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Abstract— Motor imagery (MI) based brain-computer
interface (BCI) is an important BCI paradigm which requires
powerful classifiers. Recent development of deep learning
technology has prompted considerable interest in using
deep learning for classification and resulted in multiple
models. Finding the best performing models among them
would be beneficial for designing better BCI systems and
classifiers going forward. However, it is difficult to directly
compare performance of various models through the origi-
nal publications, since the datasets used to test the models
are different from each other, too small, or even not publicly
available. In this work, we selected five MI-EEG deep clas-
sification models proposed recently: EEGNet, Shallow &
Deep ConvNet, MB3D and ParaAtt, and tested them on two
large, publicly available, databases with 42 and 62 human
subjects. Our results show that the models performed sim-
ilarly on one dataset while EEGNet performed the best on
the second with a relatively small training cost using the
parameters that we evaluated.

Index Terms— Brain-computer interface, BCI, deep learn-
ing, EEG, motor imagery.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is an emerging tech-
nology which can measure brain activity and convert

it into artificial outputs that can replace, restore, enhance,
supplement, or improve natural CNS outputs [1]. Among dif-
ferent BCI tasks, motor imagery (MI) is one of the commonly
used paradigms [2], [3], [4], [5], [6], and is typically defined
as imagining the movement of a body part without actual
motor execution. This has been shown to share a similar
mechanism as real motor execution [7], [8], and enabled
human subjects to control a computer cursor [2], drone [9],
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and robotic arm [6], [10]. It has shown potential in helping
patients with motor disabilities interact with the environment
by controlling devices such as computer cursors, prostheses,
and wheelchairs [11]. Electroencephalography (EEG) based
BCI is one type of commonly used BCI techniques due to
its non-invasive nature that does not require any surgical
procedure for use. One of the main components of these BCI
systems is the classification of circumscribed and transient
EEG changes like event-related synchronization (ERS) or
event-related desynchronization (ERD) during different types
of motor imagery [3]. Developing a robust decoding algorithm
is one of the important things in improving BCI research and
user experiences [12]. There are lots of successful feature
extraction methods, such as common spatial patterns (CSP)
methods [13], [14]. Among the CSP methods, filter bank
common spatial pattern (FBCSP) [15] is one of the most
popular algorithms which uses a group of band-pass filters to
extract the optimal spatial features, and has achieved robust
performance in MI classification tasks. However, this kind
of traditional framework requires that the process of feature
extraction/selection and feature classification are separated,
which requires manual work and prior knowledge by the
operator, which could lead to bias and inefficiencies.

Recently, with the rapid development of high-powered
computing devices, deep learning has become increasingly
popular in many fields. A major advantage of bringing in
deep learning technology into BCI systems is that feature
extraction and classification steps can be jointly learned
directly from data, also known as ’end-to-end’ learning [16].
Several groups have been working on deep neural networks
for MI classification [17] and published several models.
Schirrmeister et al. [18] explored deep neural network struc-
tures for MI classification. They presented four different
models: shallow CNN, deep CNN, hybrid shallow+deep CNN
and a residual network and showed that their shallow CNN
and deep CNN substantially outperformed the traditional
method while the other two did not. Sakhavi et al. reported
an envelope representation for EEG-based motor imagery
classification and combined it with a 5-layer convolutional
neural network, which increased the classification accuracy
by 7% on BCI competition dataset IV [19]. EEGNet [20] is
another successful network which combined different basic
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Fig. 1. Trial structure of two datasets. A trial starts from a relax stage, shown as the blank screen. Then a rectangle target will appear at either side
of the screen, giving subject the hint of direction to perform motor imagery. At feedback stage, a circle cursor will appear on the center of the screen
and will move towards either side based on motor imagery of the subject. After the cursor reach or miss the target, or the time exceeds the limit, the
cursor will be frozen at the post-feedback stage. The length of each stage is summarized in the table.

convolutional layers together and achieved good performance
on multiple datasets. Several other CNN-based structures have
also been explored in motor imagery classification, show-
ing that it is a popular architecture choice [21], [22], [23].
In addition, other studies have tried to combine traditional
CNN layers with other tools to improve performance, such
as self-attention modules [24] or stacked autoencoders [25].
Amin et al. designed a fusion model, which fuses multiple
CNN networks to extract different levels of feature character-
istics, and achieved substantial improvements of classification
accuracy on multiple datasets [26].

