresponding to 3 different
muscles. As shown in Fig.3 numer1,4 represent the flexor
digitorum superficialis (FDS), number2,5 represent the flexor
carpi radialis (FCS), number3,6 represent the extensor carpi
radialis (ECA). The 3 selected muscles are the anterior group
of the forearm muscles, which are mainly responsible for

flexing the fingers and palms. We divide the six sensors into
2 groups (gruop1: 123 and group2: 456). After our experiments
(details are in section IV), three sensors (one group) are
selected that fully ensure accuracy, wear comfort and can
measure the muscle.

Then, the active segments of the collected sEMG signal
are extracted, and the threshold is set. The raw sEMG data
collected in the experiment, including the active segment
(motion state) and the resting segment (rest state), are shown
in Fig.2(a). This study uses a sliding window with a length
of 6000 (3 s) and a step size of 128 to extract the active
segment of the raw data. First, the data are observed, and the
voltage threshold is set. For example, we set the threshold to
0.005 mV for this set of data and then use the sliding window
to process the data. If the average voltage value of the data in
the sliding window is more than the threshold, it is regarded
as the active segment; otherwise, it is regarded as the resting
segment. The sliding window processing process is shown in
Fig.2(a). The processed data are shown in Fig.2(b). Then, the
preprocessed data are fed into the neural network for training.
Meanwhile, the gestures and force levels are used as labels,
but only sEMG data are used for training data, and the force
levels and gestures are identified from the sEMG data. The
force levels of the subjects are trained by pressing the force
sensor. Three levels, including low, medium, and high, are
selected.

C. Online Recognition

In the online recognition, the real-time sEMG signals are
captured, and the model trained in the offline step is used for
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Fig. 2. Sliding window. (a) Describes the process of performing a sliding window on the raw sEMG signal, observing the data and setting a threshold,
then using the sliding window to calculate the mean value of the data within the window. If the mean value is greater than the threshold, it is classified
as a motion segment, and vice versa as a resting segment. The length of each movement of the sliding window is the step size, and finally, the raw
data are divided into motion and resting segments. (b) The data after extracting the active segment and completing the splicing.

Fig. 3. Healthy person sensor location.

simultaneous recognition of gestures and forces levels. After
the trained model is discriminated, the recognized gesture and
force level are output, and the score value t of the output
category is output. If t is more than the set threshold, the
recognized instruction will be transmitted to the prosthetic
hand and control the prosthetic hand to make the correspond-
ing action; if t is less than the threshold, keep the resting
state. We complete different gestures by changing the rotation
and bending angle of the prosthetic hand and determining the
force level by the pressure value of the fingertip, such as a
low force level. The fingertip pressure threshold is set to 5N.
When the pressure exceeds this threshold, the motor locks,
and the prosthetic hand no longer continues to move.

III. RECOGNITION ALGORITHM

A. Network Structure

The deep learning algorithm has the advantages of high
training speed, without manually extracting features. Cur-
rently, some researchers have successfully applied the deep
learning method to sEMG [22], [23], [24] or electroencephalo-
gram (EEG) [25] signal classification and explored several
effective network frameworks. Reference [26] and [27] trans-
mitted raw sEMG signals as an input vector to a CNN classifier
and achieved good results. sEMG signals look like time series,
but in fact, they only change in a short time from the resting
state to the gesture. The continuous state after the gesture is

completed is no longer a time series of changes. Since the
training speed of LSTM is slower than that of CNN, and it is
more effective in time series problems, our study chooses to
use CNN.

We choose to convert the two-dimensional sEMG signal
(sequence × number of channels) into a three-dimensional
image (1 × sequence × number of channels) and use CNN
to train. Meanwhile, this paper adopts the CNN structure as
the main body, and the network structure is shown in Fig.4.
Gestures and force levels can be classified at the same time
by using our CNN framework called G&F-CNN (Gestures
and Force levels CNN). In G&F-CNN, we used the batch
normalization (BN) layer to speed up the convergence speed
and place the problem of gradient explosion and used the
dropout layer to prevent the problem of overfitting.

