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Simultaneous Prediction of Wrist and Hand
Motions via Wearable Ultrasound Sensing
for Natural Control of Hand Prostheses
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Abstract— Simultaneous prediction of wrist and hand
motions is essential for the natural interaction with hand
prostheses. In this paper, we propose a novel multi-out
Gaussian process (MOGP) model and a multi-task deep
learning (MTDL) algorithm to achieve simultaneous pre-
diction of wrist rotation (pronation/supination) and finger
gestures for transradial amputees via a wearable ultra-
sound array. We target six finger gestures with concurrent
wrist rotation in four transradial amputees. Results show
that MOGP outperforms previously reported subclass dis-
criminant analysis for both predictions of discrete fin-
ger gestures and continuous wrist rotation. Moreover,
we find that MTDL has the potential to improve the accu-
racy of finger gesture prediction compared to MOGP
and classification-specific deep learning, albeit at the
expense of reducing the accuracy of wrist rotation pre-
diction. Extended comparative analysis shows the supe-
riority of ultrasound over surface electromyography. This
paper prioritizes exploring the performance of wearable
ultrasound on the simultaneous prediction of wrist and
hand motions for transradial amputees, demonstrating the
potential of ultrasound in future prosthetic control. Our
ultrasound-based adaptive prosthetic control dataset (Ultra-

Manuscript received 29 December 2021; revised 10 June
2022 and 19 July 2022; accepted 7 August 2022. Date of publication
10 August 2022; date of current version 8 September 2022. This work
was supported in part by the National Natural Science Foundation
of China under Grant 51575338 and Grant 61733011, in part by
the Guangdong Science and Technology Research Council under
Grant 2020B1515120064, and in part by the Shenzhen Science
and Technology Program under Grant JCYJ20210324120214040.
(Corresponding authors: Honghai Liu; Pu Wang; Zhengen Zhao.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the SJTU Institutional Review Board under Application No. E2021103,
and performed in line with the Declaration of Helsinki.

Xingchen Yang is with the Swiss Federal Institute of Tech-
nology Lausanne (EPFL), 1015 Lausanne, Switzerland (e-mail:
xingchen.yang @epfl.ch).

Yifan Liu is with the State Key Laboratory of Robotics and Systems,
Harbin Institute of Technology, Shenzhen 518055, China.

Zongtian Yin is with the Robotics Institute, Shanghai Jiao Tong Univer-
sity, Shanghai 200240, China.

Pu Wang is with the Seventh Affiliated Hospital, Sun Yat-sen University,
Shenzhen 510275, China (e-mail: wangpu0816 @gqg.com).

Peilin Deng and Zhengen Zhao are with the Mianzhu People’s Hospital,
Mianzhu 618200, China (e-mail: mzzhengen @ 163.com).

Honghai Liu is with the State Key Laboratory of Robotics and Systems,
Harbin Institute of Technology, Shenzhen 518055, China, and also with
the School of Computing, University of Portsmouth, Portsmouth PO1
3HE, U.K. (e-mail: honghai.liu@icloud.com).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2022.3197875, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2022.3197875

This work is licensed under a Creative Commons Attribution 4.0 License.

Pro) will be released to promote the development of the
prosthetic community.

Index Terms— Simultaneous wrist and hand motion con-
trol, transradial amputees, wearable ultrasound, multi-
out Gaussian process, multi-task deep learning, UltraPro
dataset.

|. INTRODUCTION

HE lack of motor abilities, as well as self-perception

issues and phantom limb pain, may affect the lives
of individuals with transradial amputation in physical, emo-
tional, and financial matters. Cosmetic prostheses can address
appearance, but they cannot improve motor function. Current
prosthetic hands, however, are now able to replicate most of
the functions of the human hands while maintaining a natural
appearance. Unfortunately, the complexity of controlling all of
those degrees of freedom (DoFs) places an excessive cognitive
burden on the user. Indeed, current human-prosthetic interfaces
are usually limited to a non-intuitive, sequential and on/off
control of a limited number of DoFs, which can only restore
some simple hand functions. As natural hand movements are
usually composed of simultaneous activation of wrist and
hand motions, a biomimetic and intuitive controller of the
prosthetic hand should be able to provide simultaneous control
of multi-DoF wrist and hand movements.

