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Abstract— Simultaneous prediction of wrist and hand1

motions is essential for the natural interaction with hand2

prostheses. In this paper, we propose a novel multi-out3

Gaussian process (MOGP) model and a multi-task deep4

learning (MTDL) algorithm to achieve simultaneous pre-5

diction of wrist rotation (pronation/supination) and finger6

gestures for transradial amputees via a wearable ultra-7

sound array. We target six finger gestures with concurrent8

wrist rotation in four transradial amputees. Results show9

that MOGP outperforms previously reported subclass dis-10

criminant analysis for both predictions of discrete fin-11

ger gestures and continuous wrist rotation. Moreover,12

we find that MTDL has the potential to improve the accu-13

racy of finger gesture prediction compared to MOGP14

and classification-specific deep learning, albeit at the15

expense of reducing the accuracy of wrist rotation pre-16

diction. Extended comparative analysis shows the supe-17

riority of ultrasound over surface electromyography. This18

paper prioritizes exploring the performance of wearable19

ultrasound on the simultaneous prediction of wrist and20

hand motions for transradial amputees, demonstrating the21

potential of ultrasound in future prosthetic control. Our22

ultrasound-basedadaptive prosthetic control dataset (Ultra-23
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Pro) will be released to promote the development of the 24

prosthetic community. 25

Index Terms— Simultaneous wrist and hand motion con- 26

trol, transradial amputees, wearable ultrasound, multi- 27

out Gaussian process, multi-task deep learning, UltraPro 28

dataset. 29

I. INTRODUCTION 30

THE lack of motor abilities, as well as self-perception 31

issues and phantom limb pain, may affect the lives 32

of individuals with transradial amputation in physical, emo- 33

tional, and financial matters. Cosmetic prostheses can address 34

appearance, but they cannot improve motor function. Current 35

prosthetic hands, however, are now able to replicate most of 36

the functions of the human hands while maintaining a natural 37

appearance. Unfortunately, the complexity of controlling all of 38

those degrees of freedom (DoFs) places an excessive cognitive 39

burden on the user. Indeed, current human-prosthetic interfaces 40

are usually limited to a non-intuitive, sequential and on/off 41

control of a limited number of DoFs, which can only restore 42

some simple hand functions. As natural hand movements are 43

usually composed of simultaneous activation of wrist and 44

hand motions, a biomimetic and intuitive controller of the 45

prosthetic hand should be able to provide simultaneous control 46

of multi-DoF wrist and hand movements. 47

There are mainly two types of methods to achieve simulta- 48

neous control of muti-DoF wrist and hand motions: data-driven 49

methods, and model-driven (data-free) methods. Data-driven 50

methods map the relationship between human neural signals 51

and wrist and hand motions through various machine learning 52

methods, including classification, regression, and blind source 53

separation. Davidge et al. proposed a linear discriminant 54

analysis (LDA) method to classify combined wrist and hand 55

motions, where both individual wrist or hand motions (single- 56

DoF) and their combinations (muti-DoF) were labeled as 57

different classes [1]. Despite the promising performance of 58

this method, training samples from both single-DoF and multi- 59

DoF motions were required to ensure a good classification 60

performance. Parallel classification scheme [2], [3], linearly 61

enhanced training [4], LDA dimensionality reduction [5], and 62

muscle synergy analysis [6] were proposed to decompose 63

complex classification tasks, by which simultaneous control 64

of multi-DoF wrist and hand motions can be achieved through 65

only single-DoF training. Yet, the number of DoFs that can 66

be simultaneously controlled is limited and the classification 67

performance is not ideal when the model is trained with only 68
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single-DoF motions. In addition to classification methods,69

