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Predicting the Quality of Spatial Learning via
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Abstract— Analyzing the effects landmarks have on spa-
tial learning is an active area of research in the study
of human navigation processes and one that is key to
understanding the links between human brain dynamics,
landmark encoding, and spatial learning outcomes. This
article presents a study on whether electroencephalography
(EEG) signals related to virtual global landmarks combined
with deep learning can be used to predict the accuracy
and efficacy of spatial learning. Virtual global landmarks
are silhouettes of actual landmarks projected into the
navigator’s vision via a heads-up display. They serve as a
notable frame of reference in addition to the local landmarks
we all typically use for route navigation. From a mobile
virtual reality scenario involving 55 participants, the results
of the study suggest that the EEG data associatedwith those
who were exposed to global landmarks shows a visibly
better capacity for predicting the quality of spatial learning
levels than those who were not. As such, the EEG features
associated with processing VGLs have a greater functional
relation to the quality of spatial learning. This finding opens
up a future direction of enquiry into landmark encoding and
navigational ability. It may also provide a potential avenue
for the early diagnosis of Alzheimer’s disease.

Index Terms— Active navigation, electroencephalogra-
phy (EEG), spatial learning, deep learning.

I. INTRODUCTION

IN THE navigation process, spatial learning refers to the
stages through which humans encode information about

their environment as they navigate a route. It particularly refers
to how we locate and recall relevant stimuli to prompt our next
steps [1], [2]. This learning associated with spatial information
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processing involves several brain regions [3], [4], [5]. For
example, our retrosplenial complex translates spatial repre-
sentations with egocentric and allocentric reference frames [6].
Our head direction cells compute our orientation by translating
spatial information with distinctive spatial references [7].
This involves the parahippocampal [8], entorhinal [9], and
thalamus [10] regions of the brain, among others. Indeed,
spatial learning can even physically affect the growth of brain
structures. A well-known study on the enlarged hippocampi
of London cab drivers by scientists at University College in
London found that grey matter in the brains of taxi drivers
grew and adapted to help them store detailed mental maps
of the city [11]. In other words, through the process of
continuously learning and processing their surroundings, the
cab drivers’ brains expanded to accommodate the cognitive
demands of navigating London’s streets.

Landmarks are one of the most crucial stimulants of cogni-
tive navigation in spatial learning [12], [13]. Further, different
kinds of landmarks are used in different ways [14]. Distant
landmarks such as city skylines or mountain peaks serve as
“global” landmarks. These are visible from far away and do
not change much as the observer moves a small distance.
As such, they act as a global frame of reference in the
same way as a compass. By contrast, “local” landmarks
are only visible from a small distance. We typically rely
on these to achieve our intermediate navigation goals, such
as ‘turn right at the cinema’ or ‘drive straight through the
roundabout with the statue’. These are therefore linked to route
navigation. Accordingly, Bruns and Chamberlain find that,
as easily remembered and recognisable spatial references, the
configurations of landmark objects can assist in route learning
and scene recognition [15].

However, with urbanisation, many global landmarks are
obscured by skyscrapers and other buildings, especially as one
approaches a CBD. It has been our contention for some time
that this is having a deleterious effect on spatial navigation,
and, to this end, we developed a heads-up display that rein-
troduces these global landmarks into our vision in the form of
a virtual silhouette. As shown in Fig. 1a, called virtual global
landmark (VGL), the system ensures that a global landmark
can always be seen, even when a building or other aspect of
the environment is blocking its view, by portraying a silhouette
in its place. Fig. 1b presents a virtual reality point-of-view for
our proposed VGL system. In a previous study, we show that
reintroducing these landmarks does, in fact, improve spatial
learning [16]. In this study we are concerned with whether
EEG and other brain signals associated with VGLs can predict
the quality of spatial learning.
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Fig. 1. VGL design and exploration map. (a) The working mechanism of the VGL. If the selected global landmark selected for inclusion in the scenario
was blocked by environmental features, the VGL still indicated the direction of the global landmark in silhouette. (b) The first-person point-of-view
during active navigation in the fully virtual environment. Again, the global landmark was always present, even when obscured from view by other
objects. (c) One of the pre-defined exploration routes. Auditory instructions were used to guide participants through the route. In this illustration, the
plants and trees inside and surrounding the scenario have been removed for a clearer view of the path.

