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Abstract— Motor-modality-based brain computer inter-
face (BCI) could promote the neural rehabilitation for stroke
patients. Temporal-spatial analysis was commonly used for
pattern recognition in this task. This paper introduced a
novel connectivity network analysis for EEG-based feature
selection. The network features of connectivity pattern not
only captured the spatial activities responding to motor
task, but also mined the interactive pattern among these
cerebral regions. Furthermore, the effective combination
between temporal-spatial analysis and network analysis
was evaluated for improving the performance of BCI clas-
sification (81.7%). And the results demonstrated that it
could raise the classificationaccuracies for most of patients
(6 of 7 patients). This proposed method was meaningful
for developing the effective BCI training program for stroke
rehabilitation.

Index Terms— BCI, connectivity network analysis, reha-
bilitation, stroke, temporal-spatial analysis.

I. INTRODUCTION

M ILLIONS of people worldwide suffered from stroke,
a chronic disorder characterized by the affections of
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limb movement [1], [2], [3], [4]. Various types of rehabilitation
interventions were applied for improving the life quality of
stroke patients [5], [6], [7]. Commonly, all patients performed
physical recovery for several months. In the training, some
assistive devices, such as robot arm, virtual reality technology
and sensor capture equipment, were designed to assist with
users at hospital [8], [9]. However, it remained unclear what
neurophysiological mechanism was facilitating the functional
rehabilitation.

Meanwhile, neuromodulation approaches were employed in
the recovery [10]. This technology could provide quantitative
indicators by translating sampled bio-signals into numeri-
cal values [11], [12]. In this field, Electroencephalogram
(EEG)-based BCIs were widely used for repairing upper
limb motor function [13], [14], [15]. The neural pathway
was reconstructed by this technology for stroke patients. And
visual/auditory feedbacks of BCI systems were designed for
arousing a sense of embodiment for patients [16]. It played
a positive role on facilitating the recovery training for the
paralyzed [17], [18].

Feedback performances of BCI were dependent
on feature selecting of electroencephalogram (EEG)
signal [19], [20]. The motor-modality BCI was commonly
decoded by spatiotemporal analysis. The experimental
performance was satisfactory for healthy subjects with
this method [21], [22]. Representatively, event-related
desynchronization/synchronization (ERD/ERS) pattern was
proposed for detecting the dynamics of brain oscillations in
the training [23]. This qualification indicator was used for
validating the effectiveness of BCI rehabilitation.

Moreover, some spatial filter algorithms were employed
to extract features of EEG signals. Among them, common
spatial pattern (CSP) was a popular method for classifying
2-class mental tasks with motor functions [24], [25]. Recently,
numerous studies focused on improving the effect of this
CSP method by feature selection in the spatial and spectral
domains [21], [26], [27], [28], [29], [30]. Jin et al. proposed
bispectrum analysis for eliminating noise and redundant infor-
mation from EEG signals [31]. This algorithm achieved the
better performance for motor imagery classification. Besides,
spectral features were also extracted for improving the per-
formance against these state-of-art methods in the multi-class
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tasks [32], [33]. Nevertheless, the feasibly of these algorithms
had not been verified for stroke patients.

Hence, CSP had been commonly applied to decode EEG
signals in the BCI-based rehabilitation [34], [35], [36]. In these
studies, classification accuracies were considered as a sup-
plementary indicator resulting from the poor performance
in the recognition. Furthermore, the deep learning methods
were performed for lifting the effect of BCI classifying [37],
[38], [39]. These mathematical approaches were helpful for
data analysis. However, the neurofeedback efforts were still
confusing owing to the unexplainability of neural networks.

In essence, the works mentioned above introduced the
difference of power-spectral distributions among multi-class
motor tasks. The neuroscience research showed that, the
cognitive state was also reflected by functional interactions
between various brain regions. The previous study verified
that the neural plasticity of the injured brain was related to the
connection activity of cerebral regions for stroke patients [17],
[40]. In another work conducted by Stem et al., the signifi-
cant quantitative difference of resting-state brain network was
investigated between Alzheimerś patients and the healthy [41].
The connection analysis of brain networks had been widely
used for clinical diagnosis [42], [43], [44], [45].