regression techniques have shown remarkable performance70

in the simultaneous prediction of multi-DoF wrist and hand71

motions. It can achieve a more natural proportional control72

of each DoF, albeit at the expense of increasing training73

complexity [7], [8], [9]. To reduce the training complexity74

while maintaining natural proportional control, Jiang et al. pro-75

posed a non-negative matrix factorization method to directly76

decode two-DoF wrist torques from surface electromyography77

(sEMG) [10]. This method can be used for simultaneous wrist78

and hand motion control but is usually limited to two-DoF con-79

trol [11]. Recently, model-driven methods have been explored80

to overcome the complex training problems inherent to data-81

driven methods, where musculoskeletal models were applied82

to build the mapping between human neural signals and83

hand movements [12], [13]. Unfortunately, calibrating the84

parameters of musculoskeletal models remains troublesome.85

So far, complex training, limited controllable DoFs, and the86

lack of proportional control still limit the natural control of87

multi-DoF prosthetic hand.88

In addition to intention recognition models, muscle sens-89

ing modalities play an important role in prosthetic control.90

Ultrasound sensing is an emerging modality in this field that91

can provide morphological information of functional muscles92

during hand movements. Compared to sEMG, it has a higher93

spatial resolution and can distinguish the activities of differ-94

ent muscles especially the deep-seated ones. Ultrasound has95

shown its ability in finger gesture recognition [14], [15], finger-96

tip force estimation [16], lower limb motion recognition [17],97

gait phase identification [18], (virtual) prosthetic hand manip-98

ulation [19], [20], and soft exosuit control [21]. Moreover, our99

previous study demonstrated that simultaneous finger gestures100

and wrist rotation can be predicted by ultrasound sensing with101

a novel subclass discriminant analysis (SDA) algorithm [22].102

This can achieve simultaneous control of multi-DoF wrist103

and hand motions with less user training time. However, the104

algorithm was only validated on non-disabled subjects, and the105

feasibility of ultrasound sensing in amputee prosthetic control106

remains to be verified, especially for simultaneous control of107

wrist and hand motions.108

This paper seeks to explore the performance of wear-109

able ultrasound on the simultaneous prediction of wrist and110

hand motions for amputees. We conducted an experiment111

to predict six finger gestures with concurrent wrist rotation112

(pronation/supination)1 in four transradial amputees. As an113

extension to our previous study [22], we first validated the114

effectiveness of SDA on the simultaneous control of fin-115

ger gestures and wrist rotation for amputees. Additionally,116

we proposed a novel multi-out Gaussian process (MOGP)117

model to achieve better control of simultaneous wrist and hand118

motions compared to SDA. Finally, we validated the potential119

of multi-task deep learning (MTDL) in further improving the120

performance of wrist and hand motion control. To promote the121

development of the prosthetic community, we will release the122

ultrasound-based adaptive prosthetic control dataset (UltraPro123

https://doi.org/10.6084/m9.figshare.20448489.v1). This paper124

will open up a new era of ultrasound-based prosthetic control.125

1In this paper, unless otherwise specified, the wrist rotation refers to wrist
pronation/supination.

Fig. 1. Illustration of the subclass discriminant analysis (SDA), where
original two classes (i.e., A and B) were divided into three subclasses
(i.e., Ai and Bi). The classification of subclasses can give extra infor-
mation about original classes and make the classification boundaries
between original classes become non-linear.

II. MACHINE LEARNING ALGORITHMS 126

The focus of this study is to achieve simultaneous prediction 127

of different finger gestures and wrist rotation. To this end, 128

we propose a series of algorithms that can accomplish different 129

prediction tasks at the same time, including SDA, MOGP, and 130

MTDL. We briefly summarize these algorithms as follows. 131

1) • Subclass Discriminant Analysis: SDA is an extension 132

of LDA [23], which aims to solve non-Gaussian classification 133

problems by separating classes at a subclass level, because 134

the data distribution within a class can be a mixture of Gaus- 135

sians [24]. By dividing each class into different subclasses 136

that follow a Gaussian distribution, we can well describe the 137

data variance of each class and obtain additional subclass 138

information (Fig. 1). The research on SDA usually emphasize 139

the separability of original classes rather than subclasses, 140

ignoring the potential meaning of subclasses [25], [26], 141

[27], [28]. Our previous study showed that the subclass infor- 142

mation of each finger gesture can be used to represent the wrist 143

rotation position [22]. Therefore, we can obtain simultaneous 144

finger gesture and wrist rotation information by classifying 145

finger gestures at a subclass level. 146

Supposing Ci (i = 1, 2, . . . , N) represents the data of finger 147

gesture i , and Cij ( j = 1, 2, . . . , K ) represents the subclass j 148

of finger gesture i , and α represents the normalized wrist 149

rotation angle of finger gesture i . By dividing the subclasses 150

according to α, the subclass j can reflect the wrist rotation 151

position. Taking three wrist rotation positions (i.e., wrist 152

supination, wrist pronation, and neutral wrist position) as 153

an example, the number of subclasses is set to 3 and the 154

subdivision of each class is defined as follows 155

Ci1 : 0 ≤ α < l 156

Ci2 : l ≤ α < u 157

Ci2 : u ≤ α ≤ 1 (1) 158

where l and u are hyperparameters for dividing wrist rotation 159

positions. Ci1, Ci2 and Ci3 represent data from wrist supina- 160

tion, wrist pronation, and neutral wrist position, respectively. 161

In terms of previous studies, α can be acquired by addi- 162

tional sensors like goniometer and inertial measurement unit 163

(IMU) [22] or autonomous clustering methods [24], [25]. 164

In addition, the first principal component (PC#1) of ultrasound 165

features has been used to represent α, since the PC#1 is 166

inherently linear to the wrist rotation angle [22]. In this study, 167

we attempted IMU-, PC#1-, and Kmeans-based methods to 168

obtain/cluster wrist rotation angles for the subclass division. 169

For IMU- and PC#1-based methods, l and u were optimized 170

with a dense grid search. 171



YANG et al.: SIMULTANEOUS PREDICTION OF WRIST AND HAND MOTIONS VIA WEARABLE ULTRASOUND SENSING 2519

Fig. 2. Framework of the multi-task CNN model.