Past research has linked theta oscillations to spatial nav-
igation process in humans [17], and to the encoding and
retrieval of spatial information in rodents [18]. Researchers
have taken subdural recordings from epileptic patients while
they navigate virtual mazes in a scenario displayed on a
computer screen, and multiple episodes of high-amplitude
theta activity were found in a number of areas including the
frontal and temporal cortexes [19]. They further found that the
frequency of theta-wave episodes occurred more frequently in
complex mazes, which occurred more frequently in recall trials
than in learning trials. In addition, as a critical visual stimulus
in the environment, the importance of landmarks to spatial
navigation has also been proven in past electrophysiological
and imaging studies [20], [21], [22]. In an EEG study on
landmark recognition tasks [23], frontal electrophysiological
activity in the low frequency bands could reliably distinguish a
targeted landmark from a non-targeted one. Here, frontal-theta
oscillatory power was significantly lower for the target land-
mark. Another analysis on the late positive complex showed
that the amplitude of the posterior late positive complex
increases with an increasing amount of spatial information that
is recollected from landmarks [24]. Assumed to be reflective of
information recollection [25], increased late positive complex
amplitudes were found for landmark information, with the
most pronounced amplitudes recorded while the subjects were
exploring and learning an environment with landmarks.

Inspired by the constructive role landmarks can play in
spatial learning, we decided to test the predictive capacity
of landmark-related EEG signals with multiple standard deep
learning models, including EEGNet [26], DeepConvNet [27]
and ShallowConvNet [27]. EEGNet is a compact Convolu-
tional Neural Network (CNN) architecture utilizing the depth-
wise separable convolutions [28]. As a generalized model for

EEG signals, it has shown optimal performance from a variety
of paradigms with EEG signals [26]. DeepConvNet is also
a broadly used convolution neural network model for EEG
signals, which is able to learn different kinds of information
in decoding tasks relating to EEG signals [27]. Inspired by
filter bank common spatial patterns [29], ShallowConvNet is
a shallow version of DeepConvCNN, with a larger kernel,
a different activation function, a different pooling approach,
and a classification block [27].

We enlisted 55 students from the University of Technology
Sydney to participate in the study. To catch the EEG signals
related to landmark stimuli during navigation activity in a more
natural experimental environment [30], [31], [32], [33], [34],
we applied the fully immersive virtual reality (VR) protocols
to build our experiment scenario called “Sydney Park”. The
immersive VR technology allows users to act in real-time at
artificial locations interacting synchronously via an interface
that can track and display the users’ actions [17], [35], [31].
In our study, through tracking the real-time reactions and
motions of the participants with VR, we could be able to
create a virtual environment where participants could actively
and naturally explore and sense the pervasive computing
environment with the stimulation of visual, auditory, and
proprioceptive modalities in combination with high-density
EEG [31], [36], [37]. During experiment, the participants were
first divided into two groups and asked to explore “Sydney
Park” by following auditory instructions along a predefined
route as shown in Fig. 1c. Of the two groups, one group
explored with the assistance of VGLs while the other explored
without them. The route for exploration was predefined in
a way that balanced the participant’s exposure to local and
global landmarks. During exploration, each participant was
equipped with a head-mounted VR system and a mobile
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TABLE I
PARTICIPANT DEMOGRAPHICS

brain/body imaging (MoBI) [38], [39], [40] setup that captured
brain dynamics via EEG signals while they explored.