There are mainly two types of methods to achieve simulta-
neous control of muti-DoF wrist and hand motions: data-driven
methods, and model-driven (data-free) methods. Data-driven
methods map the relationship between human neural signals
and wrist and hand motions through various machine learning
methods, including classification, regression, and blind source
separation. Davidge er al. proposed a linear discriminant
analysis (LDA) method to classify combined wrist and hand
motions, where both individual wrist or hand motions (single-
DoF) and their combinations (muti-DoF) were labeled as
different classes [1]. Despite the promising performance of
this method, training samples from both single-DoF and multi-
DoF motions were required to ensure a good classification
performance. Parallel classification scheme [2], [3], linearly
enhanced training [4], LDA dimensionality reduction [5], and
muscle synergy analysis [6] were proposed to decompose
complex classification tasks, by which simultaneous control
of multi-DoF wrist and hand motions can be achieved through
only single-DoF training. Yet, the number of DoFs that can
be simultaneously controlled is limited and the classification
performance is not ideal when the model is trained with only

For more information, see https://creativecommons.org/licenses/by/4.0/
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single-DoF motions. In addition to classification methods,
regression techniques have shown remarkable performance
in the simultaneous prediction of multi-DoF wrist and hand
motions. It can achieve a more natural proportional control
of each DoF, albeit at the expense of increasing training
complexity [7], [8], [9]. To reduce the training complexity
while maintaining natural proportional control, Jiang et al. pro-
posed a non-negative matrix factorization method to directly
decode two-DoF wrist torques from surface electromyography
(sSEMG) [10]. This method can be used for simultaneous wrist
and hand motion control but is usually limited to two-DoF con-
trol [11]. Recently, model-driven methods have been explored
to overcome the complex training problems inherent to data-
driven methods, where musculoskeletal models were applied
to build the mapping between human neural signals and
hand movements [12], [13]. Unfortunately, calibrating the
parameters of musculoskeletal models remains troublesome.
So far, complex training, limited controllable DoFs, and the
lack of proportional control still limit the natural control of
multi-DoF prosthetic hand.

In addition to intention recognition models, muscle sens-
ing modalities play an important role in prosthetic control.
Ultrasound sensing is an emerging modality in this field that
can provide morphological information of functional muscles
during hand movements. Compared to SEMG, it has a higher
spatial resolution and can distinguish the activities of differ-
ent muscles especially the deep-seated ones. Ultrasound has
shown its ability in finger gesture recognition [14], [15], finger-
tip force estimation [16], lower limb motion recognition [17],
gait phase identification [18], (virtual) prosthetic hand manip-
ulation [19], [20], and soft exosuit control [21]. Moreover, our
previous study demonstrated that simultaneous finger gestures
and wrist rotation can be predicted by ultrasound sensing with
a novel subclass discriminant analysis (SDA) algorithm [22].
This can achieve simultaneous control of multi-DoF wrist
and hand motions with less user training time. However, the
algorithm was only validated on non-disabled subjects, and the
feasibility of ultrasound sensing in amputee prosthetic control
remains to be verified, especially for simultaneous control of
wrist and hand motions.

This paper seeks to explore the performance of wear-
able ultrasound on the simultaneous prediction of wrist and
hand motions for amputees. We conducted an experiment
to predict six finger gestures with concurrent wrist rotation
(pronation/supination)! in four transradial amputees. As an
extension to our previous study [22], we first validated the
effectiveness of SDA on the simultaneous control of fin-
ger gestures and wrist rotation for amputees. Additionally,
we proposed a novel multi-out Gaussian process (MOGP)
model to achieve better control of simultaneous wrist and hand
motions compared to SDA. Finally, we validated the potential
of multi-task deep learning (MTDL) in further improving the
performance of wrist and hand motion control. To promote the
development of the prosthetic community, we will release the
ultrasound-based adaptive prosthetic control dataset (UltraPro
https://doi.org/10.6084/m9.figshare.20448489.v1). This paper
will open up a new era of ultrasound-based prosthetic control.

In this paper, unless otherwise specified, the wrist rotation refers to wrist
pronation/supination.
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Fig. 1. lllustration of the subclass discriminant analysis (SDA), where
original two classes (i.e., A and B) were divided into three subclasses
(i.e., Aj and B;). The classification of subclasses can give extra infor-
mation about original classes and make the classification boundaries
between original classes become non-linear.

Il. MACHINE LEARNING ALGORITHMS

The focus of this study is to achieve simultaneous prediction
of different finger gestures and wrist rotation. To this end,
we propose a series of algorithms that can accomplish different
prediction tasks at the same time, including SDA, MOGP, and
MTDL. We briefly summarize these algorithms as follows.

1) o Subclass Discriminant Analysis: SDA is an extension
of LDA [23], which aims to solve non-Gaussian classification
problems by separating classes at a subclass level, because
the data distribution within a class can be a mixture of Gaus-
sians [24]. By dividing each class into different subclasses
that follow a Gaussian distribution, we can well describe the
data variance of each class and obtain additional subclass
information (Fig. 1). The research on SDA usually emphasize
the separability of original classes rather than subclasses,
ignoring the potential meaning of subclasses [25], [26],
[27], [28]. Our previous study showed that the subclass infor-
mation of each finger gesture can be used to represent the wrist
rotation position [22]. Therefore, we can obtain simultaneous
finger gesture and wrist rotation information by classifying
finger gestures at a subclass level.

