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A New PLV-Spatial Filtering to Improve the
Classification Performance in BCI Systems

K. Martin-Chinea

Abstract— Objective: The performance of an EEG-based
brain-computer interface (BCI) system is highly dependent
on signal preprocessing. This manuscript presents a fil-
tering method to improve the feature classification algo-
rithms typically used in BCI. Methods: A graph Laplacian
quadratic form using the Phase Locking Value (PLV) is
applied to generate a new filtered signal in the preprocess-
ing stage. Results: The accuracy of the classification algo-
rithms improved significantly (up to 27.18% in the BCI
Competition IV dataset, and up to 42.56% with records made
with an Emotiv EPOC+). In addition, the proposed filtering
algorithm has similar or better results when compared with
the Filter Bank Common Spatial Pattern (FBCSP), which has
disadvantages in a multiclass classification. Conclusion:
This paper shows how our PLV-based filtering between EEG
channels could improve the performance of a BCI.

Index Terms—Electroencephalography, phase locking
value, brain-computer interface, machine learning.

I. INTRODUCTION
RAIN-COMPUTER interfaces are of special interest due
to their potential in a wide range of situations [1]. The
most practical contexts are video games, in which the user
can control a game character or the environment, or control
systems for peripherals that help people, such as wheelchairs
or prostheses for people with motor impairments [2], [3].
BCI systems currently suffer from a lack of standardiza-
tion in terms of measurement devices-their configuration,
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preprocessing methods and signal conditioning-which has a
decisive influence on their result and accuracy. There is also
no standardization in terms of the tools to use to extract and
classify information. All this means that this technology is
not yet an everyday tool that can be applied by the end user
without expert supervision [4].

A BCI user also requires their EEG device to have the
same features as those provided by clinical measurement
devices, but at a low cost and with ease of use. However,
these requirements are detrimental to the quality of the final
product. With today’s technology, easy-to-use wireless EEG
measurement devices do not offer the same performance as
more sophisticated systems, such as those used in clinical
applications. Low-cost measurement equipment is usually lim-
ited in structure (fewer sensors, lower sampling rates, etc.) and
has a poor signal-to-noise ratio. This makes the extraction of
information more complex and causes problems obtaining a
good final classification.

Extensive techniques have been applied to alleviate the
effects of this noise in motor imaging task classification and
improve the BCI performance. For example, Rahman et al. [5]
with their approach, Space-Frequency Spatial Localized Fil-
tering (SFLSF), improved their classification results. Their
method begins by dividing the scalp into local overlapping
spatial windows to apply local frequency bands through a
filter bank, and later a spatial filter obtains the features to be
classified. Yongkoo Park et al. applied local Common Spatial
Pattern (CSP) to the best channel regions that are defined
using several methods: an interquartile range (IQR) or an
“above the mean” rule based on a variance ratio dispersion
score (VRDS) and an inter-class feature distance (ICFD) [6].
Jin et al. [7] proposed a novel time filter that introduces
local time weighting into the objective function of the task-
related component analysis (TRCA)-based method and uses
singular value decomposition. Also, they proposed another
method based on the Dempster-Shafer theory to take into
consideration the distribution of features of motor imagery
trials [8]. Other examples are the novel Correlation-Based
Temporal Window Selection (CTWS) algorithm for MI-based
BCIs proposed by Feng et al. [9], or the Discriminative
Canonical Pattern Matching (DCPM) algorithm proposed
by Xiao et al. [10].

This manuscript presents our PLV-Spatial Filtering
(PLV-SF) method, which is a novel process based on a graph
model to capture the spatial dependencies between EEG device
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systems and reconstruct the signals by exploiting their
spatio-temporal relationships and removing the existing noise.

