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Abstract— Replicating natural postures of human arms
is essential to generate human-like behaviors in robotic
applicationsfor humans nearby.However, how to realize this
requirement in interactive scenarios remains a challenge
due to the kinematic redundancy and unknown postural
control strategy of human arms. Inspired by the physio-
logical characteristics that the musculoskeletal system is
coordinated to minimize muscle effort in human behaviors,
this paper aims to address the issue by solving a muscle
effort minimization problem. It adopts a high-fidelity human
arm musculoskeletal model (HAMM) and considers the
implicit constraint (desired hand pose) and the inequality
constraints (range of joint motion). The constrained mini-
mization is in general nonconvex, consequently sensitive
to initial guesses in iterative procedures. So, it is impracti-
cable to solve it directly with existing gradient-based deter-
ministic approaches or standard evolutionary algorithms.
As the main contribution, a hybrid inverse kinematics algo-
rithm was proposed for the HAMM with 7 independent and
13 mimic joints to obtain the feasible arm postures satis-
fying the minimization constraints. Using the arm swivel
angle that parametrizes the kinematic redundancy of the
HAMM, geometrically equidistant initial guess candidates
can be generated over the 1-dimension feasible posture
manifold. As another contribution, we present a two-phase
global minimization algorithm to handle the nonconvexity of
the constrained minimization. It consists of a local-search
phase on the null-space of the geometric Jacobian matrix
and a global-search phase with an initial guess resampling
strategy. The proposed approach was validated by replicat-
ing the natural arm postures of 5 right-handed subjects in
daily tasks.

Index Terms— Natural human arm posture, kinematic
redundancy, musculoskeletal model, muscle effort, inverse
kinematics.
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I. INTRODUCTION

AS HUMAN-ROBOT collaboration gets closer and
closer, robots must be human-aware [1]. Therefore,

human-like motion capability is an essential requirement in
robot applications for humans nearby due to social (e.g., robot
likeability) and safety reasons (e.g., safety in human-robot
interactions) [2]. This is helpful for humans to interpret and
predict the motions of robots. Till now, significant progress has
been made in mechatronic designs to implement human-like
structures for robotic am-hand systems [3], [4], [5]. However,
it remains a challenge to generate human-like behaviors for
a human-like robotic arm-hand in case an accurate human
demonstration is expensive or unavailable. In such case natural
human arm postures have to be replicated autonomously.
This challenge mainly results from the redundant degrees of
freedom (DoFs) and unknown postural control strategy of
human arms [6].

Recently, massive attention has been attracted to replicate
natural human arm postures via building kinematic redundancy
resolution criteria. Existing approaches mainly fall into two
categories: model-based methods [7], [8], [9], [10], [11],
[12], [13], [14] and data-driven methods [15], [16], [17],
[18], [19], [20], [21]. For model-based methods, plausible
kinematic redundancy resolution criteria are derived from the
state variables of a simplified 7-DoF human arm model. Then,
these criteria are optimized to replicate natural human arm
postures. The involved variables usually include positions,
velocities, accelerations, torques, lumped muscle forces and
energy. While data-driven methods aim at building the regres-
sion relationship among certain posture-related parameters
extracted from the tracked data of human arm motions. Then,
the built relationship can be used to resolve the kinematic
redundancy of human arms in a human-like fashion. Both
the two categories of methods were reported to replicate
natural human arm postures agreeing with their experimental
data. However, on one hand, there is significant inconsistency
between the simplified 7-DoF kinematic models and the state-
of-the-art muscle-actuated model of human arms published
in [22]. On the other hand, the empirical assumptions may lead
the kinematic redundancy resolution criteria (e.g. fundamental
functions or neural networks) not able to capture the actual
physiological characteristics of natural human arm postures.
As a result, existing kinematic redundancy resolution criteria

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0949-7001
https://orcid.org/0000-0002-2273-1934
https://orcid.org/0000-0003-2326-0289


2342 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 1. The flowchart of the muscle-effort-minimization-inspired kinematic redundancy resolution for replicating natural human arm postures.

may result in objective functions mismatching the hypothesis
set for fitting natural arm postures. Since a mismatched
hypothesis set for learning will increase the generalization
error bound [23], existing kinematic redundancy resolution
criteria may suffer from limited generalization ability in repli-
cating natural human arm postures across tasks.

In interactive scenarios, humans usually choose a preferred
arm posture from an infinite number of possibilities to reach
a hand pose compatible for the target object to be manip-
ulated [12]. The economic choice in humans can be under-
stood as a weighing of benefits (e.g., reward) against costs
(e.g., effort, delay, risk), which leads to a preference for
the behavioral option with the highest expected utility [24].
Moreover, recent studies have provided support for the hypoth-
esis that the human brain shapes motor patterns to minimize
muscle effort against external load [25]. Besides the two
categories of methods mentioned above, recent studies also
showed the biological potential to replicate natural human arm
postures. Figueredo et al. [26] argued that muscular-informed
metrics could allow for a better evaluation and a more general
kinematic redundancy resolution criterion applicable across
tasks. Demircan et al. [27] showed the practicality of a biology
measure that encodes information about the musculoskeletal
system of human arms. In [28] and [29], a natural human arm
posture is considered to be the result of minimizing an index
of muscular effort. However, Lamperti et al. [28] adopted
a simplified 7-DoF arm model to estimate muscle efforts,
which may contribute to a degraded estimation accuracy.
And Demircan et al. [29] pays little attention to replicating
natural human arm postures with desired hand poses, which
is indispensable for a robot to mimic the way of humans to
accurately perform a task in interactive scenarios.