Supposing C;(i = 1,2, ..., N) represents the data of finger
gesture i, and C;; (j = 1,2, ..., K) represents the subclass j
of finger gesture i, and o represents the normalized wrist
rotation angle of finger gesture i. By dividing the subclasses
according to a, the subclass j can reflect the wrist rotation
position. Taking three wrist rotation positions (i.e., wrist
supination, wrist pronation, and neutral wrist position) as
an example, the number of subclasses is set to 3 and the
subdivision of each class is defined as follows

Ci1:0<a <l
Cpn:l<a<u
Co:u<ac<l (D

where / and u are hyperparameters for dividing wrist rotation
positions. C;1, Cj2 and C;3 represent data from wrist supina-
tion, wrist pronation, and neutral wrist position, respectively.
In terms of previous studies, @ can be acquired by addi-
tional sensors like goniometer and inertial measurement unit
(IMU) [22] or autonomous clustering methods [24], [25].
In addition, the first principal component (PC#1) of ultrasound
features has been used to represent a, since the PC#1 is
inherently linear to the wrist rotation angle [22]. In this study,
we attempted IMU-, PC#1-, and Kmeans-based methods to
obtain/cluster wrist rotation angles for the subclass division.
For IMU- and PC#l1-based methods, / and u were optimized
with a dense grid search.
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Fig. 2. Framework of the multi-task CNN model.

After dividing subclasses according to wrist rotation posi-
tions, we classify all subclasses together and then map
the result (Cﬁ) to finger gestures (Cﬁ — C5) and wrist
rotation positions (C;; — C)). Through this course-to-fine
process, we can predict finger gestures and wrist rotation
simultaneously.

2) e Muti-output Gaussian Process: Gaussian process (GP),
a non-parametric Bayesian model, has shown excellent per-
formance in hand kinematics prediction [29]. However, few
have attempted the simultaneous prediction of multi-DoF wrist
and hand motions using MOGP, especially for the mixed
problems of classification and regression. Herein, we propose a
MOGP model to achieve simultaneous prediction of discrete
finger gestures (classification) and continuous wrist rotation
(regression).

Define N training samples X = {x,,},iv=1 and corresponding
targets y = {y,,}f;’:l. (xx, ¥«) is a group of test sample. We can
have a brief form of GP

[HNN([;Hg gTD @

where is a mean vector and normally set to 0. K, K,

K., are kgrnel matrix of tranining data, kernel matrix between
training data and test data, and kernel matrix of test data,
respectively. The probability p(y.|y) also follows a Gaussian
distribution

Valy ~ N(K*K’ly, K**—K*K’IK*T) 3)
The best estimation of y, is
o= KiK'y “)

To achieve simultaneous prediction of finger gestures and
wrist rotation, we define y, = (¢, pn), Where ¢, represents
the finger gesture class and p, represents the wrist rotation
angle. To integrate classification and regression problems
together, we convert ¢, to one-hot encoding [30]. Therefore,
yn = (one-hot(cy), pn), and the best estimation of y, is

5« = KK~ Yone-hot (c), p} )

Normally, the standard GP model assumes a single output
variable only. To optimize the above-mentioned multi-output
problem, we can build an independent GP for each output vari-
able [31]. To improve computational efficiency, we attempted

Dropout=0.5

a batch independent multi-output GP (iMOGP) model, where
kernel parameters are shared among different GPs.

Independent GP is a suboptimal solution for multi-output
regression because the correlation among different output
variables are not considered [31]. Considering the correlation
between classification and regression tasks [32], we modify
the kernel matrix K to

Kn=B®K (6)
bi1 by ... hir
by by ... bor

B = . @)

br1 bra ... brT

where T represents the number of tasks, B;; represents the
correlation between different tasks, ® represents Kronecker
product.

In MOGTP, the correlation between different tasks is usu-
ally considered, we therefore named it as general MOGP
(gMOGP).

3) o Muti-task Deep Learning: Deep learning, represented
by convolutional neural network (CNN) and autoencoder,
has shown excellent performance in computer vision [33],
natural language processing [34], and electrophysiological
signal processing [35], because it can avoid tedious process
of manually extracted features and has superior performance
over traditional statistic learning models given enough data.
As such, we propose a muti-task CNN (MTCNN) model
for the simultaneous prediction of discrete finger gestures
and continuous wrist rotation. The structure of the model is
shown in Fig. 2, where ReLU is used as activation function,
cross entropy is used as classification loss function, and mean
squared error is used as regression loss function. For both
convolution and pooling, the stride step is set to one.