A common approach to using EEG signals as inputs to these
models is to represent the signal as a two-dimensional (2D)
array where each row is a timeseries recording of a single EEG
channel, and each column represents signal from different
channels at a time. This method is convenient for visualizing
the EEG signal and mimics the 2D structure of images in
image processing where CNNs have been used extensively.
However, this representation loses the spatial relationship
among channels in the EEG montage, which may contain
information useful for MI classification. To deal with this
problem, some studies have explored a 3D representation of
EEG data instead [27], [28].

The variety of deep learning architectures proposed in the
recent publications shows the field’s effort to improve MI-EEG
classification by using new tools. Comparing the performance
of these architectures offers a strategy for improving future
BCI classifiers by further exploring the models and tools
that lead to higher accuracies. However, a major difficulty in
comparing the proposed architectures is that the datasets used
to train and test these models are usually different between
studies, or may not even be publicly available. The differences
in the datasets may account for some of the differences
in published accuracies, where some models may perform
better on some datasets over others. In addition, the most
commonly used motor imagery dataset is the BCI competition
dataset IV [29], which includes only 9 subjects and does not
include feedback. The small number of subjects could lead to
a large variance in evaluation because the generalizability of

a model may be questioned. This will lead to a strong need
of comparing existing models on a larger, publicly available
database, which will help in selecting deep learning models
and design choices to build better MI classifiers in the future.
In this study, we selected 5 MI-EEG deep learning models
with released code from 4 recent studies: EEGNet [20], Deep
& shallow ConvNet [18], Multi-branch 3D CNN [28] and
parallel self-attention network [24]. We designed a group of
experiments to test these models on two large publically avail-
able motor imagery databases: MBT-42 [30] with 42 human
subjects and Med-62 [31], [32] with 62 human subjects,
each of which contains multiple BCI sessions with online
feedbacks. We evaluated each model both on its classification
accuracy of L/R (left/right) motor imagery tasks and on its
model training cost. Our results are as follows: Among the
five models we selected, all of the models performed similarly
on the first dataset, while EEGNet performed the best on the
second in terms of classification accuracy and training time for
the hyperparameters and training choices we tested. We also
show that a simple preprocessing step is important to deep
learning model training, and its magnitude of improvement
depends on the dataset.

II. MATERIAL AND METHODS

A. Datasets

Two large, publicly available datasets were used in this
study to compare the performances of several recently pub-
lished deep learning neural networks for MI classification.
More information on these datasets is available in the original
publications [30], [31].

1) MBT-42: This dataset was recorded during a series of
MI-BCI training [30]. A total number of 42 healthy human
subjects took part in this L/R cursor moving task. Here, the
subjects’ goal is to perform left/right motor imagery and to
direct the cursor to reach the target, which appears randomly
at either side of the screen (Figure 1). The complete dataset
consists of three experiments involving 16, 12, and 14 subjects
respectively. All the subjects participated in three sessions of
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online control tasks. In the first experiment, there are 125 trials
within each session. In the second and third experiment,
there are 120 trials. The EEG signals are recorded using a
62 channel Neuroscan system in the first two experiments,
and a 64 channel Biosemi Active Two system in the third
experiment. The trial structures of the three experiments are
similar, each including 4 stages. A trial will start with a
relaxation stage, which is considered as the rest time between
two trials. Next is the cue stage, where two square targets are
placed on the left and right of the screen. One of these targets
is made visible as a yellow square to provide a goal for the
subject. The left and right trials are randomly distributed and
balanced within sessions. After that, the feedback stage will
start. A round pink cursor appears and starts moving based
on the control signal provided by the classifier. This will give
subjects the feedback about the effects of their motor imagery
performance. If the cursor reaches the visible target the trial
ends and results in a “hit”. If the cursor reaches the invisible
target on the opposite side of the screen the trial also ends and
results in a “miss”. If neither target is hit before the time limit,
the trial ends and results in an “abort” trial. The last stage is
the post-feedback stage, where the cursor will be frozen for
one second. Subjects are only explicitly instructed to perform
motor imagery during the feedback stage, though they may
opt to perform it during other stages as well. In the first two
experiments, the EEG signals had gone through a bandpass
filter between 0.5 and 200 Hz and a notch filter of 60 Hz,
and was down-sampled to 100 Hz. In the third experiment,
the EEG signals had gone through a bandpass filter between
0.16 and 100 Hz and a notch filter of 60 Hz, and was down-
sampled to 128Hz.