To effectively replicate natural human arm postures across
interactive tasks, a constrained muscular effort minimization
problem is formulated to resolve the kinematic redundancy
of human arms in this work. It is based on a high-fidelity
human arm musculoskeletal model (HAMM) and considers
the implicit constraint (desired hand pose) and the inequality
constraints (range of joint motion). The adopted high-fidelity
HAMM is modified from Saul et al. [30] as described by
McFarland et al. [31]. It includes an updated range of motion

at the shoulder, ligaments models representing the gleno-
humeral and coracohumeral ligaments, and an updated muscle
model [32] with force-length and tendon curves. Differing
from a 7-DoF simplified arm model, the high-fidelity HAMM
has 7 independent joints and 13 mimic joints with 50 muscle
compartments crossing these joints. And it is the state-of-the-
art model of the human arm musculoskeletal system. A mimic
joint here is a joint whose coordinate value depends on
the coordinates of other independent joints in the kinematic
structure. This high-fidelity musculoskeletal structure may
contribute to a high accuracy for muscle effort estimation.
However, it also means that one has to handle the complicated
inverse kinematics (IK) of the simultaneously redundant and
underactuated kinematic chain.

With the high-fidelity HAMM, the desired hand pose can
impose highly complicated constraints upon the addressed
minimization. And the formulated constrained minimization
can be in general nonconvex, consequently sensitive to initial
guesses in iterative procedures. So, it is impracticable to
solve it directly with existing gradient-based deterministic
approaches or standard evolutionary algorithms. To address it,
two specified numerical algorithms, the hybrid IK algorithm
and the two-phase global optimization algorithm, are devel-
oped to find the global minimum effectively. The idea of this
study is depicted in Figure 1. The main contribution of this
work lies in the following aspects:

1) A muscle-effort-minimization-inspired approach was
proposed to resolve the kinematic redundancy of human
arms for replicating natural human arm postures given
a desired hand pose. With a high-fidelity HAMM, the
natural human arm posture was determined via mini-
mizing the muscle effort defined by the total squared
activations of the involved muscles. The minimization
considered the implicit constraint (desired hand pose)
and the inequality constraints (range of joint motion).

2) An efficient hybrid IK algorithm was proposed to cal-
culate the feasible IK solutions for the simultaneously
redundant and underactuated high-fidelity HAMM.
Given an arm swivel angle, feasible arm postures for a
desired hand pose can be determined through numerical
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iterations with initial guesses deduced from the analyti-
cal IK solutions of a specific 7-DoF kinematic model.

3) A two-phase optimization algorithm was proposed to
solve the nonconvex muscle-effort-minimization prob-
lem globally. Firstly, a local deterministic search was
performed on the null-space of the geometric Jacobian
matrix in each initial guess of arm posture to find poten-
tial local minimums. The initial guess candidates were
generated using the proposed hybrid IK algorithm to
achieve geometrical equidistance over the 1-dimension
manifold of feasible arm postures. Secondly, a global
search was performed to find the optimal solution of the
nonconvex problem, which was based on an initial guess
resampling strategy and the found local minimums.

This paper is organized in the following manner.
In Section II, the muscle-effort-minimization problem is
formulated. In Section III, synthetic analysis for solving the
nonconvex minimization problem is performed. In Section IV,
validation experiments and replication performance are
demonstrated. Discussion is in Section V. Finally, the con-
clusion is summarized in Section VI.

II. METHODOLOGY

To replicate natural human arm postures when given
a desired hand pose, we hereby address a constrained
muscle-effort-minimization problem based on the high-fidelity
HAMM. The general method consists of five parts, model
assumptions, muscle effort minimization formulation, kine-
matic redundancy parametrization, hybrid IK algorithm, and
two-phase global optimization algorithm.

A. Model Assumptions

For daily manipulation tasks, the voluntary human arm
movement to manipulate an object can be divided into three
stages, reaching, grasping, and manipulation [33]. Reaching
movements are usually involved with visual feedback and
motion speed, which contribute to a complex online neural
and motor control [34]. Natural human arm movements were
studied in our previous works [35]. In this work, our emphasis
is laid on the grasping and manipulation stages where very
low arm velocity and meticulous finger motions usually occur
without significantly changing the arm posture. Consequently,
the assumptions posed on the muscle effort minimization in
this work can be as follows:

1) The inertial forces caused by negligible motions of the
human arm and hand are ignored for the quasi-static arm
postures in grasping and manipulation stages.

2) Gravitational loads acting on human arm joints are only
caused by the gravity of the human arm and hand. The
gravity of the task-dependent object is not taken into the
minimization.

3) As reported by [36], moving and holding may be con-
trolled by separate neural structures for skilled behav-
iors. In grasping and manipulation stages lasting a
period of time, the natural human arm postures are only
dependent on kinematic constraints and the gravitational
loads. They don’t depend on the motion that moved the
upper limb to the current posture or the motion that will
move the upper limb to next posture.