Unlike traditional single-output CNN models, the weights
of our MTCNN model are shared among different tasks until
the last fully connected layer, and the total loss is the weighted
sum of the losses of different tasks [36].

lossiotal = wlosse + (1 — w)loss, ()

where loss. is the loss of classification task, loss, is the
loss of regression task, and w is the loss weight. w was
optimized with a dense grid search ranging from 0 to 1,
separated by 0.1, towards the aim of improving classification
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TABLE |
AMPUTEE SUBJECT DEMOGRAPHICS
Subject Age Gender Time since Amputation Level of Amputation Amputation Side Prothesis Experience  Experiment Experience
Al 56 M 3 years Transradial Right None None
A2 71 M 15 years Transradial Right None None
A3 67 M 13 years Transradial Left Cosmetic Prosthesis Yes
A4 43 M 16 years Transradial Right Myoelectric Prothesis Yes

(B
Ultrasound
Array |

Ultrasound
System

Fig. 3. Experiment setup. sEMG and IMU represent surface electromyo-
graphy and inertial measurement unit, respectively.

performance of finger gestures. Because manually tuning the
loss weight is a tedious and expensive process, we also attempt
to select the loss weights of different tasks by considering the
homoscedastic uncertainty of each task [37], where the loss
balance of different tasks is addressed

L0SSiotal = %lossc + Lzlossr + log(o1) + log(o2) (9)
20 205
where o1 and o, are weight parameters that can be automat-
ically learned by the CNN model. y is a weight parameter
used to balance the magnitude of /oss. and [oss y. Empirically,
y 1is set as 10. When optimizing the weight parameters
automatically, we name it as MTCNN-auto.

The implementation of SDA is based on Matlab 2016 Rb
(Mathworks Inc.), and the implementation of MOGP and
MTDL is based on Python with Pytorch framework.

I1l. EXPERIMENT EVALUATION
A. Data Recording

Four transradial amputees volunteered for this study. All
provided the informed consent prior to participating in the
experiment. The demographic information of the subjects is
shown in Table I. The experiment was approved by the SITU
Institutional Review Board (E2021103).

The experiment setup is shown in Fig. 3. The subjects sat
naturally, held their forearms horizontally, and kept palms
upwards. The angle between the upper arm and the forearm
was about 120°. Eight 5-MHz A-mode ultrasound transducers

"H . Wrist rotation

< < < < < <
>

>

Fig. 4. Finger gestures. From left to right: rest (RS), power grip (PG),
index point (IP), fine pinch (FP), tripod grip (TG), and key grip (KG).

were evenly attached around the forearm of the amputated
side with a customized armband, and no specific muscle
was targeted. The transducers were sequentially driven by a
customized wearable ultrasound system, with a pulse repetition
frequency (frame rate) of 10 Hz and sampling points of 1000 at
20 MHz sampling rate for each channel [20]. A commercial
inertial measurement unit (IMU, Xsens-MTi-100, Xsens Tech-
nologies B.V., Netherlands) was attached on the wrist of the
healthy side to measure wrist rotation angles. Eight SEMG
sensors (TrignoTM Wireless System, Delsys Inc., Natick,
MA, USA) were also evenly attached around the forearm
near the ultrasound transducers. For A2, only seven sEMG
sensors were attached due to the limited space. A custom-
built software was used to stream ultrasound, SEMG and IMU
signals synchronously to a computer. The sampling rate of the
IMU sensor was set as 10 Hz to match the ultrasound data,
and the sampling rate of SEMG was 1925.926 Hz.

Wrist rotation (pronation/supination) and six finger gestures
were studied in this work, including rest (RS), fine pinch
(FP), key grip (KG), tripod grip (TG), index point (IP), and
power grip (PG) (Fig. 4). The subjects followed a dynamic
mirrored bilateral training, in which they mimicked given
movements simultaneously with both their intact and ampu-
tated hands. Movement of the intact hand is to assist the
imaginary movement of the amputated hand [38]. Ultrasound
and sEMG signals were collected from the amputated hand,
and wrist rotation angles were collected from the intact hand.
The experiment consisted of three repeated sessions. In each
session, each finger gesture was performed for 50 seconds
with concurrent wrist rotation at a frequency of approximately
0.5 Hz. Taking the neutral wrist position as 0°, the wrist
rotation range was approximately —90° to 90°, i.e., from
maximum pronation to maximum supination. To avoid muscle
fatigue, there was 10 seconds of rest between two continu-
ous finger gestures. Before formal data collection, subjects
were given sufficient time to familiarize themselves with the
experiment.
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B. Data Processing

1) Ultrasound Feature Extraction: The mean value of a
segment of A-mode ultrasound signal, which reflects the
ultrasound echogenicity [17], was selected as the ultrasound
feature. Specifically, the A-mode ultrasound signals were first
preprocessed with time gain compensation, bandpass filtering,
envelope detection, and log compression [14]. Then, the
preprocessed ultrasound signals were evenly divided into a
series of segments with a length of 20 data points. There were
1000 data points in each frame of ultrasound signal. Since the
first and the last 20 data points carried little valuable informa-
tion, they were removed before segmentation. Accordingly, the
data of each sensing channel were divided into 48 segments.
For each segment, the mean value (echogenicity) was extracted
and noted as the feature. The features of different sensing
channels were cascaded together, forming a 384 x 1 feature
vector. Finally, principal component analysis was used to
reduce the feature dimensionality, with 95% of the total
variance preserved.