After dividing subclasses according to wrist rotation posi-172

tions, we classify all subclasses together and then map173

the result (Cij ) to finger gestures (Cij → Ci ) and wrist174

rotation positions (Cij → C j ). Through this course-to-fine175

process, we can predict finger gestures and wrist rotation176

simultaneously.177

2) • Muti-output Gaussian Process: Gaussian process (GP),178

a non-parametric Bayesian model, has shown excellent per-179

formance in hand kinematics prediction [29]. However, few180

have attempted the simultaneous prediction of multi-DoF wrist181

and hand motions using MOGP, especially for the mixed182

problems of classification and regression. Herein, we propose a183

MOGP model to achieve simultaneous prediction of discrete184

finger gestures (classification) and continuous wrist rotation185

(regression).186

Define N training samples X = {xn}N
n=1 and corresponding187

targets y = {yn}N
n=1. (x∗, y∗) is a group of test sample. We can188

have a brief form of GP189 [
y
y∗

]
∼ N

([
u
u∗

]
,

[
K K T∗
K∗ K∗∗

])
(2)190

where

[
u
u∗

]
is a mean vector and normally set to 0. K , K∗,191

K∗∗ are kernel matrix of tranining data, kernel matrix between192

training data and test data, and kernel matrix of test data,193

respectively. The probability p(y∗|y) also follows a Gaussian194

distribution195

y∗|y ∼ N
(

K∗K −1 y, K∗∗ − K∗K −1 K T∗
)

(3)196

The best estimation of y∗ is197

ŷ∗ = K∗K −1 y (4)198

To achieve simultaneous prediction of finger gestures and199

wrist rotation, we define yn = (cn, pn), where cn represents200

the finger gesture class and pn represents the wrist rotation201

angle. To integrate classification and regression problems202

together, we convert cn to one-hot encoding [30]. Therefore,203

yn = (one-hot (cn), pn), and the best estimation of y∗ is204

ŷ∗ = K∗K −1{one-hot (c), p} (5)205

Normally, the standard GP model assumes a single output206

variable only. To optimize the above-mentioned multi-output207

problem, we can build an independent GP for each output vari-208

able [31]. To improve computational efficiency, we attempted209

a batch independent multi-output GP (iMOGP) model, where 210

kernel parameters are shared among different GPs. 211

Independent GP is a suboptimal solution for multi-output 212

regression because the correlation among different output 213

variables are not considered [31]. Considering the correlation 214

between classification and regression tasks [32], we modify 215

the kernel matrix K to 216

Km = B ⊗ K (6) 217

B =

⎛
⎜⎜⎜⎝

b11 b11 . . . b1T

b21 b22 . . . b2T
...

...
. . .

...
bT 1 bT 2 . . . bT T

⎞
⎟⎟⎟⎠ (7) 218

where T represents the number of tasks, Bij represents the 219

correlation between different tasks, ⊗ represents Kronecker 220

product. 221

In MOGP, the correlation between different tasks is usu- 222

ally considered, we therefore named it as general MOGP 223

(gMOGP). 224

3) • Muti-task Deep Learning: Deep learning, represented 225

by convolutional neural network (CNN) and autoencoder, 226

has shown excellent performance in computer vision [33], 227

natural language processing [34], and electrophysiological 228

signal processing [35], because it can avoid tedious process 229

of manually extracted features and has superior performance 230

over traditional statistic learning models given enough data. 231

As such, we propose a muti-task CNN (MTCNN) model 232

for the simultaneous prediction of discrete finger gestures 233

and continuous wrist rotation. The structure of the model is 234

shown in Fig. 2, where ReLU is used as activation function, 235

cross entropy is used as classification loss function, and mean 236

squared error is used as regression loss function. For both 237

convolution and pooling, the stride step is set to one. 238

Unlike traditional single-output CNN models, the weights 239

of our MTCNN model are shared among different tasks until 240

the last fully connected layer, and the total loss is the weighted 241

sum of the losses of different tasks [36]. 242

losstotal = wlossc + (1 − w)lossr (8) 243

where lossc is the loss of classification task, lossr is the 244

loss of regression task, and w is the loss weight. w was 245

optimized with a dense grid search ranging from 0 to 1, 246

separated by 0.1, towards the aim of improving classification 247
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TABLE I
AMPUTEE SUBJECT DEMOGRAPHICS