The computer hardware used is Intel Core i9-11900H, 32G
memory, 16G video memory, an eight-core processor, and an
NVIDIA RTX3080 graphics card. The training framework is
based on the Keras of TensorFlow. The maximum number of
iterations and batch size are 3000 epochs and 256, respectively.
All dropout parameters are set to 0.3. During the training
process, the overall data are divided into three parts: 80% is the
training set, 10% is the validation set, and 10% is the test set.
In the iterative process, when the accuracy of the new model
is greater than that of the previously trained model, it will
be saved, and we choose the model with the best performance
after the iteration. The learning rate is 0.0001. Because the BN
layer and the dropout layer are used, there is no need to lower
the learning rate, there is no overfitting, and the convergence
speed is very fast. The optimizer chooses the Adam optimizer,
the parameters of the optimizer are the default parameters,
the loss function uses categorical-cross entropy and the loss
function chooses categorical-cross entropy. In the neural net-
work, we use 6 convolutional blocks as shared layers. Each
block contains a 2D convolution layer, a BN layer, a ReLu
activation function layer, a dropout layer (dropout=0.3), and
the convolutional layer detailed parameters (kernel size, step
size, etc.).
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Fig. 4. G�F-CNN Structure.

In the network structure diagram, the BN layer uses default
parameters; after the shared layer, it is the task block. We have
two task blocks: one is the gesture task block, and the other
is the force levels task block. Each task block contains a 2D
convolutional layer, a flatten layer, a fully connected layer,
a softmax activation function layer, and finally output k values
(k is the number of categories), and the largest number of
k values corresponding to the category is the output result.
Reference [14] indicates that various nontarget gestures will
be performed in daily life activities, resulting in many false
positives and activations. Therefore, this article adds threshold
activation to the softmax classification and sets the threshold
to 0.85. If the classification is more than this threshold,
a classification gesture will be output. When the threshold is
less than this value, the prosthetic hand will remain at rest.

B. Multitask Learning Method

Reference [21] used multiple classifiers to classify gestures
and force levels. In the output of the gesture classifier, if it
is a specific gesture, other trained force level classifiers are
called to classify the force levels. We used a multitask learning
structure to replace multiclassifiers for training. Six channels
of sEMG signals are used as input, force level features and
gesture features are extracted from EMG signals to achieve
recognition, and gesture categories and force levels are output
at the same time.

Multitask learning is applied in various fields, such as
medicine [28], robot operation [29], and vision [30]. Compared
with multiclassifiers, multitask learning and training are faster,
only the need to train one model is more convenient, and
the training effect of multitask learning is better than that
of multiclassifiers. Multitask learning also has the effect of
reducing overfitting. In this study, the first 6 convolutional
layers are shared, and each task is classified by adding a

convolutional layer, flatten layer, and Softmax after the number
of shared layers.

IV. EXPERIMENTAL RESULTS

Gesture and force level experiments of healthy persons
and amputees are designed. The dataset is built to evaluate
the performance of the proposed method. Furthermore, real
time interaction experiments for prosthetic hand grasping are
implemented to prove the effectiveness.

A. Dateset

We invited 4 healthy subjects and 3 disabled subjects to
participate in the experiments. Four healthy subjects are males
approximately 25 years old, and all right hands are used in the
experiment and are called sub1-sub4. Three disabled subjects
are called sub 5-7, sub5 with the right residual limb amputated
for 25 years, no phantom limbs and no tactile feedback;
sub6 with the right residual limb has amputated for 3 years,
have phantom limbs and no tactile feedback; sub7 with the
left residual limb has amputated for 3 years, have phantom
limbs and have tactile feedback. They are required to make
3 gestures under 3 force levels. Three gestures are wrapped,
2 finger pinch (2FP), and 3 finger pinch (3FP), as shown in
Fig.7. The three force levels are low, medium, and high.

During data collection, we used a computer screen to
prompt the subjects to carry out the instructions. Six wireless
sEMG sensors are used for healthy subjects, and three wireless
sEMG sensors are used for amputees. Meanwhile, the force
sensor is used as a supervision to ensure the right force level
of the subjects.

Every subject’s experiment included 9 motions (3 ges-
tures*3 force levels), and every motion included 20 trials.
At the beginning of the experiment, the screen displays the
tips of the required force level and gesture pictures. Then
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Fig. 5. Experimental results.