Compared with widespread applications of network analysis
for pattern recognition in other fields of bio-signal process,
this technology was used for classifying in the minority of
studies reported for motor-modality BCI. Ma et al. proposed a
channel-correlation network for feature extraction from motor
tasks of the same limb [46]. The result demonstrated that the
accuracy was higher than those of other common approaches.
As we know, none of researches proposed connection analysis
for BCI rehabilitation.

To address the challenges of feature selection for BCI reha-
bilitation, a novel approach combining connectivity network
pattern and temporal-spatial analysis was proposed for con-
structing BCI rehabilitation systems. Connection patterns were
calculated by three indices, phase-locking value (PLV), Pear-
son correlation coefficient (PCC), and transfer entropy (TE).
CSP features were used for extracting temporal-spatial fea-
tures. The fusing structure containing the above two algorithms
was established for improving the prediction performance.

II. MATERIALS

A. Subjects

Seven male stroke patients (25-75 years old) participated in
this experiments, who were recruited from the Department of
Rehabilitation Medicine of Huashan Hospital, Shanghai. None
of them had the experience of controlling motor-modality BCI.
All of them gave written consent and were informed about the
procedure in our study. The inclusion criteria were listed in
Table I.

B. Experimental Paradigm

In this study, BCI experiments contained 12 sessions. And it
was performed three sessions one week for each patient. One
session consisted of three runs. Each run had 30 trials for two

TABLE I
THE INCLUSION CRITERIA IN OUR STUDY

Fig. 1. The experimental procedure of two-class BCI tasks. The red
circle was used for indicating the motor task and the red rectangle was
used for indicating the resting task. After the red circle disappeared, the
subject was instructed to image rotating his/her wrist extension with affect
hand as far as possible while avoiding compensatory movements. In the
other task of resting, the subject did not do any thing for a rest.

motor tasks (motor attempt or resting state). The sequence of
two tasks was randomized.

In a trial, the patient sat in a comfortable chair, and a
computer display was placed at a 1-meter distance in front.
As shown in Fig. 1, a white arrow was presented for 3 seconds
firstly. Then, a red circle indicating the motor task or a
red rectangle indicating the resting state appeared for 1.5 s.
After the circle disappeared, the subject was instructed to
image rotating his/her wrist extension as far as possible while
avoiding compensatory movements (e.g., moving heads and
shoulders). Correspondingly, the subject was required to have
a rest when the rectangle cue disappeared in the screen. The
duration of the mental task lasted 5 seconds. At last, the
relaxing was performed for 1.5 s before the next trial began.
In this experiment, the task could be interpreted as the mental
work. During this period of resting task, the subject needed to
keep eyes open without any thought. The subject controlled
resting task with very light work load instead of normal resting
state because a pure resting state was not possible to achieve
in practice.

C. EEG Recording and Signal Preprocessing

The recording was made using a cap consisting of Ag/AgCl
electrodes (actiCAP, Brain Products, Germany). The 31 elec-
trodes were placed according to the 10C20 international stan-
dards on FP1, FZ, F3, F7, FT9, FC5, FC1, C3, T7, TP9, CP5,
CP1, PZ, P3, P7, O1, O2, P4, P8, TP10, CP6, CP2, CZ, C4,
T8, FT10, FC6, FC2, F4, F8, FP2. The reference electrode
was located in the right mastoid. Electrode impedances were
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kept below 5 k�, and the sampling rate was set to 200 Hz.
The fifth-order Butterworth band-pass filter of 5-30 Hz was
used for filtering out components unrelated to sensorimotor
rhythms.

III. METHOD

A. Temporal-Spatial Analysis for Motor Task
Classification

As mentioned above, CSP was always used as the common
approach for the comparison with proposed methods. It opti-
mized a set of spatial filters to maximize the variance of one
class j while minimizing the variance of the other class k.
The average spatial covariance matrix R could be computed
as

R j = 1

N j

N j∑
i=1

Ei, j Ei, j
T

tr(Ei, j Ei, j
T )

(1)

where N was the number of all trials and Ei, j denoted EEG
matrix of i -th trial in class j . And the problem could be solved
by

argmax
wT R j w

wT Rkw
(2)

where w was the generalized eigenvector. In our experiments,
the first and last 3 rows from spatial covariance matrix were
selected for further analysis.

Recently, it was verified that filter-bank CSP (FBCSP)
was very applicable for various motor-modality BCI recog-
nitions [34]. In particular, CSP features extracted from
power-distribution bands (5−8, 8−12, 12−16, 16−20, 20−
24, 24−28, 28−30 Hz) were investigated for spectral filtering
by FBCSP. Hence, these two approaches were selected for
evaluating classification performances as the benchmark.