Fig. 3. Experiment setup. sEMG and IMU represent surface electromyo-
graphy and inertial measurement unit, respectively.

performance of finger gestures. Because manually tuning the248

loss weight is a tedious and expensive process, we also attempt249

to select the loss weights of different tasks by considering the250

homoscedastic uncertainty of each task [37], where the loss251

balance of different tasks is addressed252

losstotal = 1

2σ 2
1

lossc + γ

2σ 2
2

lossr + log(σ1) + log(σ2) (9)253

where σ1 and σ2 are weight parameters that can be automat-254

ically learned by the CNN model. γ is a weight parameter255

used to balance the magnitude of lossc and loss f . Empirically,256

γ is set as 10. When optimizing the weight parameters257

automatically, we name it as MTCNN-auto.258

The implementation of SDA is based on Matlab 2016 Rb259

(Mathworks Inc.), and the implementation of MOGP and260

MTDL is based on Python with Pytorch framework.261

III. EXPERIMENT EVALUATION262

A. Data Recording263

Four transradial amputees volunteered for this study. All264

provided the informed consent prior to participating in the265

experiment. The demographic information of the subjects is266

shown in Table I. The experiment was approved by the SJTU267

Institutional Review Board (E2021103).268

The experiment setup is shown in Fig. 3. The subjects sat269

naturally, held their forearms horizontally, and kept palms270

upwards. The angle between the upper arm and the forearm271

was about 120◦. Eight 5-MHz A-mode ultrasound transducers272

Fig. 4. Finger gestures. From left to right: rest (RS), power grip (PG),
index point (IP), fine pinch (FP), tripod grip (TG), and key grip (KG).