For deep learning method, the preprocessed ultrasound
signals were directly input to the model.

2) SEMG Feature Extraction: The collected SEMG signals
were first bandpass filtered between 20-450 Hz and comb
filtered at 50Hz with Butterworth filters. Then, the filtered
signals were segmented into 200 ms analysis windows with
an overlap of 100 ms. Standard time domain feature sets were
extracted from each analysis window, which consisted of mean
absolute value (MAV), sign slope change (SSC), zero crossing
(ZC), and waveform length (WL) [39]. Finally, the features
from different channels were cascaded together.

3) Train-Test Split: We analyzed the data of each session
individually. In each session, we collected 50 seconds of data
for each finger gesture. To simulate the real-time application,
the first 40 seconds of data of each finger gesture were split
into the training set and the remaining into test set.

For deep learning method, the first 25% of data of each
gesture in the test set was selected as validation set to optimize
model hyperparameters, and the remaining was for testing.
To give a fair comparison with the deep learning method,
we recalculated the results of SDA and MOGP by discarding
the validation set data when comparing with the CNN method.

4) Gesture Selection: For amputate subjects, the performed
finger gestures were based on imaginations. This is highly
dependent on their cognitive abilities, and confusion of some
finger gestures is inevitable. To this end, we not only ana-
lyzed the prediction performance of all six gestures, but also
evaluated the prediction performance of the best four or five
gestures. During gesture selection, the gesture with the worst
classification accuracy was removed.

C. Evaluation Metrics

We used classification accuracy to assess the finger gesture
classification performance and coefficient of determination
(R?) to assess the wrist position prediction performance.
Note that SDA can only predict discrete wrist rotation posi-
tions, so the wrist rotation prediction performance of SDA is
assessed by classification accuracy.

Mean -sEMG
Median I:l Ultrasound

"

A1 A2 A3 A4
Subject

N

¢

<
o

o o
N =

o

Finger Classificaion Accuracy

Fig. 5. Comparative analysis of SEMG and ultrasound on finger gesture
classification.

D. Statistical Analysis

Two-way repeated-measure analysis of variance (ANOVA)
followed by a Tukey post-hoc test was applied to evaluate the
impact of different algorithms and subjects on the prediction
performance. On the other hand, if analyzed data does not
follow a normal distribution or does not meet the homogeneity
of variance test, Mann-Whitney U test would be applied. The
significance level was set to 0.05.

IV. RESULTS
A. SEMG Vs. Ultrasound

The comparative analysis of SEMG and ultrasound on finger
gesture classification is shown in Fig. 5, where the LDA clas-
sifier was applied. It was found that ultrasound outperformed
SEMG significantly for all subjects, with higher classification
accuracy and smaller standard deviation. Considering the
poor finger gesture classification performance of SEMG in
this experiment, only the results of ultrasound are reported
below.

B. SDA

The performance of SDA for the simultaneous classification
of wrist and hand motions is shown in Figs. 6(A) and (B),
where LDA and quadratic discriminant analysis (QDA) are
used as benchmarks. Statistical analysis shows that both algo-
rithms and subjects have significant impacts on the classifica-
tion performance, and there is no interaction between the two
factors. For the finger gesture classification, the performance of
SDA (e.g., SDA-IMU and SDA-PC#1) was significantly better
than LDA and slightly better than QDA. In the meanwhile,
SDA can achieve accurate classification of wrist rotation.
Among different subclass division methods, SDA-PC#1 per-
formed best, with a finger gesture classification accuracy of
74.78% =+ 8.85% and a wrist rotation classification accuracy
of 92.5% =+ 2.21%. Considering the superior performance of
SDA-PC#1, we used SDA-PC#1 for the following comparative
analyses.

The linear relationship between the normalized PC#l
and the normalized wrist rotation angle is shown in Fig. 7,
and the detailed fitting metrics are listed in Table IV (high-
lighted in gray). This explains why the PC#l of ultra-
sound features can be used for subclass division and also
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Fig. 6. Performance of simultaneous prediction of wrist and hand motions for different amputees. LDA: linear discriminant analysis, SDA: subclass
discriminant analysis, QDA: quadratic discriminant analysis, iIMOGP: batch independent multi-output Gaussian process, gMOGP: general multi-output
Gaussian process. The standard deviations are shown with error bars, and the last column shows the average results of all subjects.

demonstrates the potential of PC#1 in continuous wrist rotation
control.