B. Muscle Effort Minimization Formulation

With the high-fidelity HAMM and a specific hand pose,
the kinematic and dynamic equations of the HAMM can be
expressed as

τ = A (q) q̈ + b (q, q̇)+ g (q)

Te = f e (q)

q ≤ qU

q ≥ qL

q /∈ ℵ(q) (1)

where q ∈ R
20×1 is the vector of generalized coordinates for

the arm joints. A (q) ∈ R
20×20 is the mass matrix. b (q, q̇) ∈

R
20×1 is the vector of centrifugal and Coriolis terms. g (q) ∈

R
20×1 is the vector of gravity terms. τ ∈ R

20×1 is the vector
of the generalized control forces (joint torques). Te ∈ R

4×4 is
the pose matrix for the hand. qU ∈ R

20×1 is the upper limits
of the generalized joint coordinates. qL ∈ R

20×1 is the lower
limits. f e (·) : R

20×1 → R
4×4 is the continuous nonlinear

forward-kinematics mapping for the HAMM. And ℵ(q) is
the subject-specific arm configuration set where collisions
between the arm and thorax may occurs in actual experiments.
For conciseness we will often refrain from explicitly denoting
the functional dependence of the quantities on q and q̇.

Based on the calculated joint torques τ , the correspondence
muscle activations aopt can be calculated by solving the
following optimization [37]

aopt = arg min
a

50�
m=1

(am)
2

s.t. τ j =
50�

m=1

am f
�

F0
m , lm , vm

�
· rm, j cosαm ,

j = 1, . . . , 20 (2)

where a ∈ R
50×1 denotes the activation levels of the

50 involved muscles. am , the mth element of a, is the activation
level of the mth muscle. F0

m is its maximum isometric force.
lm is its length. vm is its shortening velocity. f

�
F0

m , lm , vm
�

is
its force-length-velocity surface. rm, j is its moment arm about
the j th joint axis. αm is its pennation angle of the muscle.
And τ j , the j th component of τ , is the joint torque acting
about the j th joint.

With the model assumptions, only the gravity of the arm
and hand is taken into the minimization. And a natural human
arm posture is considered to be the result of minimizing the
index of the muscular effort among all the possibilities [25],
[28], [29]. Therefore, the muscle-effort-minimization problem
is formulated as minimization (3) with the total sum of squared
muscle activations, where lm (q) and rm, j (q) are the posture-
dependent muscle length and moment arm about the j th joint
of the mth muscle, respectively. aopt

m is the mth element of
the aopt determined by minimization (2) with a certain q for
arm joint coordinates. And E (q) is the posture-dependent
muscle effort to be optimized. qopt is the optimal posture that
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Fig. 2. Definitions of the arm swivel angle. (A) the arm swivel angle
ψR used to parameterize the kinematic redundancy of common 7-DoF
robotic arms. (B) the arm swivel angle ψH used to parameterize the
kinematic redundancy of the HAMM. The shoulder joint center S0 in the
home posture outlined by red dash-line is used to define the ψH.

minimizes E (q).

qopt = arg min
q

E (q)

s.t. E(q) =
50�

m=1

�
aopt

m

�2

τ j =
50�

m=1

aopt
m f

�
F0

m , lm (q) , 0
�

· rm, j (q) cosαm ,

j = 1, . . . , 20

τ = g (q)

Te = f e (q)

q ≤ qU

q ≥ qL

q /∈ ℵ(q) (3)

C. Kinematic Redundancy Parametrization

Since the high-fidelity HAMM has an intractable kinematic
structure with 7 independent joints and 13 mimic joints, it is
impractical to handle its IK directly in the joint configuration
space. Fortunately, the high-fidelity HAMM shares a very
similar physical form, a shoulder-elbow-wrist structure, with
common 7-DoF robotic arms in spite of negligible posture-
dependent displacements in shoulder joint center. Conse-
quently, the kinematic redundancy of the HAMM can be
parameterized geometrically by the arm swivel angle widely
used in 7-DoF robotic arms.

As shown in Figure 2(A), the arm swivel angle ψR for
common 7-DoF robotic arms is defined as the angle between
the green arm plane πarm and the blue reference plane π ref.
The π arm is spanned by the shoulder S, elbow E, and wrist W.
And the π ref is spanned by the shoulder S, wrist W and gravity
vector ngravity. Mathematically, ψR can be given by

ψR = sgn
�
(lSW × lSE) · ngravity

�
· acos

�
(lSW × lSE) · �lSW × ngravity

�
�lSW × lSE� · ��lSW × ngravity

��
	

(4)

where S, E, W and ngravity are vectors in R
3×1 represented in

the base frame B of a 7-DoF robotic arm. sgn (·) is the sign
function and � · � is the L2-Norm function. lSW and lSE are
vectors in R

3×1 from S to W and E, respectively.
As shown in Figure 2(B), S0 and S are the shoulder joint

center in the home posture and in a specific arm posture,
respectively. In this study, the arm swivel angle ψH for the
HAMM is defined using the S0 instead of S. It can achieve
the consistency with the ψR for common 7-DoF robotic arms
and the geometric computation efficiency on the 1-dimension
manifold of feasible arm postures. And ψH can be given by