were evenly attached around the forearm of the amputated 273

side with a customized armband, and no specific muscle 274

was targeted. The transducers were sequentially driven by a 275

customized wearable ultrasound system, with a pulse repetition 276

frequency (frame rate) of 10 Hz and sampling points of 1000 at 277

20 MHz sampling rate for each channel [20]. A commercial 278

inertial measurement unit (IMU, Xsens-MTi-100, Xsens Tech- 279

nologies B.V., Netherlands) was attached on the wrist of the 280

healthy side to measure wrist rotation angles. Eight sEMG 281

sensors (TrignoTM Wireless System, Delsys Inc., Natick, 282

MA, USA) were also evenly attached around the forearm 283

near the ultrasound transducers. For A2, only seven sEMG 284

sensors were attached due to the limited space. A custom- 285

built software was used to stream ultrasound, sEMG and IMU 286

signals synchronously to a computer. The sampling rate of the 287

IMU sensor was set as 10 Hz to match the ultrasound data, 288

and the sampling rate of sEMG was 1925.926 Hz. 289

Wrist rotation (pronation/supination) and six finger gestures 290

were studied in this work, including rest (RS), fine pinch 291

(FP), key grip (KG), tripod grip (TG), index point (IP), and 292

power grip (PG) (Fig. 4). The subjects followed a dynamic 293

mirrored bilateral training, in which they mimicked given 294

movements simultaneously with both their intact and ampu- 295

tated hands. Movement of the intact hand is to assist the 296

imaginary movement of the amputated hand [38]. Ultrasound 297

and sEMG signals were collected from the amputated hand, 298

and wrist rotation angles were collected from the intact hand. 299

The experiment consisted of three repeated sessions. In each 300

session, each finger gesture was performed for 50 seconds 301

with concurrent wrist rotation at a frequency of approximately 302

0.5 Hz. Taking the neutral wrist position as 0◦, the wrist 303

rotation range was approximately −90◦ to 90◦, i.e., from 304

maximum pronation to maximum supination. To avoid muscle 305

fatigue, there was 10 seconds of rest between two continu- 306

ous finger gestures. Before formal data collection, subjects 307

were given sufficient time to familiarize themselves with the 308

experiment. 309



YANG et al.: SIMULTANEOUS PREDICTION OF WRIST AND HAND MOTIONS VIA WEARABLE ULTRASOUND SENSING 2521

B. Data Processing310

1) Ultrasound Feature Extraction: The mean value of a311

segment of A-mode ultrasound signal, which reflects the312

ultrasound echogenicity [17], was selected as the ultrasound313

feature. Specifically, the A-mode ultrasound signals were first314

preprocessed with time gain compensation, bandpass filtering,315

envelope detection, and log compression [14]. Then, the316

preprocessed ultrasound signals were evenly divided into a317

series of segments with a length of 20 data points. There were318

1000 data points in each frame of ultrasound signal. Since the319

first and the last 20 data points carried little valuable informa-320

tion, they were removed before segmentation. Accordingly, the321

data of each sensing channel were divided into 48 segments.322

For each segment, the mean value (echogenicity) was extracted323

and noted as the feature. The features of different sensing324

channels were cascaded together, forming a 384 × 1 feature325

vector. Finally, principal component analysis was used to326

reduce the feature dimensionality, with 95% of the total327

variance preserved.328

For deep learning method, the preprocessed ultrasound329

signals were directly input to the model.330

2) sEMG Feature Extraction: The collected sEMG signals331

were first bandpass filtered between 20-450 Hz and comb332

filtered at 50Hz with Butterworth filters. Then, the filtered333

signals were segmented into 200 ms analysis windows with334

an overlap of 100 ms. Standard time domain feature sets were335

extracted from each analysis window, which consisted of mean336

absolute value (MAV), sign slope change (SSC), zero crossing337

(ZC), and waveform length (WL) [39]. Finally, the features338

from different channels were cascaded together.339

3) Train-Test Split: We analyzed the data of each session340

individually. In each session, we collected 50 seconds of data341

for each finger gesture. To simulate the real-time application,342

the first 40 seconds of data of each finger gesture were split343

into the training set and the remaining into test set.344

For deep learning method, the first 25% of data of each345

gesture in the test set was selected as validation set to optimize346

model hyperparameters, and the remaining was for testing.347

To give a fair comparison with the deep learning method,348

we recalculated the results of SDA and MOGP by discarding349

the validation set data when comparing with the CNN method.350

4) Gesture Selection: For amputate subjects, the performed351

finger gestures were based on imaginations. This is highly352

dependent on their cognitive abilities, and confusion of some353

finger gestures is inevitable. To this end, we not only ana-354

lyzed the prediction performance of all six gestures, but also355

evaluated the prediction performance of the best four or five356

gestures. During gesture selection, the gesture with the worst357

classification accuracy was removed.358

C. Evaluation Metrics359

We used classification accuracy to assess the finger gesture360

classification performance and coefficient of determination361

(R2) to assess the wrist position prediction performance.362

Note that SDA can only predict discrete wrist rotation posi-363

tions, so the wrist rotation prediction performance of SDA is364

assessed by classification accuracy.365

Fig. 5. Comparative analysis of sEMG and ultrasound on finger gesture
classification.

D. Statistical Analysis 366

Two-way repeated-measure analysis of variance (ANOVA) 367

followed by a Tukey post-hoc test was applied to evaluate the 368

impact of different algorithms and subjects on the prediction 369

performance. On the other hand, if analyzed data does not 370

follow a normal distribution or does not meet the homogeneity 371

of variance test, Mann-Whitney U test would be applied. The 372

significance level was set to 0.05. 373

IV. RESULTS 374

A. sEMG Vs. Ultrasound 375

The comparative analysis of sEMG and ultrasound on finger 376

gesture classification is shown in Fig. 5, where the LDA clas- 377

sifier was applied. It was found that ultrasound outperformed 378

sEMG significantly for all subjects, with higher classification 379

accuracy and smaller standard deviation. Considering the 380

poor finger gesture classification performance of sEMG in 381

this experiment, only the results of ultrasound are reported 382

below. 383

B. SDA 384

The performance of SDA for the simultaneous classification 385

of wrist and hand motions is shown in Figs. 6(A) and (B), 386

where LDA and quadratic discriminant analysis (QDA) are 387

used as benchmarks. Statistical analysis shows that both algo- 388

rithms and subjects have significant impacts on the classifica- 389

tion performance, and there is no interaction between the two 390

factors. For the finger gesture classification, the performance of 391

SDA (e.g., SDA-IMU and SDA-PC#1) was significantly better 392

than LDA and slightly better than QDA. In the meanwhile, 393

SDA can achieve accurate classification of wrist rotation. 394

Among different subclass division methods, SDA-PC#1 per- 395

formed best, with a finger gesture classification accuracy of 396

74.78% ± 8.85% and a wrist rotation classification accuracy 397

of 92.5% ± 2.21%. Considering the superior performance of 398

SDA-PC#1, we used SDA-PC#1 for the following comparative 399

analyses. 400

The linear relationship between the normalized PC#1 401

and the normalized wrist rotation angle is shown in Fig. 7, 402

and the detailed fitting metrics are listed in Table IV (high- 403

lighted in gray). This explains why the PC#1 of ultra- 404

sound features can be used for subclass division and also 405
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Fig. 6. Performance of simultaneous prediction of wrist and hand motions for different amputees. LDA: linear discriminant analysis, SDA: subclass
discriminant analysis, QDA: quadratic discriminant analysis, iMOGP: batch independent multi-output Gaussian process, gMOGP: general multi-output
Gaussian process. The standard deviations are shown with error bars, and the last column shows the average results of all subjects.