MBT-42 dataset is openly available at the following
URL/DOI: http://dx.doi.org/10.6084/m9.figshare.7959572.

2) Med-62: This dataset is collected to explore the effect of
meditation on motor imagery performance [31], [32]. In this
dataset, 62 subjects participated in cursor movement control
tasks of three types: left/right (LR) movement only, up/down
(UD) only, and combined 2D movement (2D). Each subject
completed a total number of 7-11 sessions of online BCI tasks.
Each session is comprised of 450 trials counting all of the
three tasks, 150 trials for each task. The EEG data is recorded
by a 64-channel EEG Neuroscan cap. The data are sampled
at 1,000 Hz and have already been bandpass-filtered between
0.1 to 200 Hz, with a notch filter at 60 Hz as well. The trial
structure is similar to the first dataset, including a relax stage,
cue stage, feedback stage and post-feedback stage. The length
of feedback stage varies from 0–6s depending on if and how
quickly a target was hit. The online decoders of both datasets
are similar, which including spatial filtering using Laplacian
filter, estimating mu rhythm power by fitting an autoregres-
sive model, and operating cursor movement based on lat-
eralized mu rhythm power (C4-C3) for left/right movement
tasks.

Here, we only use the first three sessions and only LR trials
of this dataset to keep comparable between the two datasets.
Med-62 dataset is openly available at the following URL/DOI:
https://doi.org/10.6084/m9.figshare.13123148.

B. Deep Learning Models
We chose to compare the following models which are

specifically designed for motor imagery classification tasks
and have released their codes for the models. This makes it
easier to replicate the original authors’ work by testing their
models in a new dataset. The released codes allow us to use
the models most accurately as the way the authors intended.
This framework can also be used in the future to compare
more models as they are released. These models all adopt
convolutional layers in their structures, which are widely used
in processing temporal signals.

1) EEGNet [20]: EEGNet is a compact convolutional neural
network combining depthwise and separable convolutions.
It consists of 3 convolutional layers and 1 fully-connected
layer, trying to encode several EEG feature extraction concepts
like optimal spatial filtering and filter-bank construction.

2) Deep & Shallow ConvNet [18]: In this work, 4 different
DNN structures, including shallow convolutional network,
deep convolutional network, hybrid network and residual net-
work, are explored and carefully compared to state-of-the-art
methods. According to their results, shallow and deep ConvNet
outperformed traditional FBCSP method while the other two
did not, and we include both of shallow and deep network in
our study.

3) Multi-Branch 3D CNN [28]: A typical deep learning model
takes in a C×T matrix as input. In this situation, each channel
will be treated equally and independently in the model, which
will lose the spatial correlation among different channels. The
novelty of this model is converting this 2D input into a 3D
tensor, putting data from each channel into matrix entries
arranged by its spatial position on the scalp. The channel
arrangement in our experiment can be found in Supplemen-
tary Table S1. After that, the model uses 3D convolutional
layers instead of 2D convolutional layers to generate its
prediction.

4) Parallel Self-Attention Network [24]: ParaAtt introduced
the popular self-attention concept in deep learning models [33]
into EEG classification. Attention modules can automatically
capture global relationships among input entries. With the
parallel spatial-temporal self-attention mechanism, high-level
distinguishable spatial-temporal features of raw signal data can
be captured.

The detailed structures and parameters of these models we
used in our experiment can be found in the supplementary
Information.

C. Data Analysis

In our study, we included both within-subject analysis and
cross-subject analysis. Within-subject training will train a
model specifically for each subject. For both datasets, we use
the first two sessions as training set, and test on the third
session. Within the training set, we split 20% of data samples
for validation. For data pre-processing, following [24], we first
perform exponential moving standardization to the raw data.
For a signal vector x = x1:T , this standardization process can
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TABLE I
ACCURACIES OF DEEP LEARNING MODELS AND ONLINE EXPERIMENTS ARE GIVEN IN PERCENTAGE. STARS DENOTES THE SIGNIFICANT

GREATER PERFORMANCE OVER ONLINE RESULTS (P VALUES FROM WILCOXON SIGNED-RANK TEST, **: P<0.01).
ALL P VALUES HAVE GONE THROUGH ADJUSTMENT OF FALSE-DISCOVERY-RATE