B. Network Analysis for Motor Task Classification

In our method, three indicators (i.e., PCC, PLV, TE) com-
puted by inter-channel relevance, were measured for network
analysis. And these indicators had been widely used in neu-
roscientific works [47].

PCC indicator was calculated as a serial number ranging
from -1 to 1, which measured the linear relationship between
two signals. With the increase of the absolute value of PCC,
the relevance got high. And 0 indicated that these two signals
were uncorrelated. Let Xi = {

X1
i , X2

i , . . . , Xt
i

}
denoted an

EEG signal of the i th channel, where t was the time length of
one trial. Thus, PCC indicators between two signals X j and
Xk was computed as

PCC ( j, k) =
1
t

∑T
t=1(X j − μ j )(Xk − μk)

σ j σk
(3)

where μ and σ represented the mean and standard deviation
of the EEG signal, respectively.

PLV indicator was used for measuring the non-linear phase
synchronization [48]. Supposing the instantaneous phases of

two-channel signals X j and Xk being ϕt
j , ϕt

k , then the PLV
was defined as

P LV ( j, k) = 1

T

∣∣∣∣∣
T∑

t=1

ex p
{
ϕt

j − ϕt
k

}∣∣∣∣∣ (4)

where t was the time point and the phase value ranged
from 0 to 1.

TE [49] denoted the directed flow of information from an
origin signal X j to another target signal Xk :

T E ( j → k) = 1

T − 1

T −1∑
t=1

p
(

Xt
j , Xt

k, Xt+1
k

)
� (5)

Here,� was defined as

� = log
p

(
Xt+1

k |Xt
j , Xt

k

)

p
(

Xt+1
k |Xt

k

) (6)

Moreover, it described the gain obtained by the origin signal to
predict the target signal. The value 0 meant no causal relation-
ship between these two signals. The features of the connection
network were calculated for all pairs of EEG channels. Hence,
the number of obtained features was N(N − 1)/2 for undi-
rected connectivity (PCC or PLV) or N(N − 1) for directed
connectivity (TE). Here N was the number of electrodes.

C. Fusing Pattern for Motor Task Classification

The cognitive states involved neural activities of cerebral
regions and interactive influences between functional areas.
Therefore, the fusing pattern combining temporal-spatial fea-
tures and network features was proposed in our study. Firstly,
EEG data were computed by CSP and network analysis,
respectively. Then, the connection features (m × n samples)
were pooled as an one-dimensional vector (1 × mn samples).
Thus, we could combine CSP features (1 × r samples) and
connection features to integrate fusing features (1 × (mn + r)
samples) for model classification. The detailed procedure was
illustrated in Fig. 2.

D. Evaluation of Classification Performances

To solve the problem of inter-subject differences, the per-
sonalized classifier was used for training classification models.
Consequently, after collecting sufficient feature information,
a classical radial basis function kernel support vector machine
(RBF-SVM) with personalized settings, was used for eval-
uating performances of three methodologies. This classifier
was widely applied to find an optimal hyperplane with the
largest possible margin to separate two classes for BCI tasks.
In the phase of model training, the penalty factor and kernel
parameter played an important role in improving the correct
rate and classification efficiency of SVM. Hence, we decided
against a parameter estimation by grid search for model
optimization. To avoid overfitting, 3-fold cross validation was
used for validating the reliability of different algorithms.
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Fig. 2. Flowchart of fusing analysis. The raw data were processed by CSP method and connectivity network analysis. And these two-class features
were combined for SVM classification.

TABLE II
THE MEAN ACCURACIES OF BASELINE APPROACHES, NETWORK ANALYSIS APPROACHES AND FUSING APPROACHES FOR 7 SUBJECTS

IV. RESULTS

A. Experimental Performances for Each Patients

Table II reported the classification results of baseline
approaches and proposed algorithms for 12 sessions of each
patient. Furthermore, mean performances in terms of the
sensitivity (Se) and specifically (Sp) were calculated for
various algorithms (Table. III). The performances of network
analysis outperformed those of conventional temporal-spatial

analysis. And the statistical analysis assessed with a Wilcoxon
signed-rank test verified the priority of network analysis (PCC
with CSP: p < 0.05, PLV with CSP: p < 0.05, TE with CSP:
p < 0.05, PCC with FBCSP: p < 0.05, PLV with FBCSP:
p < 0.05, TE with FBCSP: p < 0.05).