demonstrates the potential of PC#1 in continuous wrist rotation406

control.407

C. MOGP408

The performance of MOGP for the simultaneous prediction409

of wrist and hand motions is shown in Figs. 6 and (D), where410

SDA-PC#1 is used as a benchmark. Statistical analysis shows411

that both algorithms and subjects have significant impacts412

on the classification performance, and there is no interaction413

between the two factors. It was found that both iMOGP and414

gMOGP can significantly improve finger gesture classifica-415

tion performance, with a classification accuracy above 80%.416

At the meanwhile, MOGP (i.e., iMOGP and gMOGP) can417

accurately predict continuous wrist rotation positions, with a418

R2 above 0.935. In addition, the performance of iMOGP was419

comparable to gMOGP. We did not compare the wrist rotation420

prediction performance of SDA and MOGP, since SDA was421

used for discrete wrist rotation classification while MOGP422

was used for continuous wrist rotation prediction. Considering423

the simplicity of iMOGP and its comparable performance424

to gMOGP, we used iMOGP for the following comparative425

analyses.426

Fig. 8 shows the performance of SDA and MOGP for the427

simultaneous prediction of wrist and hand motions when the428

number of gestures is reduced from six to four. In terms of429

finger gesture classification, MOGP performed significantly430

better than SDA on the six or five gesture classification tasks,431

and slightly better than SDA on the four gesture classification432

task. Overall, when the number of gesture was reduced from433

six to four, the classification accuracy of MOGP increased434

from 80.35 ± 7.54% to 89.85 ± 4.27%. In terms of wrist435

rotation prediction, the performance of SDA remained stable436

Fig. 7. Linear relationship between the normalized PC#1 of ultrasound
features and the normalized wrist rotation angles for a representative
subject.

TABLE II
GESTURES REMOVED WHEN REDUCING THE NUMBER

OF GESTURES FROM SIX TO FOUR

while the performance of MOGP slightly decreased as the 437

number of gestures reduced. Tables II shows the gestures 438

removed when reducing the number of gestures from six to 439

four (Rem.Ges.i represents the i th removed gesture). FP, KG, 440

and PG were usually removed during the gesture selection due 441

to the similarity between FP and TG/RS and KG and PG. 442

Fig. 9 shows an example of the performance of MOGP 443

on the simultaneous prediction of finger gestures and wrist 444
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Fig. 8. Finger and wrist motion prediction performance when the number of finger gestures is reduced from six to four.

Fig. 9. Performance of MOGP on the simultaneous prediction of finger gestures and wrist rotaiton.

TABLE III
COMPARISON OF MOGP AND CNN ON FINGER GESTURE CLASSIFICATION (ACCURACY)

rotation. Obviously, the finger gestures were accurately classi-445

fied and the predicted wrist positions were well aligned with446

the real wrist positions.447

D. MTDL448

Fig. 10 shows the performance of MTDL for the simulta-449

neous prediction of wrist and hand motions, where MOGP450

is used as a benchmark. Statistical analysis shows that only451

subjects have a significant impact on the classification per-452

formance, and there is no significant interaction between453

subjects and algorithms. Overall, the performance of MOGP,454

CNN, MTCNN, and MTCNN-auto were comparable for both455

finger gesture and wrist rotation prediction. The detailed456

results are listed in Tables III and IV (Ai -Sj represents data457

from Amputee i , Session j ), where the best results were458

highlighted in bold. Despite no statistical difference, in most459

cases, MTCNN obtained the best finger gesture classifica-460

tion accuracy, and MOGP obtained the best wrist rotation461

prediction accuracy. With appropriate loss weights, MTCNN 462

can always achieve better gesture classification accuracy than 463

single-output CNN and in most cases achieve better gesture 464

classification accuracy than MOGP (Table III), albeit at the 465

expense of reducing accuracy of wrist rotation prediction 466

(Table IV). MTCNN-auto can achieve a balanced performance 467

between gesture classification and wrist rotation prediction. 468

In general, regression-based methods (i.e., MOGP, CNN, 469

MTCNN, and MTCNN-auto) had better performance in wrist 470

rotation prediction than the PC#1-based method. 471

V. DISCUSSION 472

Simultaneous prediction of wrist and hand motions with 473

muscle signals is essential for the natural control of hand 474

prostheses. sEMG has shown great potential in this field. It can 475

represent neuromuscular activity and can be easily collected 476

from the skin. However, due to the crosstalk, attenuation, 477

and nonstationarity of sEMG signals, sEMG can only reflect 478
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TABLE IV
COMPARISON OF MOGP AND CNN ON WRIST ROTATION PREDICTION (R2 )