The graph model is based on the phase synchroniza-
tion metric between channels; specifically, the phase locking
value (PLV), which is widely employed to measure syn-
chronization between EEG acquisition sensors in BCI, has
been used. The PLV represents the interaction between two
processes or systems with dynamic states. Moreover, this
metric is statistically indicated by a non-random phase or
phase difference distribution, and is therefore less affected
by noise than amplitude synchronization [11]. Moreover,
as Kolev et al. [12] demonstrated in their study to differentiate
the brain responses of two age groups, the PLV works much
more accurately to assess dynamic brain processes. In the field
of neuroscience, the PLV is typically extracted between several
sensors that record brain signals. Benzy and Vinod er al. [13]
select the most significant pairs of electrodes based on the PLV
in different frequency bands to differentiate the movement of
both hands. Wang et al. fuse the PLV with the one-versus-
the-rest filter-bank common spatial pattern (OVR-FBCSP) to
improve the robustness of motor imagery (MI) classification.
Tosun et al. [14] use sliding windows to obtain the eigen-
values of the PLV in the intrinsic mode functions (IMFs)
of each channel, classifying four motor image tasks and
demonstrating the high relevance of the PLV in these types of
tasks.

Graph signal processing has become increasingly interesting
in recent years [15], [16], [17]. There are works in which
signals are sampled and reconstructed [18], and it is important
to consider that, in a real context, signals vary over time, but
they evolve smoothly and do not exhibit abrupt changes.

For this reason, a typical measure of the smoothness of
graphs is the graph Laplacian quadratic form. In this study,
we propose our approach, which includes a new signal pre-
processing step. This method combines the graph Laplacian
quadratic form and the PLV between sensors. The signal
at each electrode location is determined as the average of
the remaining electrode signals weighted according to their
phase synchronization levels in the original signal. To verify
that this preprocessing method improves the classification
results, well-known classification algorithms were applied to
the extracted feature. In addition, the PLV-SF was com-
pared with the Common Spatial Pattern method. Since the
trend in recent years has been to process signals in certain
specific bands, both the application of the PLV-SF and the
calculation of the CSP for the different bands studied have
been carried out, the latter being known as Filter Bank
CSP [19], [20], [21], [22], [23].

This manuscript describes the steps involved in this process
realization, starting with the Materials and Methods section,
which describes the data and the software used in this
experiment, the concrete description of the proposed method
and the classification algorithms that will validate its effec-
tiveness. Next, in the Results and Discussion section, the
results obtained are described, as well as the results of
other authors with similar methodologies. Finally, the Con-
clusions section highlights the key points found in this
study.

BCI Competiton IV @ Emotiv EPOC+

Fig. 1. Location of the electrodes on the BCI Competition IV and the
Emotiv EPOC+ headset.

[l. MATERIALS AND METHODS

The materials and procedures involved in the proposed
filtering model methodology are listed and described below.

A. Data and Analysis Software

Two datasets were used. The first one was the BCI Com-
petition IV 2a [24], which was provided by the Institute
for Knowledge Discovery (Laboratory of Brain-Computer
Interfaces), Graz University of Technology. The device used
has a sampling rate of 250 Hz, and its sensors follow the
10-20 distribution, as shown in Fig. 1. Additionally, these
data were previously filtered with a band-pass filter between
0.5 and 100 Hz, with an additional 50 Hz notch filter to remove
line noise.

The second dataset was recorded using a wireless low-cost
device, Emotiv EPOC+, and the Emotiv Xavier Testbench
v3.1.21 software. The device consists of 16 sensors and two
reference electrodes at P3 (CMS, Common Mode Sense) and
P4 (DRL, Driven Right Leg)), as per the 10-20 system as well,
at an acquiring frequency of 128 Hz, Fig 1.

The data were analyzed using Matlab® (The MathWorks,
Inc.) and Fieldtrip [25]. Fieldtrip is a toolkit for preprocess-
ing and advanced analysis methods for MEG, EEG, iEEG
and NIRS recordings, which was developed by the Donders
Institute for Brain, Cognition and Behavior in Nijmegen
(The Netherlands), in collaboration with other institutes. Fast-
FC was also used, which is an open-source toolbox to effi-
ciently compute connectivity indices [26].