C. MOGP

The performance of MOGP for the simultaneous prediction
of wrist and hand motions is shown in Figs. 6 and (D), where
SDA-PC#1 is used as a benchmark. Statistical analysis shows
that both algorithms and subjects have significant impacts
on the classification performance, and there is no interaction
between the two factors. It was found that both iMOGP and
gMOGP can significantly improve finger gesture classifica-
tion performance, with a classification accuracy above 80%.
At the meanwhile, MOGP (i.e., iMOGP and gMOGP) can
accurately predict continuous wrist rotation positions, with a
R? above 0.935. In addition, the performance of iMOGP was
comparable to gMOGP. We did not compare the wrist rotation
prediction performance of SDA and MOGP, since SDA was
used for discrete wrist rotation classification while MOGP
was used for continuous wrist rotation prediction. Considering
the simplicity of iMOGP and its comparable performance
to gMOGP, we used iMOGP for the following comparative
analyses.

Fig. 8 shows the performance of SDA and MOGP for the
simultaneous prediction of wrist and hand motions when the
number of gestures is reduced from six to four. In terms of
finger gesture classification, MOGP performed significantly
better than SDA on the six or five gesture classification tasks,
and slightly better than SDA on the four gesture classification
task. Overall, when the number of gesture was reduced from
six to four, the classification accuracy of MOGP increased
from 80.35 £ 7.54% to 89.85 + 4.27%. In terms of wrist
rotation prediction, the performance of SDA remained stable

% Wrist Rotations vs. PC#1 = L x’?fx el
Linear Fitting = "

Normalized Wrist Rotation Angle

0 0.2 0.4 0.6 0.8 1
Normalized PC#1

Fig. 7. Linear relationship between the normalized PC#1 of ultrasound
features and the normalized wrist rotation angles for a representative
subject.

TABLE Il
GESTURES REMOVED WHEN REDUCING THE NUMBER
OF GESTURES FROM SiIX TO FOUR

Subject Rem. Ges. 1  Rem. Ges. 2
Al FP KG
A2 KG FP
A3 PG FP
Ad FP PG

while the performance of MOGP slightly decreased as the
number of gestures reduced. Tables II shows the gestures
removed when reducing the number of gestures from six to
four (Rem.Ges.i represents the ith removed gesture). FP, KG,
and PG were usually removed during the gesture selection due
to the similarity between FP and TG/RS and KG and PG.
Fig. 9 shows an example of the performance of MOGP
on the simultaneous prediction of finger gestures and wrist
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TABLE IlI
CoMPARISON OF MOGP AND CNN ON FINGER GESTURE CLASSIFICATION (ACCURACY)

- A1-S1 A1-Sy A1-S3 Ar-S) Ar-S> Ar-S3 A3-S) A3-S) A3-S3 Ay-Sy Ay-S Ay-S3
MOGP 0.764 0.84  0.749 0.84 0.78 0.74 0.702 0.707 0.667 0.887 0.873 0.862
CNN 0.76 0.827 0.764 0.829 0.764 0.8133 0.673 0.613 0.629 0.869 0.844 0.836
MTCNN-auto  0.753  0.831 0.764  0.82 0.74 0.802  0.691 0.609 0.656 0.876 0.836  0.873
MTCNN 0.778 0.847 0.778 0.84 0.78 0.853 0.702 0.676  0.684 0.9 0.853  0.871

rotation. Obviously, the finger gestures were accurately classi-
fied and the predicted wrist positions were well aligned with
the real wrist positions.

D. MTDL

Fig. 10 shows the performance of MTDL for the simulta-
neous prediction of wrist and hand motions, where MOGP
is used as a benchmark. Statistical analysis shows that only
subjects have a significant impact on the classification per-
formance, and there is no significant interaction between
subjects and algorithms. Overall, the performance of MOGP,
CNN, MTCNN, and MTCNN-auto were comparable for both
finger gesture and wrist rotation prediction. The detailed
results are listed in Tables III and IV (A;-S; represents data
from Amputee i, Session j), where the best results were
highlighted in bold. Despite no statistical difference, in most
cases, MTCNN obtained the best finger gesture classifica-
tion accuracy, and MOGP obtained the best wrist rotation

prediction accuracy. With appropriate loss weights, MTCNN
can always achieve better gesture classification accuracy than
single-output CNN and in most cases achieve better gesture
classification accuracy than MOGP (Table III), albeit at the
expense of reducing accuracy of wrist rotation prediction
(Table TV). MTCNN-auto can achieve a balanced performance
between gesture classification and wrist rotation prediction.

In general, regression-based methods (i.e., MOGP, CNN,
MTCNN, and MTCNN-auto) had better performance in wrist
rotation prediction than the PC#1-based method.