Fig. 2. Box-plots of classification accuracies of deep learning models and online performance. Lower and upper box boundaries denote 25th and
75th percentiles, respectively. Lines inside box denote median. The “whiskers” extend to points that lie within 1.5 interquartile ranges (IQRs) of
the lower and upper quartile, and then observations that fall outside this range are displayed independently. Red dashed lines denote the chance
level. Stars denotes the statistically significant differences between model pairs (P values from Wilcoxon signed-rank test, **: P<0.01, ***:P<0.001).
All P values have gone through adjustment of false-discovery-rate.

be formularized as:
dt = xt −

∑t
i=1(1 − α)t−i xi

∑t
i=1(1 − α)t−i

vt =
∑t

i=1(1 − α)t−i d2
i∑t

i=1(1 − α)t−i

x �
t = dt

max(
√

vt , ε)

where α = 0.001 is the exponential factor, and ε = 0.0001 is
a small number to avoid division by zero. To keep the length
of two datasets comparable, we then down-sampled Med-62
dataset to 100Hz. Since we can only assure that subjects
are performing motor imagery during the feedback stage,
we generate data samples from only the first 3 seconds of
the feedback stage. Since the length of feedback stage in
both datasets are variable, and some of them are shorter than
3 seconds, we pad the data samples with zeros if trial is too
short. To compare the deep learning model performance with
online performance and to ensure the fairness, we used only
the first 3 seconds of feedback stage data to calculate the
online accuracy. For each trial, if a decision was made before
3 seconds of feedback, then that decision is used as the result.
Otherwise, if the trial lasts more than 3 seconds, then the
target closer to the cursor at 3 seconds is taken as the result.
The average length of feedback stage is: 5.16s in MBT-42
dataset and 5.74s in Med-62 dataset. The percentage of trials
with feedback stage less than 3 seconds is: 21.4% in MBT-42
dataset and 5.9% in Med-62 dataset.

We performed cross-subject analysis on Med-62 dataset.
Since MBT-42 dataset is recorded by different system for

different subjects with different sampling frequency and num-
ber of channels, it was not included for cross-subjects analysis.
We partitioned the data as follows: For each evaluation round,
one out of 62 subjects was selected as the test set, and samples
from all other 61 subjects are used for training and validation.
Within the 61 subjects, training set and validation set are split
at an 80:20 ratio. We trained each model using the training
set, and select the best training epoch and parameters on the
validation set. After that, we evaluated the trained model on
the test subject and obtained an accuracy. This process was
repeated for each of 62 subjects being used as the test subject.
Similar to the within-subject analysis, we only used the data
from the first three sessions for all subjects.

Full details of model and training parameters we used in
our study can be found in the supplementary Information.

III. RESULTS

A. Within-Subject Analysis

Under our analysis setting, all of the deep learning models
achieved higher accuracies compared to the online accuracy
in both datasets (Table I, Figure 2). The complete accuracy
results can be found in Appendix. The Friedman test for
repeated measurements show that there exist significant dif-
ferences among the five models in both datasets (P<0.05 in
MBT-42, P<0.001 in Med-62). In MBT-42, all of the models
performed relatively similarly and no model significantly
outperformed the others (P>0.05 on each pair, one-sided
Wilcoxon signed-rank test, FDR adjusted). Note that although
the difference of average accuracy between EEGNet and online
experiment is larger (73.65% vs 70.90%), they perform similar
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Fig. 3. Distribution of model accuracies from different subjects. Each black point represents an accuracy from a single subject. The violin plot
outlines illustrate the density of accuracies, i.e. the width of the colored area represents the proportion of subjects achieving accuracies at that level.
Red dashed lines denote the chance level.

Fig. 4. Comparison of models training on preprocessed data (using exponential moving standardization) and original data. Red dash lines mark
the online accuracies. There is nearly no improvement in MBT-42 dataset, but significant improvement of all models in Med-62 dataset (P values
from Wilcoxon signed-rank test, ***:P<0.001).

under Wilcoxon test (P>0.2). In Med-62, EEGNet performed
significantly better than each other models (P<0.001 compared
to Shallow ConvNet, P<0.01 to others). All other model pairs
do not have significant difference on performance. All of the
P values have gone through adjustment of false-discovery-rate.