Fig. 6. Experimental design of our dataset.

subjects can select different buttons to determine the status
of “start execution”, “rest”, etc. Then each trial lasted for 5s
and rests for 5s. Each motion ends for 2 minutes to rest, and
every 3 motions end for 5 minutes to rest to ensure that the
muscles are not in a state of fatigue. The demonstration of
data collection is shown in Fig.8 and the experimental design
of our dataset is shown in Fig.6.

For healthy subjects, we collected data from 6 sEMG sen-
sors, and the sEMG data came from the hands of the individual
gesturing during the experiment; for amputees, we collected
data from 3 sEMG sensors, and the sEMG data came from

Fig. 7. Three gestures for interaction. (a) 3 finger pinch, (b) 2 finger
pinch, (c) wrap.

the hands of the individual gesturing (residual limb) during
the experiment.

For amputees, they can only make gestures under different
force levels through imagination, and the characteristic signal
obtained only by imagination is not very strong, so two
experiments are designed for studying the influence of a
healthy hand on the residual limb. The first set of exper-
iments is to make only the residual limb hand do actions
are called the control experimental group. The second set
of experiments is to let him use the normal hand and the
residual limb of the disabled to perform the same action at
the same time and is called a collaborative experimental group.
We want to improve the perception of residual limbs through
healthy hands. The demonstration of data collection is shown
in Fig.9.
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Fig. 8. Experimental setup of healthy person experiment.

Fig. 9. The collection experiments of the amputee. (a) The distribution
of three EMG sensors on the residual limb, (b) Same actions with both
hands at the same time, (c) Actions of the residual limbs, (d) Resting
state.

B. Recognition Performance

We compared G&F-CNN with LSTM, support vector
machines(SVM) and CNN+LSTM [31]. The learning rate
was set to 0.0001. G&F-CNN, LSTM and CNN+LSTM were
trained for 3000 epochs, and SVM stopped when SVM was
trained to the optimal accuracy. The algorithm evaluation
index is accuracy, the definition of accuracy is R/N, N is
the total number of training samples, and R is the number
of successful classification samples. The classification results
of different algorithms on gestures and force levels are shown
in Fig.5(a) and Fig.5(b). All the results (comparison of algo-
rithms, comparison of different training methods, etc., through
5-fold cross-verification). Each individual dataset was divided
into 10 data subsets, and the proportions of the training set,
validation set, and test set were 7:1:2. Data subsets 0 and
1 were used for the first time as a test set. The remaining 8 data
subsets took 1 random subset as a validation set, the remaining
7 as a training set, and a second used data subsets 2 and 3 as
a test set for a total of 5 cross-validations. The recognition
algorithms of multitask learning (MTL) and multiclassifier
learning (MCL) are implemented for comparison. The conver-
gence time of multitask learning is 2/3 that of multiclassifier
learning and achieves higher recognition accuracy. Fig.5(c)
shows the gesture recognition results in 6 sEMG sensors and
3 sEMG sensors of sEMG data on healthy subjects. Fig.5(d)

TABLE I
GESTURES CLASSIFICATION RESULTS

TABLE II
FORCE LEVEL CLASSIFICATION RESULTS

shows the accuracy of force levels in two different channel
numbers and two different training methods.

The results show that the convergence speed of the 3 sEMG
sensors training result is increased from 2000 epochs to
3000 epochs compared with the 6 sEMG sensors training
result, and the accuracy rate is slightly reduced, but it
still maintains a high level (the difference is within 5%).
To improve the comfort of the amputee and the convenience of
wearing it, 3 sEMG sensors are used for online experiments.

We used G&F-CNN to classify and recognize gestures and
force levels in different healthy individuals, and the detailed
results are shown in Table I and Table II.(FP means finger
pinch).