V. DISCUSSION

Simultaneous prediction of wrist and hand motions with
muscle signals is essential for the natural control of hand
prostheses. SEMG has shown great potential in this field. It can
represent neuromuscular activity and can be easily collected
from the skin. However, due to the crosstalk, attenuation,
and nonstationarity of SEMG signals, SEMG can only reflect
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TABLE IV
COMPARISON OF MOGP AND CNN ON WRIST ROTATION PREDICTION (R?)

- A1-S1 A1=S2  A1=S3 Ax-S1 Ax-Sy Ap-S3 A3-S1 A3-Sa A3-S3 As-Si AssSy Ag-S3
PC#1 0.795 0.791 0.8 0.833 0.86 0.854 0945 0915 0932 0.856 0.888 0.874
MOGP 0903 0913 0918 0.94 0.939 0.92 0963 0914 0.97 0951 0952 0.804
CNN 0.876 0922 0.892 0934 0932 0906 0.964 0.95 0.967 0.95 0.947 0.8
MTCNN-auto 0.861 0.904 0.896 0.877 0.908 0.887 0.954 0.902 0.934 0.942 0.945 0.777
MTCNN 0.874 0.867 0.819 0.839 0.909 0.86 0942 0916 0936 0918 0.853 0.788
- A VoGP ICNN CTJMTCNN-auto C_IMTCNN B VoGP EllcNN CTIMTCNN-auto C_IMTCNN
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Fig. 10. Comparison of MOGP and CNN for the simultaneous prediction of wrist and hand motions.

activity of large and superficial muscles but cannot distinguish
activity of finger- and wrist- related deep muscles. Therefore,
the performance of SEMG on the simultaneous control of wrist
and hand motions is limited [40]. Ultrasound can distinguish
the activity of muscles centimeters below the skin, so it is
able to decouple the movements of finger and wrist using
morphological information of deep muscles [22]. To this
end, we achieved simultaneous prediction of wrist and hand
motions using ultrasound signals. To improve the useability
of this technology, we applied a wearable A-mode ultrasound
array instead of cumbersome B-mode ultrasound system.
We have demonstrated that simultaneous finger gestures and
wrist rotation can be predicted by ultrasound sensing with
an SDA algorithm [22]. However, the algorithm was only
validated in non-disabled subjects. In this study, for the first
time, we validated the effectiveness of SDA in amputees.
Additionally, in view of the limitations of traditional classifica-
tion and regression techniques in simultaneous wrist and hand
control - the training process is complex and the controllable
DoFs are limited, we proposed a hybrid pattern recognition
and regression scheme to achieve simultaneous control of
multiple discrete finger gestures and continuous wrist rotation.
Specifically, we proposed MOGP and MTDL to achieve this
goal.

A. Effectiveness of SDA

In non-disabled subjects, we demonstrated that SDA can
achieve accurate control of finger gestures and wrist rotation,
and that SDA-PC#1 performed best among different subclass
division methods. In addition, the performance of SDA was
superior to LDA but inferior to QDA in finger gesture clas-
sification [22]. The results of our amputee test were highly
consistent with the non-disabled test, except that QDA did
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Fig. 11. Influence of subclass number on the classification performance
of SDA.

not outperform SDA in gesture classification (Fig. 6A). This
may arise from the difference of muscle condition between
non-disabled and amputee subjects. Since the muscle contrac-
tion of amputees is significantly smaller than that of non-
disabled subjects, the features of different finger gestures
are mixed together and hard to be discriminated by simple
quadratic classification boundaries. By contrast, SDA uses
auxiliary supervision information from wrist rotation to clas-
sify finger gestures, so better classification boundaries can be
found. To further verify the effectiveness of SDA, we divided
the wrist rotation into one to five subclasses in turn. The
subclasses were evenly divided according to the rotation range
of the wrist. Results showed that SDA can robustly improve
the finger gesture classification performance regardless of the
subclass number (Fig. 11). When the number of subclasses
was four, the best finger gesture classification performance can
be achieved. The wrist classification performance decreased as
the number of subclasses increased.

Despite the remarkable performance of SDA, it can only
control discrete wrist rotation. Our previous study showed
that the PC#1 of ultrasound features was approximately lin-
ear to the wrist rotation position [22]. Therefore, it can be
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integrated into SDA for continuous wrist rotation control.
Likewise, consistent results were obtained in our amputee test
(Fig. 7 and Table 1V).

B. Superiority of MOGP

While SDA and PC#1 are effective for wrist and hand
motion control, the control performance remains to be
improved. We applied GP here because it has shown excellent
performance in hand kinematics prediction [41]. Instead of
building individual GP model for gesture classification and
wrist regression, a unified GP model for both tasks can reduce
the computational burden. To this end, we converted the
gesture classification task into a regression task using the
one-hot encoding technology [30], so as to integrate it with
the wrist regression task. Moreover, to take advantage of the
inherent correlation between gesture classification and wrist
regression tasks, we modified the kernel matrix to include the
task correlation [32], [42]. Results showed that MOGP can
significantly improve the performance of gesture classification
and wrist rotation prediction compared to SDA and PC#l
(Fig. 6B), and the performance of iMOGP was comparable
to gMOGP (Figs. 6C and 6D). One possible reason is that
iMOGTP has captured the inherent correlation between gesture
classification and wrist regression when optimizing unified
hyperparameters for the two tasks.