B. Participants

The BCI Competition IV 2a dataset consists of EEG
recordings from 9 people, and contains data on the baseline
state, motor imagery tasks for both hands, the feet and the
tongue [24].

The Emotiv EPOC+ dataset was recorded from 13 people
between 18 and 51 years old who do not have any pathologies.
The dataset consists of three classes: the baseline state and
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Stimulus
20 sec

Basal
20 sec

10 sec

Fig. 2. Experimental protocol for the different brain states. The trial starts
with a cross on the screen with a duration of 20 seconds, then the user
has a short rest period (10 seconds) and finally the arrow representing
the motor imagery action of the left or right hand appears for 20 seconds.

the motor imagery of both hands. This study was approved by
the ethics committee of the University of La Laguna (register
number: CEIBA2020-0405).

C. Experimental Protocol

The BCI Competition IV 2a dataset consists of four classes
of motor imagination tasks: imagination of the left hand,
right hand, both feet and tongue. Each subject performed two
sessions (on different days) in which the following protocol
was applied: a cross appears on a black screen at startup,
in addition to a short warning tone. After two seconds, a signal
appears indicating which of the four tasks to perform (up,
down, right, and left arrow, associated with the motor imagery
task for the tongue, feet, right and left hand, respectively).
This signal is held for 1.25 seconds, but the user must hold
the task for up to 6 seconds. This task was followed by
a 1.5-second rest, after which the protocol was rerun. For
more information on the dataset and protocol used, see the
detailed description provided in [24]. Because only basal
states and motor imagination of both hands were consid-
ered, the tongue and foot tasks have been omitted from this
study.

The experimental paradigm shown in Fig. 2 was designed
for the Emotiv EPOC+- device. Similar to the BCI Competition
dataset, in the first part a cross is displayed, and the user does
not have to do anything. This is recorded and corresponds to
the baseline state (this section is 20-seconds long). Then the
cross disappears, and a 10-second rest period starts. While
the screen is black, the user does not have to do anything.
Finally, a right- or left-arrow is displayed for 20 seconds,
corresponding to the motor imagery of the hand (right or
left). While the arrow appears on the screen, the user has to
perform the task, which is recorded and ends when the arrow
disappears. The complete experimental protocol was repeated
four times for each motor imagery task, generating the final
Emotiv EPOC+ Dataset.

D. Data Preprocessing

Both datasets undergo the same signal preprocessing. First,
a band pass filter between 1-40 Hz is applied. Second, the
REBLINCA procedure defined by Di Flumeri et al. [27] is
carried out to reduce the blinking effect. This procedure is a
modified version of the Gratton algorithm [28], where an EOG
channel is not needed because the front sensor placed on the
midline sagittal plane of the skull is used.

In this paper, the Fz channel is used for the BCI Compe-
tition IV, while in the case of the Emotiv EPOC+H dataset,
as it did not have a central sensor, a reference signal (AFz) is
generated as the average of AF3 and AF4.

These signals (Fz or AFz) are used to calculate the
REBLINCA regression signal (RegrSignal) using a Butter-
worth filter between 1-7 Hz for each dataset (frequency range
used in the Gratton algorithm with the V-EOG channel). Then,
RegrSignal is derived and normalized to have a mean of zero
and a variance of one. Finally, a moving average is applied to
the square of this signal. The outcome is a new signal called
the threshold signal (ThresSignal), which is used to intensify
and locate the blink disturbance. Then, in the blinking areas,
the original signal is corrected by subtracting the weighted
regression signal (RegrSignal) for each channel:

Xch(t) = xen (t) — wey, * RegrSignal(t), )

where we previously estimated the weight of the proportion
of the main reference signal present in each channel as:
mean(abs (xcp (1))

Weh = mean(abs (RegrSignal (1))) 5

Finally, an automatic artefact rejection as defined in the
Fieldtrip tutorial [29] is applied: the signal of each channel
(xcn (1)) is standardized (zqp(¢)) with respect to its standard
deviation (o) and its average (i) over time (t). After that,
a new signal (zgy,(t)) is created as the average of all the
standardized data of each channel, where N is the number of
channels:

() =D /YN 3

A threshold (th,.j) of 3osum around the mean was chosen.
This threshold is applied to remove the outliers, which were
considered artefacts and noise.