Fig.5(e) and Fig.5(f) show the results on two experimental
groups of amputees using G&F-CNN, 3 sEMG sensors, and a
multitask learning method to train the model. In the collabora-
tive experimental group, we found that using the healthy hand
and the residual limb at the same time caused the subjects to be
distracted, and the longer the amputation time and the weaker
the perception ability of the residual limb, the greater the
negative effect of distraction. Sub5 has been amputated for a
long time, and using both hands together is very uncoordinated
and requires a lot of distraction, so the experimental results
of the collaborative experimental group are even worse; the
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Fig. 10. Comparison of mean power frequency before and after fatigue at different force levels. (a) and (b) show the comparison of the mean power
frequency before and after fatigue at a low force level; similarly, (c) and (d) show the mid force level, and (e) and (f) show the high force level.

positive effects of bimanual synergy canceled out, and the
experimental results of the two groups were similar; the
residual limbs of Sub7 had stronger perception ability and
did not need to be distracted too much, so the experimental
results of the collaborative experimental group were better.
This discovery opens up new research ideas for the study of
amputee hand coordination.

C. Grasping Experiments of Prosthetic Hand

To prove that the subjects using different force levels can
make the operation more comfortable, we asked the subjects
to perform exercises at different force levels until they were
fatigued. Fig.11 shows the sEMG data of the subjects making
fist movements at three different force levels. Fig.11a shows
the high force level. The subjects began to fatigue in approx-
imately 38 seconds. The sEMG level cannot be maintained;
Fig.11b shows the mid force level, and the subject begins to
fatigue at approximately 120s and cannot maintain the EMG
level; Fig.11c shows the low force level.

For muscle fatigue determination, frequency domain studies
are also necessary. According to studies [32], [33], the mean
power spectrogram and median frequency are important fac-
tors in determining muscle fatigue. Fig.10 and Table III show
the mean power spectrogram and median frequency changes
before and after fatigue at different force levels. Regarding
the selection of the fatigue time point, since it was considered
that the low force level did not produce fatigue, the last 5s of
data was selected assuming the fatigue state and compared to
observe whether there was a difference to determine whether
there was real fatigue, and the fatigue time of the medium
force level and high force level were assumed to be 120s and
38s, respectively.

TABLE III
COMPARISON OF MEDIAN FREQUENCY BEFORE AND

AFTER FATIGUE AT DIFFERENT FORCE LEVELS

In Fig.10, the mean power frequencies represented by
subplots a and b do not differ significantly, indicating that
muscle fatigue did not occur at low force levels, and the
mean power frequencies represented by subplots c and d differ
significantly, verifying the fact that muscle fatigue occurs at
medium force levels. Similarly, subplots e and f verify the fact
that fatigue occurs at high force levels. As shown in Table III,
before and after the fatigue of medium and high force levels,
there was a significant difference in median frequency, which
verified the fact of fatigue, and the difference was smaller for
low force levels, which did not produce fatigue.

Fig.12 shows tactile sensor data of wrapping at different
force levels making the results more intuitive. Low force level
gestures do not fatigue the subject, causing a decrease in
sEMG amplitude. The lower the force level is, the lower
the fatigue level of the tested muscles, which makes the
manipulation more flexible and comfortable.

The online EMG recognition results are used for interaction
with a prosthetic hand. The EMG data input trained model
and the classification results of gesture and force are output in
real-time to control the prosthetic hand to make corresponding
actions.
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Fig. 11. Fatigue time of different force levels.

Fig. 12. Tactile sensor data of different force levels.

TABLE IV
HEALTHY SUBJECTS ONLINE RESULTS

We asked healthy subjects and amputees to perform
20 motions on the prosthetic hand online using each of the
different gestures and force levels. Table IV and Table V show
the number of successful motions and online accuracy of
healthy subjects and amputees in completing assigned tasks.

Fig.13 shows the gestures and force levels interaction
between the healthy subject and the prosthetic hand. The upper
part of the figure shows the interactive effects of the three
gestures. The lower part of the picture shows the effect of

TABLE V
AMPUTEE ONLINE RESULTS

Fig. 13. Gestures and forces interaction between the healthy subject
and the prosthetic hand.

Fig. 14. Gestures and force levels interaction between the amputee and
the prosthetic hand.

three levels of force through the prosthetic hand pinching a
rubber ball.