ψH = sgn
��

lS0W × lS0E
� · ngravity

�
· acos

� �
lS0W × lS0E

� · �
lS0W × ngravity

���lS0W × lS0E
�� · ��lS0W × ngravity

��
	

(5)

where S0, E and W are vectors in R
3×1 represented in the

base frame B of the HAMM. lS0W and lS0E are vectors in
R

3×1 from S0 to W and E, respectively.
With the defined ψH for parametrizing the kinematic redun-

dancy of the HAMM geometrically, different feasible arm
postures for a desired hand pose can be compared using
the arm swivel angle approximately but efficiently. Also,
interpolations for the feasible postures of the HAMM can
be performed in a joint-coordinate-invariant geometric manner
(interpolation in the range of the arm swivel angle) in spite
of the negligible motion of the shoulder S. As a result, the
original complicatedly constrained nonconvex minimization
(3) can be transformed into a nonconvex minimization with
a bounded constraint over the arm swivel angle. It can be
given by

qopt = arg min
q

E (q)

s.t. ψL ≤ ψH(q) ≤ ψU, q ∈ ℘ (3.1)

where ℘ is the 1-dimension manifold of feasible arm postures
satisfying the desired hand pose and ranges of joint motion.
ψL and ψU are the lower and upper limit of ψH, respectively.

D. Hybrid IK Algorithm

With ψH for the kinematic redundancy parametrization,
the addressed minimization can be transformed from mini-
mization (3) to minimization (3.1). Beneficially, this transfor-
mation simplifies the complicated constraints into a simple
1-dimensional search space over the arm swivel angle ψH.
To get the global solution of minimization (3.1), the
1-dimension feasible posture manifold ℘ need to be calculated
with regards to feasible range of ψH. Therefore, an efficient
IK procedure is needed to compute the joint coordinates q
for an arm posture when given an arm swivel angle ψH and
a hand pose. This IK procedure need help to obtain enough
geometrically equidistant initial guess candidates over ℘. And
then, the global minimum may be reached from at least one
of the candidates probably.

However, the IK calculation can be a daunting computa-
tional exercise when it comes to the simultaneously redundant
and underactuated high-fidelity HAMM [38]. To address it,
a hybrid IK algorithm is developed by combining an analytical
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TABLE I
LINK PARAMETERS OF THE SPECIFIC 7-DOF KINEMATIC MODEL

IK procedure for a specific 7-DoF kinematic model and a
numerical IK procedure based on the geometric Jacobian
matrix for the high-fidelity HAMM. Derived from the high-
fidelity HAMM, the specific 7-DoF kinematic model has a
similar shoulder-elbow-wrist structure and equivalent lengths
of the upper arm and forearm. Its initial parameters are given
in Table I. Also, the kinematic redundancy for the specific
7-DoF kinematic model is parametrized with the arm swivel
angle ψS.

Given a hand pose Te and an arm swivel angle ψS, the
IK solution qs ∈ R

7×1 for the specific 7-DoF kinematic
model can be calculated analytically in position domain [39].
Benefiting from the similarity in kinematic structure, qs can
be transformed to initial guess qinit ∈ R

20×1 for the numerical
IK procedure for the high-fidelity HAMM. The rule for
transforming qs to qind

init ∈ R
7×1, the initial guess of the

independent coordinates for the high-fidelity HAMM, is given
by

qind
init = Kqs (6)

where K is a sparse matrix given by

K =

⎡
⎢⎢⎣

1
1

1 1
I4×4

⎤
⎥⎥⎦

And the qinit can be given by

qinit = Wqind
init (7)

where W ∈ R
20×7 is the weight matrix that transforms the

independent coordinates of the HAMM qind ∈ R
7×1 to its

generalized coordinates q ∈ R
20×1. With the obtained qinit, the

well-known numerical technique Levenberg–Marquardt (LM)
is used with the geometric Jacobian matrix to calculate the
accurate IK solution qrefined ∈ R

20×1 that belongs to ℘.

E. Two-Phase Global Optimization Algorithm

Since the hand pose is involved with the forward- kinematic
of the high-fidelity HAMM, the formulated muscle effort
minimization (3) is in general nonconvex and possesses local
minimums. The number and properties of the local minimums

are strongly influenced by the desired hand pose Te. As a
result, it is impracticable to solve the constrained noncon-
vex muscle-effort-minimization problem directly with existing
gradient-based deterministic approaches or standard evolution-
ary algorithms. Hereby, a two-phase algorithm is developed in
this work, which consists of a local-search phase and a global-
search phase. As mentioned before, the ℘ of the high-fidelity
HAMM is parametrized by the arm swivel angle ψH when
given a desired hand pose Te. It is also called null-space
or self-motion manifold [40]. Therefore, using the proposed
hybrid IK algorithm, the ℘ can be sampled over the admissible
range of ψH to generate geometrically quasi equidistant initial
guess candidates for the two-phase search.