E. Frequency Bands

Motor imagery is described as the cognitive process of a
person thinking that they are performing a task when they are
not actually performing any kind of movement. As described
above, our case is focused on both hands. Therefore, the alpha
(7.5-12.5 Hz) and beta (12.5-30 Hz) bands were used for the
study. As can be seen in the literature, these bands have been
extensively studied to identify the tasks defined (examples
include McFarland et al. [30], Bao-Guo Xu and Song [31]
and Hermosilla et al. [32]). Due to the above, it is necessary
to pass our EEG signal to a frequency-time context, so the
Morlet Wavelet Transform is applied [33] to yield the power
for both bands studied (alpha and beta).
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F. PLV-SF Method

Many EEG devices have a low signal-to-noise ratio and
signal coupling between sensors. This all leads to undesired
behavior in a BCI classification system, which could produce
errors in a real use case. The method proposed here reduces
the noise and diminishes artifacts present in the signal.

The main idea of this method is to apply the synchronization
information to exclusively highlight the signal patterns in
each task studied. Note that each of the tasks will have a
unique synchronization pattern associated with it. Each single
sensor signal is filtered considering the functional influence
of the other sensors that affect it to a greater or lesser extent,
depending on their phase synchronization level.

The procedure has the following phases:

1) Phase Lock Value: The signal obtained from the EEG
source has to be transformed into a complex value to compute
the synchronization metric for the alpha and beta band in order
to apply the filter to each of them.

The phase definition used in this paper is based on the
Hilbert Transformation (HT) [26]. The first part of this trans-
formation filters the signal in the frequency band of interest by
using a Finite Impulse Response (FIR) filter (once forward and
once backward). In the second part, a circular fill is performed
to ensure that the filter produces zero phase distortion and
minimal edge effect. The HT of the signal is defined as:

% x(7)

1
xi (1) = ;p.v./ p— “4)

where p.v. denotes the principal value of Cauchy and the
analytical representation of xx(¢) is the complex-valued signal
defined as:

xg () = xx (1) +ix ®)
from which the phase is defined as:
t
O (1) = atanx 10 (6)
xic ()

Formally, the phase synchronization (PS) of two signals (xx
and xj) is stated as:

o (1) = By (1) — By (1))ymod2m )

On a practical level, it is useful to define a time-independent
value that characterizes the entire interval of interest. One of
the most used methods in BCI is the mean phase coherence,
also known as the phase locking value (PLV):

PLV iy = (D)) ®)

where () stands for its average value, yielding outcomes in the
range from O (no PS) to 1 (perfect PS).

2) Graph Laplacian Matrix: From the previous PLVs, the
following adjacency matrix is generated:

=0 if k=1
A e RNVXN | K ! 9)
apy = PLVy if k#1

where N is the number of channels. Note that the adjacency
matrix is a symmetric matrix.

Once calculated, the adjacency matrix is used to determine
the diagonal matrix (D) as:

N
du = o agj
Jj=1

dy =0

if k=1
if k £1

D e RVN (10)

These two matrices are computed to obtain the graph
Laplacian matrix as:

LeRV*N where L=D—A (11)

The graph Laplacian matrix can be interpreted as a differ-
ence operator for signals defined on the PLV graph. The nodes
of the PLV graph are the sensors (xx), and the edges are the
connections between them, with each one weighted with its
PLV (PLVy for nodes x; and x;).