Furthermore, fusing patterns were investigated to improve
the efficiency of classification tasks. FBCSP was not combined
with network pattern analysis because of its poor performances
in the temporal-spatial analysis. And the result implied that the
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TABLE III
ASSESSING THE MEAN ACCURACIES OF BCI REHABILITATION BY ALL PROPOSED ALGORITHMS

Fig. 3. The comparison of mean accuracies for all subjects among these algorithms.

accuracies of fusing patterns were higher than those of network
analysis for most of the subjects (6 of 7). However, we did
not observe the statistical significance between the representa-
tive algorithm, which achieved the highest accuracies among
fusing patterns for all subjects ( p > 0.05).

All patients had participated in FuglĺCMeyer Assessment of
Upper Extremity (FMA-UE) at the beginning of BCI training
(Table IV). It was considered one of the most gold standards in
the field of stroke rehabilitation. And this criteria was clinically
well-established for evaluating the impairment degree of stroke
patients. Obviously, Sub. 1, Sub. 3 and Sub. 4 performed better
performances in the evaluation (FMA-UE score > 30). And
we found that the accuracies of BCI tasks for these 3 patients
were higher than those for other subjects for all approaches.
It was confirmed that the subjects who had higher FMA-UE
scores performed better performances in this task. The results
implied that the level of motor impairment affected the efforts
of neurophysiological rehabilitation.

B. Performance Comparison of These Algorithms

In this experiment, the mean accuracies of the comparison
among these algorithms were listed in Fig. 3. It was suggested
that classification effects of fusing analysis were better than
those of temporal-spatial analysis for all patients. Moreover,
the significant improvement of the combination between net-
work analysis and temporal-spatial analysis was not reflected
in this result. It was indicated that the connectivity of several

TABLE IV
FUGLĹCMEYER ASSESSMENT OF UPPER EXTREMITY (FMA-UE)

AT THE BEGINNING OF BCI TRAINING

brain regions was important for the rehabilitation of affected
brain tissue and cognitive activity.

Meanwhile, ROC curves and AUC scores of the proposed
algorithms were reported in Fig. 4. The observation implied
that fusing patterns (CSP and PLV, CSP and TE) achieved
the best performance compared to other approaches for all
subjects. This result demonstrated that fusing analysis was
more effective for pattern recognitions of IoT-enabled BCI
rehabilitation.

C. Time Consuming Analysis

For assessing the practical performances of BCI systems,
which were based on the proposed approaches, the training
time and testing time of various patterns were investigated in
Fig. 5. The result was evaluated with 3-fold cross validation
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Fig. 4. ROC curves with AUC scores for all algorithms. The features with higher ROC and AUC are deemed more salient.

Fig. 5. (a) The training time of SVM classifiers for temporal-spatial analysis, connectivity approaches and fusion algorithms. (b) The testing time of
SVM classifiers for temporal-spatial analysis, connectivity approaches and fusion algorithms.

using Python 3.8.5 on a PC with an i5-6500K 3.2GHz
CPU and 8GB of RAM. Commonly, BCI models should
be retrained for each session per subject. This process was
unavoidable for all BCI systems as a result of the limitation of
subject-dependent mechanism. In detail, the time consuming
of thirty trials on one subject was reported as the training
time of one session. Furthermore, the time consuming of
predicting motor classes on one subject was reported as the
testing time of one trial.

As shown in Fig. 5, the time consumption of the fusing
pattern combining CSP and TE was the longest one. However,
we think about 107 s training time and nearly 3.44 s testing
time per trial were both in an acceptable range for BCI rehabil-
itation. Moreover, standard physical recovery would last 20-30
minutes and spent about 5 minutes doing some preparatory
work. Considering the requirement of classification accuracy,
the above pattern was the optimal choice. For the requirement
of quick setup, real-time performances, and relatively loose
classification precision, the fusing pattern combining CSP and
PLV was another excellent choice.