In the local-search phase, minimization (3.1) is addressed
locally with an iterative procedure. For each arm joint config-
uration q in the initial guess candidates, the local search step d
is given by

d =
�
ρn if (E (q + ρn)− E (q)) < 0

−ρn if (E (q − ρn)− E (q)) < 0

n = Wδqind��Wδqind
��

δqind ∈ N (Jv (q)W) (8)

where qind ∈ R
7×1 is the independent coordinates of the high-

fidelity HAMM. δqind ∈ R
7×1 is the step direction in the

null-space. Jv (q) ∈ R
6×20 is the so-called geometric Jacobian

matrix. N (·) is the null-space of a matrix. And the step size
ρ is a positive and adaptable variable which is set to decrease
the muscle effort E (q). In addition, we assume that q is not
a singular joint configuration. Hence Jv (q)W ∈ R

6×7 is full
row rank and N (Jv (q)W) is a vector space of 1 dimension.
The stopping criterion for the local search is given by

ρ < κ (9)

where κ is a specific constant.
In the global-search phase, the “best” local minimum among

the earlier found local minimums is selected as the global
minimum. However, whether the found local minimums cover
the global minimum is strongly dependent on the number
of the generated geometrically quasi equidistant initial guess
candidates in the ℘. Therefore, resampling with a higher
density in the ℘ is performed to repeat the local-search phase
till the stopping rule for the global search is met. The possible
stopping rules for the global search are as follows [41].

1) The posterior expectation of the number of local minima

ω(M − 1)

M − ω − 2
< ω + ε (10)

2) The posterior expected relative size of the non-observed
regions of attraction

ω (ω + 1)

M (M − 1)
< δ (11)

where ω is the number of different local minimums
discovered. M is the number of initial guess candidates
applied in the local-search phase. ε and δ are the specific
stopping criteria.
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Fig. 3. Motion of the glenohumeral joint center S with regards to the
shoulder elevation angle ranging from 0 to 180 degrees. (A) the blue
arrowed curve denotes the motion of human glenohumeral joint cen-
ter S. The green and red dashed arrowed curve denote the projections
onto the back plane and bottom plane, respectively. (B) The axis-wise
displacement of S − S0 with regards to the shoulder elevation angle.

III. SYNTHETIC ANALYSIS

In this section, synthetic analysis is performed to evaluate
the performance of the kinematic redundancy parametrization,
the hybrid IK algorithm and the two-phase global optimiza-
tion algorithm. With the high-fidelity HAMM, results of the
numerical analysis are demonstrated.

A. Arm Swivel Angle Modeling Disagreement

In the high-fidelity HAMM, the glenohumeral joint cen-
ter S shifts according to the motions of the clavicle and the
scapula relative to the body base frame. And the motion of
S only depends on the shoulder elevation angle represented
by q ind

2 (ranging from 0 to 180 degrees) in the HAMM as
shown in Figure 3(A). While in common 7-DoF robotic arms
with a spherical-revolute-spherical structure, the shoulder joint
center keeps fixed in their base frame. As described in the
section Kinematic Redundancy Parametrization, the ψH for the
HAMM is defined using the shoulder S0 in its home posture in
this study. And the axis-wise displacement (S - S0) is shown
in Figure 3(B).

From the synthesized analysis results shown in Figure 3,
the displacement of the glenohumeral joint center S relative
to the reference S0 increases with the shoulder elevation
angle. When the shoulder elevation angle reaches its upper
limit 180 degrees, the largest displacement occurs (−6.8cm,
5.7 cm and 5.7cm in x, y and z direction, respectively). This
shoulder-elevation-angle-dependent displacement can lead to a
disagreement in the arm swivel angle modeling. And a larger
shoulder elevation angle implies a more considerable modeling
disagreement.

To quantitively evaluate the arm swivel angle modeling
disagreement, the actual human arm swivel angle ψ∗

H is
derived with S, E, W and ngravity as shown in Figure 2(B). It is
similar to the definition of ψH. So, the modeling disagreement
with regards to the shoulder elevation angle can be obtained
over the feasible arm posture manifold of a certain hand
pose. Without loss of generality, the hand pose compatible
for holding a vertical cup in front of the human is chosen to
evaluate the arm swivel angle modeling disagreement, which
has a relatively wide range of self-motion. The modeled and

Fig. 4. Arm swivel angle for the feasible arm postures given a certain
hand pose. (A) the modeled arm swivel angle ψH and actual arm swivel
angleψ∗

H with regards to the shoulder elevation angle. (B) the arm swivel
angle modeling disagreement.

actual arm swivel angle with regards to the shoulder elevation
angle is shown in Figure 4(A). And the disagreement over ψH
and ψ∗

H is depicted in Figure 4(B).
With the synthesis analysis, the modeling disagreement of

the arm swivel angle,
��ψH − ψ∗

H

��, is 2.16±1.02 degrees for the
hand pose with a self-motion range of 74.3 degrees. The cor-
respondence elbow position disagreement in the high-fidelity
HAMM caused by this modeling disagreement can be given
by

δE = �
ψH − ψ∗

H

� · (lSE × lSW)

�lSW� (12)

where S, E and W are vectors in R
3×1 represented in the

base frame B of the high-fidelity HAMM. And δE is the
elbow position disagreement with the two arm swivel angles
ψH and ψ∗

H. With an average upper arm length of 29cm (lSE)
[30], the maximum magnitude of the δE is 0.77cm with a
common forearm and upper arm angle of 90 degrees. It is
at a negligible scale compared to the self-motion scale of
more than 26cm. Also, compared with the reported arm swivel
angle prediction error of 5 degrees [12], the arm swivel angle
modeling disagreement is acceptable to some extent.