3) Graph Laplacian Quadratic Form: Alpha and beta fre-
quency bands were calculated using the Morlet Wave Trans-
form [33]. As a result, each node has a temporal power
signal associated with M samples for each band, where
M corresponds to 500 samples for the BCI Competition IV
dataset and 256 samples for the Emotiv EPOC+ dataset
(corresponding to two seconds in each system). Therefore, the
matrix time-series signal can be modeled as:

X e RMM with x e RV (12)

where x is a column vector of X. From this, the graph
Laplacian quadratic form of the graph can be expressed as:

S'x)=xTLx = ZN

k,)=1 (13)

2
ar (xk — x7)

This equation represents the weighted sum of the neighbor-
hood variations across all nodes (see reference [15], on graph-
ical signal processing, for a detailed definition). From this
definition, it is possible to calculate the graph Laplacian
quadratic form of the trial over time as:

Fx)y =" s

4) Convex Problem: Finally, the signals with the channel to
be filtered can be modeled as follows:

(14)

Y = B°X (15)

where B corresponds to a binary matrix in which the channel to
be filtered is eliminated, and ° denotes the Hadamard product
operator.

Therefore, the X signal is generated by solving the follow-
ing convex problem:

minzr[XT LX] subject to HBOX — Y||F <e (16)

where ||| denotes the Frobenius (or L2) norm for matrices.
This process of eliminating and generating each channel’s
signal with the information from the remaining signals is
carried out individually.

Therefore, applying this convex problem to all the channels
of a trial yields a new matrix with the same dimensions.
Its content is the filtered signal based on the actual values
of the remaining channels. Furthermore, the application of
the synchronization-based adjacency matrix places greater
importance on sensors that have a higher PS.
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TABLE |
CLASSIFICATION ALGORITHMS APPLIED

Algorithm Kernel (label)
Decision Trees
Fine (1)
Medium (2)
Coarse (3)
Discriminant Analysis
Linear (4)
Quadratic (5)
Support Vector Machine
(SVM)
Linear (6)
Quadratic (7)

Fine Gaussian (8)

Medium Gaussian (9)
K-Nearest Neighbors

Fine (10)

Medium (11)

Coarse (12)

Cubic (13)

Weighted (14)

Cosine (15)

In addition, we studied whether the filtered signal (plvSig)
at each location lost information contained in the original
real signal (realSig) that could improve the classification.
Therefore, to see the effect of PLV-SF, the classification
accuracy is calculated with a new rebuilt signal (fSig) that is
generated with different forgetting factors (FF). By increasing
this factor, the influence of the filtering increases at the cost
of decreasing the contribution of the original signal:

fSig = plusfSig « FF +realSig % (1 — FF) a7

G. Classification

The classification procedure carried out seeks to contrast
the effectiveness of the proposed filtering method previously
defined by using various classification algorithms that are well
known in the literature, Table I.

The classification algorithms are applied to each user’s data,
using each temporal sample of all the channels. On the one
hand, unfiltered data and, on the other hand, data with the
application of PLV-SF are used in order to compare this
proposed methodology. Therefore, the classification algorithm
will have as input a feature for each channel and frequency
band, yielding a dataset with the total size of all the registered
samples.

Because the split of each user’s original sets is randomly
assigned to the cross-validation and testing processes, the
procedure is repeated 20 times. To compare the algorithms,
the mean population accuracy is estimated, where the accuracy
of each individual has been calculated as the average of the
20 test procedures.

I1l. RESULTS AND DISCUSSION

The results obtained in this research show how the pro-
posed method, based on PLV graph Laplacian quadratic form,
improves certain classification algorithms.

TABLE Il
WILCOXON NONPARAMETRIC TEST P-VALUES COMPARING
ALGORITHMS USING THE FILTERED AND UNFILTERED DATA

Algorithm # Dataset
BCI Competition IV Emotiv EPOC+
1 0.0522 ok
2 0.4363 ok
3 0.8633 *
4 sk sk
5 0.3865 0.5727
6 sk sk
7 sk sk
8 0.2863 ok
9 0.1135 *
10 * k%
11 * ko
12 0.3401 ok
13 * ko
14 * ok
15 ko ko

*<0.05, ** < 1e%

The new values for the power are influenced by the channels
with which they have the highest synchronization. If the power
of these channels is high, the filtered channel has a high
value; if not, it will have a low value. Generically, the filtering
decreases the power where the original signal is extremely
high whereas in cases where this signal is low, its value is
increased.