Figure 3 shows the distribution of model accuracies from
different subjects. Each black point represents the model
accuracy of one subject and the width of the colored area
represents the density distribution of the accuracies. Here
we can see a slight difference in the distributions between
deep learning models and the online decoder, while the deep
learning models are similar to each other.

B. Effects of Preprocessing

To explore the role of data preprocessing on model accuracy,
we performed another group of experiments, which train deep
learning models on the original data instead of preprocessed
data using the same model structure. Figure 4 shows the
comparison of the deep learning model classification accu-
racies training on preprocessed data and original data. We can
see the preprocessing step has different effects on different
datasets. On MBT-42 dataset, preprocessing only achieves

limited improvement on deep learning model performance.
None of the models shown have significant improvement when
training on preprocessed data (P<0.05). However, on Med-62
dataset, each model achieved significant improvement by pre-
processing (P<0.001). All of the P values have gone through
adjustment of false-discovery-rate. In comparison with the
online performance denoted by red dash line, we can see that
most of the deep learning models training on original data
cannot beat online performance, which indicates that simple
steps of data preprocessing are necessary for the training of
deep learning models under these conditions.

C. Across-Subject Analysis

The cross-subject classification results of different deep
learning models on Med-62 dataset are shown in Figure 5.
The Friedman test for repeated measurements show that there
exist significant differences among the five models (P<0.001).
EEGNet performed significantly better than each other models
(P<0.001 to all other models, one-sided Wilcoxon signed-
rank test, FDR adjusted). All other model pairs do not have
significant difference on performance. All of the P values have
gone through adjustment of false-discovery-rate.
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Fig. 5. Box-plots of cross-subject classification accuracies of deep
learning models over all subjects on Med-62 dataset. Lower and upper
box boundaries denote 25th and 75th percentiles, respectively. Lines
inside box denote median. The “whiskers” extend to points that lie within
1.5 interquartile ranges (IQRs) of the lower and upper quartile, and then
observations that fall outside this range are displayed independently. Red
dashed lines denote the chance level. Stars denotes the statistically sig-
nificant differences between model pairs (P values from Wilcoxon signed-
rank test, ***:P<0.001). All P values have gone through adjustment of
false-discovery-rate.

TABLE II
AVERAGE MODEL TRAINING TIME PER SUBJECT OF DEEP

LEARNING MODELS ON TWO DATASETS IN SECONDS

D. Computational Cost

Except from model accuracy, training cost is also an impor-
tant criterion to evaluate a model. Table II compares the
average training time of deep learning models on one subject.
The timing tests are all operated on the BRIDGES-2 server at
the Pittsburgh Supercomputing Center (PSC) [34] deployed
with 40-thread Intel(R) Xeon(R) Gold 6248 CPU and one
single core of Tesla V100 GPU. For EEGNet, Shallow & Deep
ConvNet and ParaAtt, we trained 30 epoches for eacb subject,
while for MB3D, we adjusted the epoch number to 15 since
this model had a longer training time than the others. The
result shows that MB3D’s unique structures of 3D convolution
layers will lead to longer training time. Shallow & Deep
ConvNet have the least training cost to achieve a fairly good
performance.

We also compared model inference time of deep learning
models. Inference time is the amount of time a trained model
takes to generate an output from the input signal. The results
are shown in Table III. We fixed all data input length to
300, and tested the model inference time on 125 samples and
one single sample. Due to parallel computation, models can
process faster on a batch of samples. Generally, the model
inference time should be shorter than the update interval of
real BCI systems, and 40ms is a commonly used value. All five
models are able to decode one single sample shorter than this
time, which means they all reserve the potential to put into
real use.