Fig.14 shows the interaction between the amputee and the
prosthetic hand. Different objects are grasped by different
gestures. A warp gesture is recognized to grasp a water bottle.
A two-finger pinch gesture is recognized to grasp ping-pong.
A three-finger pinch gesture is recognized to grab a rubber
ball. Furthermore, when grasping light objects, he can use a
low level of force. When grasping heavy objects, a high level
of force can be used. When grasping general objects, he can
use medium-level force. Hence, the method of interaction with
the prosthetic hand is more flexible. It improves the grasping
ability and can effectively alleviate the muscle fatigue of the
residual limb.
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V. DISCUSSION

A. Analysis of the Results

This paper investigates the classification recognition and
online control of prosthetic hands based on sEMG sig-
nals for simultaneous gestures and force levels. The aver-
age gesture/force recognition accuracy of healthy subjects
was 94.75%/86.5%; the average recognition accuracy of
gesture/force levels of amputee subjects was 78.3%/76.3%.
Compared to previous studies, [14] conducted classification
recognition of gestures and force levels for 31 healthy subjects
with an accuracy of 98.78%, and the accuracy of force level
recognition for two specific gestures was 98.80% and 96.09%,
but this study did not classify gestures and force levels at the
same time, and its recognition method was as follows: if a
specific gesture was detected as a predetermined gesture in
the process of gesture recognition, a specific trained model
was called to If a specific gesture is detected in the process of
gesture recognition, the trained model is called to classify the
force level; compared with this study, the accuracy of gesture
recognition reaches a high level, and the accuracy of force
level recognition has room for improvement. The real-time
nature of the sEMG control system requires that decisions be
given within 300 ms of the end of the action execution [34].
The delay of this study’s system is approximately 160 ms,
which has reached the standard of real time operation.

The experimental results show that the accuracy rate of sub1
is significantly lower than that of the other three subjects for
the following reasons: 1. Individual variability. It is normal for
each individual to have differences in accuracy; 2. Distraction.
Subject 1 may not pay enough attention during some motions
in the experiment; 3. Body size. Subject 1 was fatter than the
other subjects, and the detected sEMG signal characteristics
were weaker. The experimental results show that the force
level classification result is significantly lower than the gesture
classification result. The reason may be that in force level
data collection, subjects perform actions based on their senses
only, which leads to inaccurate force levels done to some
motions of subjects in data collection. For example, when
conducting fist-mid force level data collection experiments,
subjects may make fist-high force level actions, resulting in
datasets containing a small number of errors.

B. Future Work

In this study, we propose an operating system based on
sEMG signals to simultaneously recognize hand gestures and
force levels and control the prosthetic hand in real time, and
the outlook of future work is as follows: 1. The prosthetic hand
used in this study is a rigid prosthetic hand, and soft prosthetic
hands can be used in the future, such as the soft prosthetic
hand used in the study [35], which is lighter in weight,
more flexible in operation, and has better human-computer
interaction in comparison. 2. The hand gestures designed in
this study were fixed movements, and continuous decoding
of hand movements can be studied in the future. in [36], the
reference electrode was placed at the wrist and olecranon for
healthy participants and amputees, respectively, for continuous
estimation of multiple degrees of freedom wrist torques.

This is one of the future research directions of this study.
3. Handedness synergy for disabled people can be used as
a rehabilitation tool for long-term experiments and follow-
up of patients; for example, amputees are asked to perform
movements with both hands together as daily training and
observe whether their residual limb perception is enhanced
after a certain period.

VI. CONCLUSION

In this paper, a real-time electromyography prosthetic hand
control system is designed that uses the G&F-CNN network
to classify sEMG signals for multitasking recognition of
forces and gestures. Three gestures with three force levels are
recognized online to improve the interaction with a prosthetic
hand. Force interaction can achieve finer control and alleviate
muscle fatigue. It helps amputees use prosthetic hands more
conveniently and comfortably in daily life. A series of exper-
iments are implemented to prove the superior performance
of the proposed method. This research has great potential
for application and can be applied to daily life operations
and human-computer interaction scenarios, such as forming
a hybrid brain-computer interface operating system with elec-
trooculogram(EOG) and sEMG [37], controlling wheelchairs
through gestures [38], etc. In the end, the average gesture
recognition accuracy of healthy people reached 94.75%, and
the average recognition accuracy of force was 86.5%; the
average recognition accuracy of the gestures of amputees was
78.3%, and the average recognition accuracy of force was
76.3%. The feasibility of the proposed system was verified
through grasping experiments.
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