Once they had completed the route, the participants were
asked to draw a sketch map of the path they had just navigated.
This was how we assessed the quality of spatial learning.
To show incidental learning performance achieved both with
and without VGLs in the environment, the participants were
not informed that they would subsequently be asked to draw
a map of the route they had taken during their explorations.
We measured the fit of each sketch map to the actual route
against seven-points of fidelity to score the outcome of spatial
knowledge acquisition. Based on our design of VGL as a frame
of reference for one’s surroundings, we hypothesized that EEG
signals of VGLs would achieve a higher efficacy in prediction
performance than the other landmark stimuli.

II. MATERIALS AND METHODS

A. Participants

The experiment involved 55 participants – 24 females and
31 males (see Table I for demographic information) – and
were conducted in the UTS Tech Lab. The experimental
procedure was explained to each subject before participating
in the study, with all providing informed consent. The Human
Research Ethics Committee (HREC) of University of Technol-
ogy Sydney (UTS) also reviewed the protocols and issued their
approval (grant number: UTS HREC REF NO. ETH17-2095).
All experiments were performed in accordance with relevant
guidelines and regulations. None of the participants reported a
history of any psychological disorders that could have affected
the results.

B. Experiment Setup and Procedure

1) VGL System Setup: The virtual global landmarks were
displayed as transparent, 2-dimensional silhouettes of the real
landmark in the VR scenario, which served as a stable refer-
ence of the direction of specific locations without disturbing
the overall environment. The silhouettes were presented in
the direction of the global landmark within the participant’s
sightline. Whether walking or turning, as long as the partici-
pant looked in that direction, they were able to see either the
real landmark or the silhouette if it was blocked by another
object, as shown in Figure 1a. A total of three virtual global
landmarks were included in our scenario: a lighthouse, the
Sydney Opera House and the Sydney Tower Eye.

2) VR Scenario Setup: We developed a VR environment sce-
nario called Sydney Park to imitate the real environment of the
Sydney Botanical Gardens. Figure 1b shows the user’s view
of Sydney Park. Sydney Park was created in Unity 2018.3.5f1
(Unity Technologies, USA). The Sydney Park environment

consists of 11 local landmarks and the 3 global landmarks
in combination with paths, intersections, bushes, trees, etc.
Two sides of the scenario were extended with only the sea,
and a lighthouse standing in the corner next to the ocean.
Of the remaining two sides, one had a view of the Sydney
Opera House and the other had a view of the Sydney Tower
Eye – similar to the actual views from the Royal Botanical
Gardens. The scenario was fully immersive so as to hold
participants’ attention for the full duration of the navigation
experiments. We used HTC’s Vive Pro eye headset with an
embedded Tobii eye tracker. The Vive Pro eye uses a dual
OLED 3.5” diagonal display with a resolution of 1440 ×
1600 pixels per eye (2880 × 1600 pixels combined) and a
refresh rate of 90Hz, as reported by HTC. The participant’s
head position was principally tracked with embedded inertial
measurement units, while an external lighthouse tracking sys-
tem cleared the common tracking drift with a 60Hz update
rate. Additionally, the eye activity of participants was tracked
using the Tobii eye tracker at a sampling rate of 120Hz.

3) Experiment Procedure:
a) Exploration phase: All participants were randomly

divided into two groups in this phase – one group that explored
Sydney Park with the VGL system, and a non-VGL group,
who explored without. Each participant in both groups first
had five minutes to walk around inside a meadow area in
the VR environment. Next, they started walking through the
Sydney Park scenario along a fixed, predefined route with
the assistance of auditory instructions (see Figure 1c). This
was intended to help standardize how participants explored
the environment. All local landmarks were passed twice while
navigating the fixed route. The VGL group could always
see a global landmark as they walked whether virtual or
in silhouette; the non-VGL group could only see global
landmarks if they were unobscured.

b) Map drawing task: After exploration, each participant
was given a blank 11.7 × 16.5-inch sheet of paper, a pencil and
an eraser. They were then instructed to draw any information
they remembered about the scenario, including landmarks,
paths, and so on. They were not allowed to listen to the
instructions again or redo the scenario.