B. Posture Uncertainty in the Hybrid IK Algorithm

Due to kinematic redundancy in the high-fidelity HAMM,
there are infinite optional LM step vector for computing
the qrefined in the numerical part of the proposed hybrid IK
algorithm without an additional constraint. However, a general
constraint will somewhat pose posture uncertainty (arm swivel
angle variation) in approaching the desired hand pose Te.
It means generating IK solutions for the HAMM which are not
equidistant over the 1-dimension manifold of feasible arm pos-
tures. Since the qinit is already close to an accurate IK solution
and the elevation of the elbow depends only on the shoulder
elevation angle, we choose to fix the generalized coordinates
related to independent coordinate q ind

2 and q ind
4 by turns in

LM iterations for a balance of efficiency and complexity. The
hybrid IK algorithm is summarized in Table II.

And the posture uncertainty is measured by

eψ = ψS − ψH (13)

To quantitively evaluate the posture uncertainty resulted
from the hybrid IK algorithm, a set of hand poses across the
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TABLE II
HYBRID IK ALGORITHM

reachability space are collected for the synthesis analysis. They
are compatible for holding a vertical cup with a relatively large
range of self-motion. And the synthesized posture uncertainty
is shown in Figure 5(A). The performance of the proposed
hybrid IK algorithm for the HAMM is evaluated by the posi-
tion and orientation errors between the desired hand pose Te
and the calculated hand poses with joint configurations of qinit
and qrefined. The position and orientation errors are shown in
Figure 5(B) and 5(C), respectively.

C. Convergence of the Two-Phase Global Optimization

With the generated geometrically quasi equidistant feasible
arm postures for minimization (3.1), the proposed two-phase
global optimization algorithm to find the global minimum is
summarized in Table III.

Due to the nonconvexity of the muscle-effort-minimization
problem in minimization (3.1), the convergence of the pro-
posed two-phase global optimization algorithm can be affected
by the configurations of the user-defined variable δψS , ρ, κ , ε
and δ. Specifically, smaller δψS , ρ, κ , ε and δ can improve the
convergence to the global optimal at the expense of heavier
computation load. Taking intrinsic variation of human arm
postures into consideration, δψS is assigned with 2 degree in
this study. Using the global stopping criterion (11), ρ, κ , ε and
δ are assigned with 0.05, 0.01, 0.1 and 0.1, respectively. In this
study, problem (1) and (2) with the HAMM are solved using
the open-source software OpenSim [42]. Given the hand pose

Fig. 5. Performance of the proposed hybrid IK algorithm for the high-
fidelity HAMM. (A) the posture uncertainty

�
ψS −ψH

�
across the daily

task space. (B) and (C) show position and orientation errors between the
desired hand pose Te and the hand poses with joint configurations of
q init and qrefined, respectively.

TABLE III
GLOBAL OPTIMIZATION ALGORITHM

as in the section Arm Swivel Angle Modeling Disagreement,
the convergence of E (q) with regard to feasible arm joint
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Fig. 6. Convergence of the proposed two-phase global optimization
algorithm in solving the nonconvex muscle effort minimization.

configuration q parametrized by ψH is shown in Figure 6. And
it implies that there are probably finite local minimums for
the nonconvex minimization (3.1). With enough geometrically
quasi equidistant initial guess candidates over the ℘, the global
minimum will probably be reached from at least one of the
candidates.

IV. VALIDATION EXPERIMENTS

Since the muscle-effort-minimization problem (3) considers
the joint limits and hand pose with minor modeling assump-
tions, the proposed approach to replicating natural human arm
postures has the potential to be applicable across daily task
space. In this section, validation experiments are conducted to
verify this potential.

A. Human Data Collection

To evaluate the performance of the proposed approach to
replicating natural postures of human arms, demonstration data
of human arms is collected in representative tasks. Without
loss of generality, we choose holding an imaginary vertical
cup at different positions within the reachability space of a
subject’s arm as the experimental tasks. And the basic idea
is to evaluate the disagreement over the subject’s natural
arm postures and the replicated natural human arm postures
with the scaled HAMM and the same hand poses. Since the
admissible range of arm swivel angles is strongly dependent
on hand poses, we choose experimental positions where the
scaled HAMM has a relatively large admissible range. It can
help to avoid the small misleading disagreements due to a
limited range of the arm swivel angle. Finally, 114 points
experimental locations are chosen, where the HAMM have an
admissible arm swivel angle range larger than 40 deg. These
locations are evenly distributed in the reachability space with
an interval of 5 cm along each axis of the scaled HAMM base
frame.

As shown in Figure 7, the 6-DoF robotic arm (Universal
Robots, Denmark) is programmed to move the imaginary
vertical cup, a vertical cylinder with locating slots for fingers,
to each of the experimental locations. At each experimental
trial, one right-handed subject is requested to slowly approach
the imaginary vertical cup and then surround it in a grasping
pattern for a period of time without interaction forces. When
the subject has adjusted his arm to the most comfortable and
effortless posture, the arm posture data is collected as a valid
sample for the following verification.