Fig. 10. Comparison of MOGP and CNN for the simultaneous prediction of wrist and hand motions.

activity of large and superficial muscles but cannot distinguish479

activity of finger- and wrist- related deep muscles. Therefore,480

the performance of sEMG on the simultaneous control of wrist481

and hand motions is limited [40]. Ultrasound can distinguish482

the activity of muscles centimeters below the skin, so it is483

able to decouple the movements of finger and wrist using484

morphological information of deep muscles [22]. To this485

end, we achieved simultaneous prediction of wrist and hand486

motions using ultrasound signals. To improve the useability487

of this technology, we applied a wearable A-mode ultrasound488

array instead of cumbersome B-mode ultrasound system.489

We have demonstrated that simultaneous finger gestures and490

wrist rotation can be predicted by ultrasound sensing with491

an SDA algorithm [22]. However, the algorithm was only492

validated in non-disabled subjects. In this study, for the first493

time, we validated the effectiveness of SDA in amputees.494

Additionally, in view of the limitations of traditional classifica-495

tion and regression techniques in simultaneous wrist and hand496

control - the training process is complex and the controllable497

DoFs are limited, we proposed a hybrid pattern recognition498

and regression scheme to achieve simultaneous control of499

multiple discrete finger gestures and continuous wrist rotation.500

Specifically, we proposed MOGP and MTDL to achieve this501

goal.502

A. Effectiveness of SDA503

In non-disabled subjects, we demonstrated that SDA can504

achieve accurate control of finger gestures and wrist rotation,505

and that SDA-PC#1 performed best among different subclass506

division methods. In addition, the performance of SDA was507

superior to LDA but inferior to QDA in finger gesture clas-508

sification [22]. The results of our amputee test were highly509

consistent with the non-disabled test, except that QDA did510

Fig. 11. Influence of subclass number on the classification performance
of SDA.

not outperform SDA in gesture classification (Fig. 6A). This 511

may arise from the difference of muscle condition between 512

non-disabled and amputee subjects. Since the muscle contrac- 513

tion of amputees is significantly smaller than that of non- 514

disabled subjects, the features of different finger gestures 515

are mixed together and hard to be discriminated by simple 516

quadratic classification boundaries. By contrast, SDA uses 517

auxiliary supervision information from wrist rotation to clas- 518

sify finger gestures, so better classification boundaries can be 519

found. To further verify the effectiveness of SDA, we divided 520

the wrist rotation into one to five subclasses in turn. The 521

subclasses were evenly divided according to the rotation range 522

of the wrist. Results showed that SDA can robustly improve 523

the finger gesture classification performance regardless of the 524

subclass number (Fig. 11). When the number of subclasses 525

was four, the best finger gesture classification performance can 526

be achieved. The wrist classification performance decreased as 527

the number of subclasses increased. 528

Despite the remarkable performance of SDA, it can only 529

control discrete wrist rotation. Our previous study showed 530

that the PC#1 of ultrasound features was approximately lin- 531

ear to the wrist rotation position [22]. Therefore, it can be 532
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Fig. 12. Comparison of SDA and MOGP-based classification
boundaries.