Fig. 12 shows a comparison of classification boundaries of
SDA and MOGP. We found that both SDA and MOGP have
the potential to solve the non-Gaussian classification problem.
Here we did not find significant advantage of MOGP over
SDA, because the features were reduced to two dimensions
and the gesture classes were reduced to two. Nevertheless, the
classification boundary of MOGP is a hypersurface, with better
nonlinear characteristics than the hyperpolygonal boundary
in SDA.

C. Potential of MTDL

In addition to MOGP, MTDL has been an effective way
to solve multi-task prediction problems [36], [43]. Unlike
extracting hand-crafted features and predicting them with a
GP model, deep learning is a purely data-driven method that
can achieve better performance given enough data. Previous
studies have demonstrated that MTDL can achieve better per-
formance than single-task models, because it can provide more
supervision information for model training [37], [44]. In this
study, we proposed an MTDL model and two optimization

strategies to select the loss weights of different tasks. One
is to manually optimize the loss weights of different tasks,
and the other is to automatically optimize according to uncer-
tainty [37]. When automatically optimizing the loss weights,
the model can achieve a balanced performance between classi-
fication and regression, although both the accuracy of gesture
classification and wrist regression were slightly lower than
MOGP. When manually optimizing the loss weight towards
the aim of improving gesture classification performance, the
gesture classification accuracy of MTDL can exceed MOGP
in most cases, albeit at the expense of reducing wrist rotation
prediction accuracy. This demonstrated the potential of MTDL
in further improving the gesture classification performance.
Due to the limited amount of data, we only attempted simple
one-dimensional convolution in this study. More complex
CNN structures will be explored in the future.

D. Comparison of SDA, MOGPE, and MTDL

Overall, MOGP and MTDL can achieve better perfor-
mance in gesture classification and wrist rotation prediction.
Nevertheless, SDA (i.e., SDA-PC#1) and PC#1 can achieve
unsupervised prediction of wrist rotation. If the experiment
platform is limited (e.g., in-home use), SDA and PC#1 will
be good choices for wrist rotation control.

E. Comparison of sEMG and Ultrasound

To better present the gesture classification performance
of ultrasound, we compared the gesture classification accu-
racy of ultrasound with currently prevailing SEMG (Fig. 5).
Although there were differences in the placement of SEMG
and ultrasound sensors, we found that ultrasound significantly
outperformed sEMG on gesture classification accuracy. This
result is consistent with our previous findings in non-disabled
tests [45], further validating the potential of ultrasound in
amputee prosthetic control. In our previous study [45], we also
demonstrated that SEMG and ultrasound had complementary
advantages, and indeed there have been several studies focus-
ing on the fusion of SEMG and ultrasound for better motion
intention prediction. Current fusions are typically limited to
weighted averages of muscle activations obtained from SEMG
and ultrasound [46] or cascades of SEMG and ultrasound fea-
tures [47]. More fusion strategies should be explored to fully
exploit the complementary information of the two signals.

F. Limitations and Future Work

First, gestures were held for a rather long time during
the experiment, which is inconsistent with normal functional
duration. Shortening the gesture hold time may result in unsta-
ble gesture classification performance due to transient muscle
contractions during gesture switching. We will further evaluate
the gesture classification performance in normal prosthetic
functional tasks and use the major voting technique [48] to
smooth the transient gesture classification results. Second,
despite the promising results in this paper, we have not demon-
strated how this simultaneous wrist and hand motion control
strategy will improve the usability of functional prosthetic
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hands compared to traditional pattern recognition control, and
have not evaluated the cognitive demand of this new control
strategy to amputees. These will be our future targets.

VI. CONCLUSION

In this study, we presented a novel MOGP algorithm and
an MTDL model to achieve simultaneous prediction of finger
gestures and wrist rotation for transradial amputees via wear-
able ultrasound sensing. Different from previous studies that
focused on the classification or regression of combined wrist
and hand motions, we proposed a hybrid pattern recognition
and regression scheme to achieve simultaneous control of
multiple discrete finger gestures and continuous wrist rotation.
This can simplify user training and provide more controllable
DoFs for simultaneous wrist and hand motion control. The
results on four transradial amputees showed that the proposed
MOGP can achieve accurate control of six types of finger
gestures and wrist rotation, with better performance than
previously reported SDA algorithm. Moreover, the MTDL
has the potential to further improve the control performance.
This paper validates the usability of ultrasound in the future
prosthetic hand control.
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