C. EEG Recording and Pre-Processing
The EEG data were recorded continuously using Brain

Vision’s LiveAmp 64 system (Brain Products, Gilching,
Germany) with 64 active electrodes mounted on an elastic cap.
The sampling rate was 500 Hz with a low-pass filter of 131Hz.
The electrodes were positioned according to an extended 10-20
system [41]. The EEG signals were referenced to the electrode
located at FCz and the impedance of all sensors was kept
below 5k�. EEG events were created when the participants’
fixated on the surface of a defined landmark, both virtual
and in silhouette. All data streams from the EEG cap, eye
tracker and head-mounted display were synchronized with Lab
Streaming Layer (LSL).

Raw EEG data were imported into MATLAB version 2018a
(MathWorks Inc., USA) for processing. We used EEGLAB
toolbox version 2020.0 [42] to aid with the analysis. For each
participant’s raw data, we first checked the data quality by eye
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to ensure the EEG data was consistently recording with active
movements during experiment. Of the 55 participants, data of
one participant from non-VGL group was excluded due to poor
EEG quality. The raw data for the remaining 54 participants
were first bandpass filtered from 1Hz to 100Hz and downsam-
pled to 250Hz. Then, data from each single task were merged
into one large EEG dataset for the following pre-processing
steps. Line noise and flatlines were removed in turn using
the cleanline and clean_flatlines functions in EEGLAB, and
noisy channels were rejected with the clean_channels function.
All missing EEG channels were interpolated by spherical
splines before re-referencing to the average of all channels.
Noisy data in the time domain were removed through auto-
matic continuous data cleaning. The data were then submitted
to adaptive mixed independent component analysis to obtain
independent components [42], [43]. The equivalent dipole
model of each independent component was computed using a
boundary element head model as implemented in EEGLAB’s
DIFIT2 routines [44]. Last, the sphere and weights of the ICA
and dipole models were copied back to the pre-processed but
uncleaned EEG single-task data for further analysis. (There
was no cleaning in the time domain.)

D. Sample, Sampling Strategy

1) Classification of Spatial Learning Level: N = 28 sketch
maps from the VGL group’s participants and N = 27 sketch
maps from non-VGL group were assessed with the Gardony
Map Drawing Analyzer (GMDA) [45]. We used the map score
as an indicator to show the spatial learning outcome for each
participant. Based on the scores, participants were separated
into two levels of the spatial learning outcome, high and low
levels. To improve the reliability of two levels, we dropped
20% of the participants’ scores around the median score. The
dropped data was set as discarded data and removed from the
dataset. We then set the top 40% of scores as the high level
for spatial learning and the bottom 40% of scores as the low
level.

2) Extraction of Time-Dependency Features on EEG Data:
Based on the selected data for two behaviour levels above,
the corresponding EEG datasets were further processed for
feature extraction. To get the segments of EEG data related to
landmark stimuli during exploration, the pre-processed data
were extracted in time windows of -1 to 7 seconds. For each
segment, only one kind of landmark was in view (the virtual
global landmarks in the VGL group or the local landmarks in
the non-VGL group).

III. RESULTS AND DISCUSSION

A. Spatial Learning Outcomes

Sketching maps is a common method of evaluating spatial
knowledge learned from an environment [45], [46], [47]. Thus,
in our study, we took the sketch map scores as reflective of
spatial learning outcomes for each participant. Table II lists the
map scores and the corresponding classified level camps for all
participants. The participants are ranked based on their scores
from bottom to top. 20% of the participants were discarded as

TABLE II
CLASSIFICATION OF SPATIAL LEARNING LEVEL AND MAP SCORES

the gap between the low level and high-level camps for each
group. For the remaining participants, the top 40% were sorted
into the high-level camp and the bottom 40% were assigned
to the low-level camp.