Fig. 7. The validation experiment setup.

In the experimental trials, human demonstration data
is collected using the motion capture system (Vicon
Motion Systems Ltd., U.K.). Two 6-dimension pose trackers
(VIVE, U.S.), the human pose tracker and robot pose tracker,
are used to compensate for the shift motion of the human
body relative to the robotic arm. This can help to make the
experimental trials at the expected locations. And the arm
posture data of five right-handed subjects are collected for
the following verification.

B. Performance Verification

The performance of the proposed approach is evaluated
by the difference between the natural and the replicated arm
swivel angles. By transforming the subjects’ demonstration
data into their body frame as shown in Figure 2(B), the
subject-dependent scaling factors and correspondence arm
joint coordinates are estimated via the scaling and IK mod-
ule in OpenSim [42]. Based on the estimated arm joint
configurations, the natural arm swivel angle at each of the
experimental locations is calculated with the subject-dependent
scaled HAMM. Correspondently, the replicated natural human
arm posture is obtained by solving the proposed muscle effort
minimization (3.1) with the subject-dependent scaled HAMM,
the same hand pose, and the subject-dependent joint limits.
And then the replicated natural arm postures are used to
calculate the replicated arm swivel angles.

Since the admissible range of the arm swivel angle is hand-
pose-dependent, we choose to use the absolute error of the
arm swivel angle instead of the relative one to evaluate the
performance of replicating natural human arm postures. It is
more sensitive and meaningful to humans. Consequently, the
performance is measured by the arm swivel angle replication
error δψ given by

δψ = 1

n

n�
i=1

���ψH−i − ψnatural
H−i

��� (14)

where n is the number of trials taken into the verifica-
tion. ψnatural

H−i is the natural human arm swivel angle in the
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Fig. 8. The mean arm swivel angle replication errors at each of
the 114 experimental locations of the five right-handed subjects. The
coordinates of experimental locations are represented in the body base
frame B defined in previous section. Black circles on the bottom plane
are the vertical projections of the 114 points for experimental trials.

i th experiment trial and ψH−i is the correspondence arm swivel
angle of the replicated natural human arm posture qopt. Both
ψnatural

H−i and ψH−i are defined according to the ψH in the
section Kinematic Redundancy Parametrization. A small value
of δψ indicates good replication.

In Figure 8, the averaged arm swivel angle replication errors
are depicted for each of the experimental locations across
all subjects. The results suggest that the proposed approach
for replicating natural human arm posture has the potential
to be applicable across the daily task space. Because the
arm swivel angle replication errors are acceptable at most
experimental locations. Meanwhile, replication errors can be
different among the experimental trails at different locations.
In this study, the task for verification is holding an imaginary
vertical cup at programmed positions. As shown in Figure 8,
a verification test can achieve a good replication performance
with a hand elevation similar to the right shoulder center.
When the experiment trial is far below the right shoulder
center, the wrist joints usually approach their joint limits and
the replication performance can be significantly worse. It is
probably due to the very limited ranges of motion in wrist
joints as well as the insufficient modeling of subject-specific
joint characteristics. As a result, the spatial distribution of the
replication performance can be dependent on both the hand
orientation and task position. And more accurate modeling
of subject-specific joint characteristics may allow for a better
replication performance across tasks with different hand poses.

Results in Figure 9 (A) and (B) show the statistics of
the replication of the arm swivel angle. And the averaged
replication error of arm swivel angle is 3.73±3.27 degree.,
compared with the reported arm swivel angle prediction error
of 5 degrees [12]. In Figure 9 (C), the coordinate-wise repli-
cation errors are shown. As the human arm and the HAMM
have a structure similar to spherical-revolute-spherical 7-DoF
robots, the coordinate Elbow flexion is mainly related with the
distance between the wrist and the shoulder given a desired
hand pose. As a result, its replication error is independent

Fig. 9. Replication errors of all the experimental trials of five subjects at
114 locations. (A) the disagreement over the natural human arm swivel
angle and the replicated arm swivel angle given the same hand pose.
(B) the histogram of the arm swivel angle replication errors across all
experimental trials. (C) coordinate-wise replication errors (mean and
standard deviation) of the 7 independent joints in HAMM.

from the kinematic redundancy resolution and can be very
small in most cases. Since replication error of the arm swivel
angle can significantly influence the position of the elbow,
coordinates like Elevation plane, Shoulder elevation, Shoulder
rotation, Forearm rotation, Wrist deviation and Wrist flexion
are much more vulnerable to poor replication.

The performance verification of the proposed algorithms
is conducted on a laptop computer (AMD R7 3750H and
8G RAM) with a system of Linux distribution (Ubuntu 18.04).
With a specific configuration of Te and ψS , the time cost of the
hybrid IK is 1.7±0.2 ms. And the time cost of the two-phase
global minimization algorithms is 794±89 seconds for a spe-
cific Te. And the C++ source codes for the proposed hybrid
IK and two-phase global minimization algorithms are available
in our repository (https://github.com/et0803/memikrr).