integrated into SDA for continuous wrist rotation control.533

Likewise, consistent results were obtained in our amputee test534

(Fig. 7 and Table IV).535

B. Superiority of MOGP536

While SDA and PC#1 are effective for wrist and hand537

motion control, the control performance remains to be538

improved. We applied GP here because it has shown excellent539

performance in hand kinematics prediction [41]. Instead of540

building individual GP model for gesture classification and541

wrist regression, a unified GP model for both tasks can reduce542

the computational burden. To this end, we converted the543

gesture classification task into a regression task using the544

one-hot encoding technology [30], so as to integrate it with545

the wrist regression task. Moreover, to take advantage of the546

inherent correlation between gesture classification and wrist547

regression tasks, we modified the kernel matrix to include the548

task correlation [32], [42]. Results showed that MOGP can549

significantly improve the performance of gesture classification550

and wrist rotation prediction compared to SDA and PC#1551

(Fig. 6B), and the performance of iMOGP was comparable552

to gMOGP (Figs. 6C and 6D). One possible reason is that553

iMOGP has captured the inherent correlation between gesture554

classification and wrist regression when optimizing unified555

hyperparameters for the two tasks.556

Fig. 12 shows a comparison of classification boundaries of557

SDA and MOGP. We found that both SDA and MOGP have558

the potential to solve the non-Gaussian classification problem.559

Here we did not find significant advantage of MOGP over560

SDA, because the features were reduced to two dimensions561

and the gesture classes were reduced to two. Nevertheless, the562

classification boundary of MOGP is a hypersurface, with better563

nonlinear characteristics than the hyperpolygonal boundary564

in SDA.565

C. Potential of MTDL566

In addition to MOGP, MTDL has been an effective way567

to solve multi-task prediction problems [36], [43]. Unlike568

extracting hand-crafted features and predicting them with a569

GP model, deep learning is a purely data-driven method that570

can achieve better performance given enough data. Previous571

studies have demonstrated that MTDL can achieve better per-572

formance than single-task models, because it can provide more573

supervision information for model training [37], [44]. In this574

study, we proposed an MTDL model and two optimization575

strategies to select the loss weights of different tasks. One 576

is to manually optimize the loss weights of different tasks, 577

and the other is to automatically optimize according to uncer- 578

tainty [37]. When automatically optimizing the loss weights, 579

the model can achieve a balanced performance between classi- 580

fication and regression, although both the accuracy of gesture 581

classification and wrist regression were slightly lower than 582

MOGP. When manually optimizing the loss weight towards 583

the aim of improving gesture classification performance, the 584

gesture classification accuracy of MTDL can exceed MOGP 585

in most cases, albeit at the expense of reducing wrist rotation 586

prediction accuracy. This demonstrated the potential of MTDL 587

in further improving the gesture classification performance. 588

Due to the limited amount of data, we only attempted simple 589

one-dimensional convolution in this study. More complex 590

CNN structures will be explored in the future. 591

D. Comparison of SDA, MOGP, and MTDL 592

Overall, MOGP and MTDL can achieve better perfor- 593

mance in gesture classification and wrist rotation prediction. 594

Nevertheless, SDA (i.e., SDA-PC#1) and PC#1 can achieve 595

unsupervised prediction of wrist rotation. If the experiment 596

platform is limited (e.g., in-home use), SDA and PC#1 will 597

be good choices for wrist rotation control. 598

E. Comparison of sEMG and Ultrasound 599

To better present the gesture classification performance 600

of ultrasound, we compared the gesture classification accu- 601

racy of ultrasound with currently prevailing sEMG (Fig. 5). 602

Although there were differences in the placement of sEMG 603

and ultrasound sensors, we found that ultrasound significantly 604

outperformed sEMG on gesture classification accuracy. This 605

result is consistent with our previous findings in non-disabled 606

tests [45], further validating the potential of ultrasound in 607

amputee prosthetic control. In our previous study [45], we also 608

demonstrated that sEMG and ultrasound had complementary 609

advantages, and indeed there have been several studies focus- 610

ing on the fusion of sEMG and ultrasound for better motion 611

intention prediction. Current fusions are typically limited to 612

weighted averages of muscle activations obtained from sEMG 613

and ultrasound [46] or cascades of sEMG and ultrasound fea- 614

tures [47]. More fusion strategies should be explored to fully 615

exploit the complementary information of the two signals. 616

F. Limitations and Future Work 617

First, gestures were held for a rather long time during 618

the experiment, which is inconsistent with normal functional 619

duration. Shortening the gesture hold time may result in unsta- 620

ble gesture classification performance due to transient muscle 621

contractions during gesture switching. We will further evaluate 622

the gesture classification performance in normal prosthetic 623

functional tasks and use the major voting technique [48] to 624

smooth the transient gesture classification results. Second, 625

despite the promising results in this paper, we have not demon- 626

strated how this simultaneous wrist and hand motion control 627

strategy will improve the usability of functional prosthetic 628
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hands compared to traditional pattern recognition control, and629

have not evaluated the cognitive demand of this new control630

strategy to amputees. These will be our future targets.631

VI. CONCLUSION632

In this study, we presented a novel MOGP algorithm and633

an MTDL model to achieve simultaneous prediction of finger634

gestures and wrist rotation for transradial amputees via wear-635

able ultrasound sensing. Different from previous studies that636

focused on the classification or regression of combined wrist637

and hand motions, we proposed a hybrid pattern recognition638

and regression scheme to achieve simultaneous control of639

multiple discrete finger gestures and continuous wrist rotation.640

This can simplify user training and provide more controllable641

DoFs for simultaneous wrist and hand motion control. The642

results on four transradial amputees showed that the proposed643

MOGP can achieve accurate control of six types of finger644

gestures and wrist rotation, with better performance than645

previously reported SDA algorithm. Moreover, the MTDL646

has the potential to further improve the control performance.647

This paper validates the usability of ultrasound in the future648

prosthetic hand control.649
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