B. Prediction of Spatial Learning Level Using EEG Data
Our objective was to test whether the EEG signals at the

stage of exploration could reliably predict the quality of spatial
learning outcomes given the two types of landmark stimuli.
As such, we compared the EEG inputs versus map quality for
the VGL and non-VGL groups. Three popular deep learning
algorithms were applied as the training models: EEGNet [26],
DeepConvNet [27] and ShallowConvNet [27]. EEG signals
associated with those in the low-level camp were labelled
0 and those in the high-level camp were labelled 1. The
accuracy performance of prediction was measured in terms of
three metrics – accuracy (Acc), F1 score and Cohen’s kappa
coefficient, calculated as:

Acc = (T (0) + T (1))/N (1)

F1 score = (2 · T (0))/(2 · T (0) + F(0) + F(1))

(2)

Kappa coefficient = 2 · (T (0) · T (1) − F(0) · F(1))

/((T (0) + F(0)) · (F(0) + T (1))

· (T (0) + F(1)) · (F(1) + T (1))) (3)
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TABLE III
EEG DATA CONFIGURATION AND PREDICTION PERFORMANCE

TABLE IV
10-FOLD CROSS-VALIDATION RESULTS

where T(0) is the number of true results classified by model as
label 0 (low level), T(1) is the number of true results classified
by model as label 1 (high level), F(0) is the number of false
results classified by model as label 0 (low level), F(1) is the
number of false results classified by model as label 1 (high
level) and N is the total number of data samples.

Besides the Acc, F1 score and Cohen’s kappa coefficient are
commonly used as evaluation metrics for binary classification.
Assuming the positive and negative as the two classes, the
F1 score is balancing precision and recall on the positive
class while accuracy looks at correctly classified observations
both positive and negative. The kappa statistic compares the
accuracy of the classification system to the accuracy of a
random classification system [48], [49]. In other words, the
kappa coefficient measures how closely the instances classified
by the classifier matched the data labelled as ground truth,
controlling for the accuracy of a random classifier as measured
by the expected accuracy. Thus, the kappa statistic not only
reflects how the classifier itself performed, also compares any
other model used for the same classification task.

Table III shows the input data configurations and predic-
tion performance from three models. We ran a maximum of
1000 training epochs with a batch size of 8. The number of
data points equalled the number of channels × the sampling
rate × the number of EEG epochs analysed. The results clearly
show that predicting spatial learning levels based on the brain
signal data from the VGL group produced a significantly more
accurate result than the non-VGL group. Averaging the results
from the three models, the VGL group outperformed the non-
VGL group by 7.72% in terms of Acc, 9.57% in terms of F1
score, and 27.37% in terms of Cohen’s kappa coefficient.

To further estimate the training performance, we performed
10-fold cross-validation with the same input data and classifier
models. The results are shown in Table IV. Similar to the
results in Table III, the cross-validation results also indicated
an average 43.30% improvement in Acc and 21.97% improve-
ment in F1 scores with EEG data associated with VGL stimuli
from the VGL group compared to local landmarks from the
non-VGL group.

In the time-dependency points, the EEG data collected
from the VGL group shows a visibly better capacity for
predicting the quality of spatial learning levels compared
to the data collected from the non-VGL group. In other
words, the EEG features associated with VGLs relate better to
functional spatial learning than local landmarks do. This might
be because, as a conspicuous and easy-to-pinpoint reference,
global landmarks can help participants build a clearer direc-
tional relationship between themselves and a constant point of
reference than local landmarks [50], [51]. Thus, as a persistent
reference to a global landmark, VGLs help participants to
mark routes well and to accurately learn the features of their
environment. By the same token, the EEG features associated
with VGLs processed during the spatial learning stages of
exploration would appear to more directly reflect the quality
of the spatial learning outcomes.