The results obtained with different FF values are shown
in Fig. 3 and Fig. 4, where the original data has a O-FF
value, and the complete filtered signal has a 1-FF value. The
methodology applied was repeated several times, as defined
in the classification in the Materials and Methods section.
These figures show how the accuracy value is highest when the
proportion of the original signal used is the lowest (FF value
equal to 1). Specifically, the accuracies of the algorithms at
these extreme FF values, where the original signal and the
fully filtered signal are used, show increases between —1.62%
and 27.18% in the BCI Competition IV, and between —2.37%
and 42.56% in the Emotiv EPOC+ dataset.

Since not every algorithm showed a significant improve-
ment, the Wilcoxon test (a non-parametric test) was performed
to confirm any gain, Table II. The p-values obtained by
comparing the results of the raw and filtered data show whether
there is a significant improvement for each algorithm. In both
datasets, the algorithms of the Discriminant Linear Analysis,
SVM with a Linear or Quadratic kernel, and the KNN with
a Fine, Medium, Cubic, Weighted or Cosine kernel stand
out. Although in the case of the Emotiv EPOCH dataset,
all the algorithms show significant improvements, except the
Quadratic Discriminant Analysis.

These results obtained by the PLV-SF method are compara-
ble with recent studies on synchronization metrics, including
that of Rodrigues et al. [34]. They used the BCI Competi-
tion IV dataset and classified its four main classes (the motor
imagery task of the right/left hand, tongue and feet) by using
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Fig. 3. Accuracy test results of the BCI Competition IV dataset
with different forgetting factor (FF) values, where the gray dashed line
corresponds to the mean of the median of all algorithms. Table | shows
which algorithm corresponds to each number (#).

different features, such as Pearson’s correlation, Spearman’s
correlation, phase coherence, STR, etc. Finally, they obtained
mean accuracy values in the range of 37% to 57% using a least
squares classifier. We also find the paper by Ai et al. [35],
in which their proposed method, the combination of fea-
tures of functional brain networks with the common spatial
pattern (CSP) algorithm and local feature scale decompo-
sition (LCD), yields an accuracy of 79.7% with this same
dataset. The values obtained in our research with the three
classes selected (basal and motor imagery of the right- and
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Fig. 4. Accuracy test results of the Emotiv EPOC+ dataset with different
forgetting factor (FF) values, where the gray dashed line corresponds to
the mean of the median of all algorithms. Table | shows which algorithm
corresponds to each number (#).

left-hand state) show similar accuracy results with two algo-
rithms (SVM with Quadratic kernel and KNN with Cosine
kernel).

Elsewhere, the research by Khan et al. [36] aims to improve
multiclass classification accuracy for motor image movement
using common sub-band spatial patterns with the sequen-
tial feature selection method (SBCSP-SBES). They used two
datasets, one from Emotiv EPOC+ and the other from wet
gel electrodes, both to classify three classes (motor imag-
ery of the left and right hand and the rest state). Their results
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Fig. 5. Comparison of the accuracies (mean and standard deviation) obtained when classifying the motor imagery of both hands, applying the CSP
method, the PLV-SF method, the combination of both (PLV-SF-CSP) and the signal without an additional pre-processing method in 20 runs with all

the volunteers of the Emotiv EPOC+ dataset.

yielded a maximum accuracy of 60.61% for the Emotiv EPOC
headset and 86.50% for wet gel electrodes. Another example
is the research of Lin et al. [37] using a BiLSTM neural
network as a binary classifier (motor imagery right and left
hand), yielding an accuracy of 87.14%. Working in similar
contexts, the paper by Mwata-Velu et al. [38] presents a hybrid
architecture of convolutional neural networks (CNN) and long
short-term memory networks (LSTM), which achieve an accu-
racy of 84.69% and 79.2%. They applied their own data and
a state-of-the-art dataset of motor imagery EEG in an effort
to create their own BCI system with an Emotiv system. These
accuracies are comparable to the PLV-SF method using the
Linear Discriminant Analysis, SVM (Linear and Quadratic),
and KNN (with any kernel except the Coarse one), whose
results exceed 80% accuracy.