It was worth noting that performing TE method was more
time consuming than performing PCC and PLV methods.
It was due to TE method performed the discretization process
to reconstruct the conditional probability during the pre-
processing. Finally the entropy value was calculated based on
the conditional probability, which produced a great increase
in computational cost. In terms of the programming calcu-
lation, the time complexity of PCC and PLV methods were
O(nmlogm), while the time complexity of TE method was
O(nmxlogm). Here, n was the number of trials, m was the
number of leads, and x was the length of data in a trial. Hence,
the time consuming difference between TE method and other
approaches depended on the value of x . In this experiment,
the value of x was 1250.

V. DISCUSSION

A. Comparison With State-of-Art Algorithms

In this paper, a network analysis was firstly proposed for
BCI rehabilitation. Experimental performances had verified



2270 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 6. The classification performance across several state-of-art classifiers. The asterisk denotes p < 0.05 for paired t test.

the effectiveness of network analysis and fusing patterns.
The novel fusing features combining connectivity patterns
and temporal-spatial patterns were not ever used in the
rehabilitation of BCI systems [50]. However, the network
analysis was performed for healthy subjects in the task of
motor imagery (MI) -based BCI [46], [51], [52], [53], [54].
There was little difference between the performances of our
work (69%-95%) and those of the above studies (73%-98%).
It was implied that our approach was feasible for effective
BCI communication with an accuracy threshold of 70% [55].
Whereas the temporal-spatial analysis was ineffective for BCI
tasks conducted by several patients.

Meanwhile, we compared classification performance across
several state-of-art classifiers (i.e., linear discriminating analy-
sis (LDA), random forest (RF), xgboost (XGB), convolutional
neural network (CNN)). The results validated that the total
accuracies of network connectivity analysis were higher than
those of other state-of-art approaches (Fig. 6). It was con-
sistent with above conclusion. And the classification effects
were close in all models, while classification accuracies of
CNN were slightly worse. It was implied that the classification
performance was dependent on feature selection for BCI
rehabilitation. These findings supported the validity of our
proposed methods.

Evidently, several studies of motor-modality BCI reported
time consumptions of modeling computation (Table V).
We could observe that the training time and testing time of our
approach were the second least among those of all state-of-art
algorithms. In our approach, we used 31 electrodes for data
collecting. And Belwifi et al. proposed a classification model
with two-channel (i.e., C3 and C4) inputs to take the least
time consumption (i.e. 0.399 s) in a recognition. In essence,
the decoding time of BCI model could be reduced by limiting
the number of electrodes. However, the time consumption of
experimental preparing and cognitive task were greatly longer
than that of model classifying. Hence, the significant increase
of decoding time (about 4 s) was affordable for BCI rehabili-
tation. Moreover, our computational resources were low-price
and it was affordable for all users. This verified that our
approach was high performance-price for BCI-enabled health-
care systems. Furthermore, we compared the qualities of our
models with these baseline models in Table V. It could be seen
that our models were the most lightweight among them. It was
useful for BCI-enabled devices with limited storage resources.

TABLE V
THE COMPARISON OF TIME CONSUMPTIONS BETWEEN OUR

APPROACH AND PREVIOUS STUDIES

B. Neurophysiological Assessment for BCI Tasks

Previous studies reported that volume conduction effect
could affect the connectivity estimates tricked by false neu-
ronal interaction from the same underlying source at the
two channels [48], [58]. Hence, we used the Mann-Whitney
test, one of nonparametric permutation tests, to alleviate the
adverse effects of volume conduction. The results were listed
in Table VI. We found that significant differences between
FBCSP and connectivity approaches were obtained for most
of the subjects (6 of 7 patients). Moreover, higher signifi-
cance results between CSP and connectivity approaches were
obtained for 3 subjects. The results were inconsistent with the
previous parametric test for several participants. However, the
connectivity features of TE were still reliable as a result of its
model-free type of directed measurement.

Typically, features contribution had been evaluated by fisher
score algorithm for best-performing and worst-performing
patients (i.e., Sub. 4 and Sub. 6). And the top scores of
50 features were ranked in descending order (Fig. 7). The
results implied that connection features (i.e. PCC, PLV or
TE) played a more prominent role in BCI recognitions for
the best-performing patient (Sub. 4). On the other hand,
we could see that opposite phenomena took place for the
worst-performing patient (Sub. 6). It was presumed that
ranking differences might be induced by neurophysiological
function. To some extent, the functional connectivity was con-
structed by neural rehabilitation for best-performing patients.
Nevertheless, the performance of BCI control was inefficient
(< 70%) compared with the criterion level for the worst-
performing patient. It was probably due to the control loss
of neural modulation in this task. As a result, connectivity
features digitized by network connection could be effectively
characterized for neural activities evoked by limb movement.
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Fig. 7. The features contributes evaluated by fisher score algorithm for best-performing and worst-performing patients (i.e., Sub. 4 and Sub. 6). And
the top scores of 50 features were ranked in descending order.
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TABLE VI
THE RESULTS OF MANN-WHITNEY TEST BETWEEN BASELINE APPROACHES AND NETWORK ANALYSIS APPROACHES FOR 7 SUBJECTS