TABLE III
AVERAGE MODEL INFERENCE TIME OF DEEP LEARNING MODELS FOR

A BATCH OF SAMPLES AND ONE SINGLE SAMPLE IN MILLISECONDS.
ALL INPUT SAMPLES ARE FIXED TO TIME LENGTH OF 300

IV. DISCUSSION

In this study, we have tested five previously reported BCI
deep learning models on two large and publicly available
left/right motor imagery classification datasets. There have
been research testing deep learning algorithms on motor
imagery tasks. Schirrmeister et al. [18] compared the perfor-
mance of novel DL models against a traditional BCI clas-
sifier in an offline setting to show the potential benefits of
using DL models for BCI decoding. In their work, Shal-
lowConvNet and DeepConvNet achieved 85.3% and 84.0%
accuracy respectively on two datasets, outperformed FBCSP
baseline (82.1%). Lawhern et al. [20] compared EEGNet with
ShallowConvNet, DeepConvNet and traditional approaches
on both ERP and Oscillatory-based BCIs, and found that
which model performs the best will change with datasets.
MB3D network achieved 75.0% accuracy on BCI competition
IV dataset in their original work [28]. Liu et al. [24] reported
ParaAtt and compared it to multiple models. In their original
work, ParaAtt achieved 78.5% accuracy on BCI competition
IV dataset, which outperformed EEGNet (65.4%), DeepCon-
vNet (70.3%), FBCSP baseline (67.4%) and several other
networks. Stieger et al. [35] previously examined the Shal-
low ConvNet [18], on the Med-62 dataset and reported that
DL-based decoders can outperform online performance, and
that using all of the available electrodes provides additional
benefit to using just the electrodes around the sensorimotor
cortex. The classification accuracy of ShallowConvNet can
reach near 79% on session 3 of Med-62 dataset. This cannot be
directly compared to our results, since we are using different
training and test set and different data clipping strategies.
These works, along with several others, show the promise
of DL-based decoders for MI-BCI. However, while there are
several successful DL models that have already been proposed
for BCI, and more are certainly being developed, it is still
unclear which, if any, of these models perform the best in a
general setting.

Previous works have also compared different basic generic
deep learning architectures on motor imagery tasks [36], [37].
These results may provide some guidance for improving
DL-based BCI decoders, but still do not look at state of
the art models. Here, we aim to address this by comparing
multiple state-of-the-art deep learning networks that were
specifically designed for BCI motor imagery tasks. From the
experiment results, we have shown that EEGNet has the best
performance on one dataset under these selected conditions
among the models we have investigated and outperforms
online accuracy on average as well. The depth of the network
does not seem to be the most important factor in predicting
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Fig. 6. Example of different preprocessing methods on a data snippet. The scale of highpass-filtered data with a cutoff frequency of 1 Hz is almost
the same as original data. The scale of data after exponential moving standardization and normal standardization is similar to each other, far smaller
than original data, which may benefit deep model training.

a model’s performance. Though the models we tested have
varying depths, they all performed similarly on the MBT-42
dataset. In addition, though EEGNet and Shallow ConvNet
have similar depths, EEGNet outperforms the other models
on the Med-62 datasets. The way to deal with inputs from
different channels are also similar among these three models,
since they all applied a depthwise convolutional layer to mix
data from all channels in the early part of models. A possible
reason for the high performance of EEGNet on Med-62 dataset
might come from their special design of separable convolu-
tional layers, which may potentially be capable of extracting
more strong features related to this task. The Shallow and
Deep ConvNets had the lowest training cost which may be
an important factor for performing offline data analysis on
lowered powered machines or in a time sensitive environment.

A. The Role of Preprocessing

The performance of deep learning model is greatly influ-
enced by its input scale. Without data scaling, a deep learning
model will learn larger weight parameters, which can cause
instability and undermine the performance [38]. Figure 6
shows an illustration of different preprocessing methods on
a real data snippet of 5 seconds length from Med-62 dataset.
Here the term ‘original data’ refers to the data we directly
obtained from the released dataset, which has already been
minimally preprocessed by the authors. The orange line is
the signal after going through a highpass filter with a cutoff
frequency of 1 Hz. The data scale of this highpass-filtered data
is almost the same as the original data, which is the blue line,
since it only removes the low frequency component of the
signal. On the other hand, exponential moving standardization
(green line) and the normal standardization (red line) can
rescale the data to a range which is suitable for model training,
and the preprocessed data using these two methods are almost

the same. From Figure 4, the accuracy improvement from
preprocessing is much higher in Med-62 dataset. We checked
the average standard deviation of original EEG recordings
of two datasets, which is a rough reflection of input scale.
The standard deviation averaged over all subjects is 28.2 in
MBT-42 dataset, and 1335.0 in Med-62 dataset. Although
there is not a clear threshold to discriminate ‘normal scale’
and ‘abnormal scale’, this indicates that Med-62 dataset is
far from normal distribution, so that it can benefit more
from preprocessing. The MB3D model is the one which was
affected the least by input scale. One possible explanation for
this may be its multi-branch structure. If one branch died out
because of abnormal inputs and its subsequent consequence
like gradient vanishing, the other branches still reserve the
chance to fit well so that the model can still classify correctly.