C. Visualizing the EEG Dataset
To uncover the feature differences on EEG data between

VGL group and non-VGL group, we plotted the event-related
spectral perturbations (ERSPs) with the newtimef function
in EEGLAB [42]. In addition to the features from the
time-domain, ERSPs also show frequency spectrum dynam-
ics. We evaluated the ERSPs originating in the frontal and
parietal cortices of participants. Many studies have demon-
strated involvement by the parietal cortex in spatial navigation
[52], [53], [54], [55]. Further, as the behaviour and emotional
control centre of our brains, the frontal lobes are important for
voluntary movement and for managing higher-level executive
functions [56]. Especially, based on our previous studies [57],
[58], the frontal and parietal areas are found to be associated
to the quality of spatial learning caused by the stimulus of
VGLs and local landmarks. These two areas are also revealed
by studies for their roles to reflect the spatial attention and
navigation strategies [59], [60], [18]. Thus, we were interested
to see whether brain dynamics in the parietal and frontal
cortical areas would differ when VGLs were in view as used
by the VGL group versus the local landmarks of the non-VGL
group in this study. Based on the classifications in Table II,
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Fig. 2. Mean ERSPs for low and high levels from VGL and non-VGL groups. (a-b) mean ERSPs in VGL group for high and low levels and significant
differences between two levels (ERSPs of high level minus the ERSPs of low level) with p < .05 from frontal (a) and parietal (b) cortex. (c-d) mean
ERSPs in non-VGL group for high and low levels and significant differences between two levels (ERSPs of high level minus the ERSPs of low level)
with p < .05 from frontal (c) and parietal (d) cortex. For all ERSPs, first dotted lines at the 0 ms time point signify the onset of a trial, and the second
dotted lines at the 1000 ms time point signify the onset of stimuli (The stimulus in VGL group is virtual global landmark, and in non-VGL group is
local landmark). The non-significant points were masked with zero values in the mean ERSPs and are displayed in green. Significant differences
with respect to baseline activity are displayed in red and blue for positive and negative deviations from the baseline activity, respectively.

the mean ERSPs for low and high levels from both groups
were plotted separately.

The results are presented in Figure 2. In the VGL group
(Figure 2a), significant differences in the frontal cortex
between the average ERSPs for high and low levels revealed
broad and significant decreases in alpha and beta activity that
started a short time after the onset of VGL stimuli, p < .05.
Similarly, significant differences between the two levels of
frontal cortex with the local landmarks (Figure 2c) showed
substantial suppression in the same frequency bands, p < .05.
That said, the suppression began slightly later after the stim-
uli than for the VGL group. In Figure 2b, the significant

differences of parietal cortex in VGL group between two
levels demonstrated a broader and strong difference in the
theta, alpha, and beta bands that covered nearly all-time
domains. In the same brain area with the non-VGL group,
the differences in ERSPs between the two levels (Figure 2d)
were statistically significant for the delta and beta bands over
a narrower time periods.

As a visualization of our EEG signals from two groups, the
ESRP results suggest significant differences between the two
levels of spatial learning outcomes. Compared to the non-VGL
group, the brain dynamics associated with the VGL group
showed broader mean spectral power changes in the time
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domain. This might be the reason why the EEG data related
to VGLs were more accurate predictors of spatial learning
outcomes with time-dependency features than that of the local
landmarks.

IV. CONCLUSION

The results of this study indicate that it could be possible
to use deep learning to predict the quality of spatial learning
outcomes by analyzing EEG signals relating to the encoding of
virtual global landmarks in the human brain. As a reliable and
steady reference point for a global landmark, the VGL system
shows an evident improvement in the predictive capacity of on
spatial learning levels compared to the signal associated with
encoding local landmarks. By visualizing the brain dynamics
associated with landmark stimuli, the broader mean spectral
power changes in time domain were found in VGL group
dataset. This finding has the potential to unlock key insights
into the workings of spatial ability prediction. For example,
it may be possible that this link opens a door to aid the
early diagnosis of conditions such as Alzheimer’s disease
by quantifying impairments in brain dynamics on landmark
stimuli.
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