Furthermore, PLV-SF method was contrasted with a well-
known spatial filter method, the FBCSP. In this case, the MI of
both hands of the Emotiv EPOC+ dataset is classified. Only
these two classes were used in order to apply the original
CSP algorithm, which is based on a binary comparison.
Four different cases were studied, in which the classification
algorithms were used with: the raw data, the data filtered
by CSP, the data filtered by the PLV-SF and the combination
of both filters (PLV-SF-CSP). Fig. 5 shows the accuracies
obtained from this analysis. If we apply the non-parametric
Wilcoxon test, the p-values show significant differences in five
algorithms: Discriminant Analysis with a Linear (p < 0.01)
and a Quadratic (p < 0.01) kernel, and the SVMs, which
use a Linear (p < 0.01), Quadratic (p < 0.01) and Medium
Gaussian (p < 0.01) kernel. We can see from Fig. 5 that
the significance in the SVM algorithm with Quadratic and
Gaussian kernel algorithms shows that FBCSP is better, while
in the case of Linear Discriminant Analysis and the SVM with
the Linear and Quadratic kernel, the PLV-SF obtains signifi-
cantly better values. If the same non-parametric test is applied
with the FBCSP method versus the combination of both, the
PLV-SF-CSP method, there are no significant differences in
the Decision Trees with a Medium (p = 0.649) and Coarse
(p = 0.2381) kernel and with a Quadratic Discriminant
Analysis algorithm (p = 0.6081). Therefore, by observing
Fig. 5 we can affirm that the combination of both methods
is better in all the algorithms except in these three, which

yield similar results. Similarly, it is possible to apply the
Wilcoxon test between the values obtained with the PLV-SF
and the PLV-SF-CSP method, which shows significant differ-
ences in all the algorithms (p < 0.05), except with a Fine
Decision Tree (p = 0.1008). Looking again at Fig. 5, all
the algorithms show improvements except two, the Linear
Discriminant Analysis and the Linear SVM, in which sim-
ply applying the PLV-SF method is better. Yu et al. [39]
show that our results are comparable to theirs. They per-
form a binary comparison with users selected from several
datasets, obtaining average accuracies ranging from 73.75
to 86.11. Elsewhere, the binary classification carried out by
Ghanbar et al. [40] obtains accuracy ranges between 58.61%
and 83.48%. In our case, the Linear Discriminant Analysis,
Linear SVM and Quadratic SVM algorithms stand out, with
values exceeding 90% accuracy.

We must emphasize the importance of our method in terms
of data processing, since in the case of CSP, it is necessary
to work not only with the class that we want to filter, but
also with the remaining classes, increasing its complexity in
a multiclass classification context. The PLV-SF method works
individually with each class.

IV. CONCLUSION

There is an extensive body of literature on the development
of BCI systems that require high accuracy to ensure proper
results. Specifically, in this manuscript, a well-known metric,
namely PLV, which is commonly used as a feature in classi-
fiers, has been shown to be an effective metric to use in the
graph Laplacian quadratic form to filter the signal, improving
the performance of the BCI.

The PLV-SF method significantly facilitates the task of
a wide set of classifiers commonly used in this type of
application, which is an essential aspect for good performance
in a real context. Moreover, similar or better results (depending
on the algorithm used) were obtained compared to the FBCSP
method.

In summary, the application of PLV as a filter method
reduces the amount of noise and artifacts in the signal, while
highlighting the characteristics of the EEG signal for each
task. This makes the data preprocessing more accurate, and
the classifier performs better.
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