B. Subject-Wise Clustering

In addition to comparing the overall performances of the
various deep learning architectures, we also wanted to explore
subject-specific performance between the models. Although
some models reached higher accuracies than others on average,
it could be the case that specific models work well for some
subjects and not others. To test if this is the case, we plotted
the subjects’ performance in a five-dimensional space where
the accuracy from each model is a single dimension. Since the
differences in average accuracy between subjects was much
larger than any differences between models for a single
subject, we needed to center the subjects’ accuracies in order
to focus on any model-specific differences. To remove the
effects of the subject’s average performance, we zero-centered
their accuracies: (x−mean(x) is the zero-centered vector of x).
Here, subjects that performed similarly among the various
models are closer together in space (ex. if subject A and B
both performed better with Shallow Net than with EEGNet
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Fig. 7. Visualization of zero-centered accuracy vectors on two datasets using t-SNE. No clear subject clusters can be found.

they would be closer together). Using t-distributed stochastic
neighbor embedding (t-SNE) [39], [40], a statistical method
for visualizing high-dimensional data, this five-dimensional
space can be visualized in two-dimensions, shown in Figure 7.

Deep learning models with different connective structures
might have different preference on special EEG features of
certain subjects. In other words, there might exist a kind of
phenomenon that: within a subset of subjects with a common
EEG feature, or MI strategy, a group of deep learning models
perform better, while within another subset of subjects with a
different EEG feature, another group of deep learning models
perform better. This difference might be expected due to the
differences in architectures of the models, and the abilities
of the various layers to extract different features. The t-SNE
plots in Figure 7 explore how similarly subjects perform
among the different models. Here, distinct groups of subjects,
or clusters, would signal that there are sub-populations of
subjects with unique features that result in them reaching
higher performance with some models rather than others. The
results of Figure 7 show that subjects are relatively spread
out across this space. This suggests that if the models are
extracting different features, then these features are relatively
distributed across different subjects. Future work could further
explore this idea by comparing the electrophysiology between
subjects that are the furthest away from each other in this space
to extract the features causing the difference in accuracies
between models. Including different types of models in this
analysis, such as RNNs, may also yield even more stark
differences as the architectures extract different features from
the data.

Since the clusters are not clear from the two plots in
Figure 7, this kind of model preference is weak based on
our experiment result. However, we believe it’s still a good
direction to explore if we can have more data samples and
more models to compare in the future.

C. Future View of Deep Learning

Deep learning has shown success on improving the power
of BCI systems. We believe deep learning has further potential
on evolving BCI systems. EEG is one of the most commonly
used non-invasive BCI inputs, which has low signal-noise ratio
(SNR). As a result, extracting features from such a noisy

signal is harder for traditional methods in processing EEG
signals. As mentioned, the feature extraction step requires
lots of manual work and prior knowledge, and may cause
information loss. From deep learning, we can have a better
option to automatically generate useful features from noisy
data.

There are still issues to be addressed to drive deep learning
further to the online system. First is how to deal with different
format of data. Compared to the easy data collection process
in most of the computer science fields due to the prosperity of
Internet, the human EEG data collection is much more harder
because of the tedious routines, time-consuming process of
recruiting subjects and conducting experiments. EEG data
are collected from different research groups using different
systems. Given this, building a unified model which can
be trained on various types of data and serve for multiple
purposes, can increase the utilization rate of limited EEG
data and may become an important issue in the future. The
ideal case is that a user can start using BCI system without
any pre-training/calibration trials. Through the early stage of
interacting, the DL model can perform gradual adjustment
along uses by the user.

Most of the current models treat each trial equally, which
means we can arbitrarily shuffle the order of trials and
sessions. However, in real scenario, a subject may generate
gradually varied features during BCI training, which might be
an additional challenge for decoding. We believe that future
investigations can be extended to look into effects of training
of MI-BCI using deep learning.

In our work, the performance distribution among subjects
in two datasets are not identical. The distribution in MBT-42
dataset is like pear-shaped, while that in Med-62 dataset is
much like a spindle. In this case, we can find that different
dataset may include different proportion of ‘poor performers’,
‘moderate performers’, and ‘good performers’. Future investi-
gation should be extended to examine effects of deep learning
on various performance sub-groups.
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