C. Performance Comparison

For performance comparison, studies that have explicitly
reported the arm swivel angle errors in replicating natural
human arm postures are revisited and summarized hereby.
As shown in Table IV, most existing studies try to repli-
cate natural human arm postures using a 7-DoF simplified
kinematic model similar to human arms along with certain
assumptions. However, the modeling assumptions inconsistent
with the actual muscle-actuated model of human arms may
lead to replication performance decay across tasks. As an
alternative, the proposed muscle-effort-minimization-inspired
approach can reach a comparable replication accuracy with the
high-fidelity HAMM and minor assumptions. Benefiting from
the modeling consistency and the biologically meaningful
kinematic redundancy criterion, the proposed method may
have better generalization ability in the reachability space of
human arms.
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TABLE IV
PERFORMANCE COMPARISON BY REPLICATION ERROR

V. DISCUSSION

For robotic arm-hand systems, a hot topic is to perform
manipulation tasks with human-like arm postures in an envi-
ronment with human nearby [1], [2]. Therefore, replicating
natural human arm postures autonomously is of significant
importance when an accurate human demonstration is expen-
sive or unavailable. Differing from the previous studies, this
work presented a novel muscle-effort-minimization-inspired
kinematic redundancy resolution for replicating natural human
arm postures given desired hand poses. In the proposed
method, benefits come at the expenses. Nevertheless, it may
still be a particularly promising alternative for replicating
natural human arm postures.

As for the benefits, a more convincing and biologically
meaningful criterion, the muscle effort minimization, was built
to resolve the kinematic redundancy of human arms. With
the evidence that the human brain shapes motor patterns
to minimize muscle effort against external load [25], the
muscle effort minimization may be a fundamental principle
for humans to make economic choices in daily behaviors [24].
As a result, the built criterion can allow for a better evaluation
and a better generalization ability across tasks [26]. Compared
with the existing studies, the adopted high-fidelity HAMM
[30] is state of the art and far more consistent with human
arms. It may produce less modeling and replication errors.
Also, the built criterion has the potential to contribute to
understanding the principles for natural human arm postures
in moving case, where both online neural and motor control
are involved [34].

As for the expenses, difficulties and relatively high computa-
tion load were induced by the high-fidelity HAMM in handling
the constrained minimization objective for precise muscle
effort estimation. Since the high-fidelity HAMM consists of
7 independent and 13 mimic joints [30], it is a daunting
computational exercise to obtain the feasible arm postures
and the “best” arm posture given a desired hand pose. While
the existing studies can replicate natural human arm postures
efficiently even analytically given a desired hand pose and a

7-DoF simplified kinematic model [11], [12], [14], [15]. Using
the built criterion or identified relationship, they can achieve
an acceptable replication accuracy and generalization ability.
Fortunately, the hybrid IK algorithm and the two-phase global
optimization algorithm proposed in this study can be used to
solve the constrained and nonconvex minimization problem
effectively and efficiently.

As for limitations, the proposed method for replicating
natural human arm postures is strongly dependent on the
accuracy of musculoskeletal system modeling of human arms.
Disagreements over the high-fidelity HAMM and the actual
muscle-actuated model of human arms may lead to significant
disagreements over the replicated natural postures and the real
human natural postures. Although the modeling assumptions
in this study is minor, improvement on replication perfor-
mance can be achieved if special further attention is paid
to eliminating them. Firstly, comparable inertial loads caused
by limited arm movements can challenge the first quasi-static
assumption. However, these inertial loads can be taken into
minimization (3) as shown in equation (1) to eliminate this
assumption if there is an accurate estimation of the velocity
and acceleration of the arm. Secondly, the gravity of the task-
dependent object can also be taken in to minimization (3) to
eliminate the second assumption if the weight of the object
is known in a manipulation task. This assumption was only
made for the verification experiments whose positions are
controlled by a robotic arm. The third assumption was made
for replicating the quasi-static arm postures in grasping and
manipulation lasting a period of time. As reported in [36],
there may be significant difference in the mechanisms of static
arm posture and arm posture in a movement. If an arm posture
is very close to a movement before or after it, the proposed
algorithm is not applicable.

VI. CONCLUSION

Using the proposed muscle-effort-minimization-inspired
method, we achieved replicating natural human arm pos-
tures. And the replication error in arm swivel angle was
3.73±3.27 degrees (mean±standard deviation) in the valida-
tion experiments. To the best of our knowledge, it is the
first time that the high-fidelity HAMM and its IK algorithm
in position domain are combined to solve the muscle effort
minimization problem globally for replicating natural human
arm postures given a desired hand pose. With a biologi-
cally meaningful kinematic redundancy resolution criterion
and minor assumptions, this method has the potential to be
applicable across daily manipulation tasks. Being aware of the
desired hand pose and joint limits, the proposed method can
fill the gap between replicating natural human arm postures
and transferring natural human arm postures to an human-
like arm-hand robot in manipulation tasks. And it is of
significant importance when an accurate human demonstration
is expensive or unavailable. Moreover, further developments in
understanding the musculoskeletal model of human arms can
contribute to a better replication performance and generaliza-
tion ability for the proposed method.
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