Fig. 8. Temporal features of spectral powers under conditions of motor
and resting tasks for Sub.2.

Relating these changes to post-stroke neuropsychological vari-
ables and motor abilities would improve understanding of
functional plasticity after stroke. However, fisher scores of
all features were evenly distributed for these subjects. It was
indicated that CSP and connectivity features were reliable and
effective for pattern recognitions in the experiments. Hence,
the combination of CSP and TE could be considered as the first
option for BCI rehabilitation according to the above findings
of neurophysiological reliability.

C. Comparison of Feature Distribution

In previous studies, CSP and FBCSP features were com-
monly applied for motor-modality BCI tasks [59]. Neverthe-
less, they performed poorly in our experiments for decod-
ing bio-signals of motor attempts. This might be due to
brain damage corresponding to limbs control. The typical
temporal-spatial features of spectral powers had been illus-
trated in Fig. 8 and Fig. 9. Specifically, the ERD/ERS pattern
had been observed in the alpha and beta bands. Therefore,
CSP-based spatial filtering analysis was ineffective in discrim-
inating motor-modality task and resting state.

The network linkages of Sub.2 were illustrated in Fig. 10.
We observed that the network connectivity of motor tasks
was denser than that of the resting task for 3 methods. The
comparison of network patterns indicated that connectivity
pattern was feasible for detecting the difference between these
two cognitive activities.

Moreover, the network linkage of the TE indicator implied
that the directions of the resting task were towards the

Fig. 9. Scalp spatial powers distributions between 0.1 Hz and 40 Hz at
4 time points under conditions of motor and resting tasks for Sub.3.

Fig. 10. The network linkages constructed by PCC, PLV, and TE methods
under conditions of motor and resting tasks for Sub. 5. The straight
lines depict undirected connections, and the arrow lines depict directional
connections.

unilateral hemisphere. And the directions of motor tasks were
disordered displayed in the network topology. The difference
between two tasks was helpful for classifying these tasks.
Compared with other undirected connectivity patterns, the
feature of direction played a more effective role in improving
the performances of classification tasks.

Besides, we reported the quantitative connectivity matrix
computed by PCC under conditions of motor and resting
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Fig. 11. The quantitative connectivity matrix computed by PCC method under conditions of motor and resting tasks for Sub.3.

tasks. (Fig. 11). It was associated with the above investigation
of network analysis. The connectivity strength of motor tasks
was higher than that of resting task at the motor cortex. It was
implied that neural connectivity should be involved to provide
related training programs in the recovery.

D. Limitation of Our Works

The possible limitation of the current study would be that
we did not give a method of optimal selection for connectivity
indicators (e.g., PCC, PLV and TE). In future work, we will
perform BCI experiments conducted by enough patients to
evaluate the effectiveness of these connectivity patterns and
provide the alternative network features for motor-modality
-based BCI classifications. Moreover, none of female stroke
patients were recruited owing to personal willingness. How-
ever, it was reported that a significant interaction between
experimenters and participantsǵender was found on the evolu-
tion of movement-related BCI [60]. Therefore, we will try
to evaluate the BCI performances for female patients by
their voluntary recruitment in future. The interaction between
genders will be discussed to further benefit from it while
preventing any bias.

VI. CONCLUSION

Motor-modality -based BCI can promote neural rehabilita-
tion for stroke patients. This paper introduced a novel approach
combining connectivity network pattern and temporal-spatial
analysis is proposed for BCI-enabled rehabilitation. Effective-
ness was evaluated by real-world experiments for improv-
ing the performance of BCI classification. Furthermore, the
results demonstrated that our approach outperforms several
competitive state-of-the-art baselines. This proposed method is
practical for stroke patients via by BCI rehabilitation, which is
demonstrated by statistical analysis of time consumption and
performance comparison.
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