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Monitoring Arm Movements Post-Stroke for
Applications in Rehabilitation and Home Settings

Juan Pablo Gomez-Arrunategui*, Janice J. Eng, and Antony J. Hodgson

Abstract— Optimal recovery of arm function following
stroke requires patients to perform a large number of
functional arm movements in clinical therapy sessions,
as well as at home. Technology to monitor adherence to
this activity would be helpful to patients and clinicians. Cur-
rent approaches to monitoring arm movements are limited
because of challenges in distinguishing between functional
and non-functional movements. Here, we present an Arm
Rehabilitation Monitor (ARM), a device intended to make
such measurements in an unobtrusive manner. The ARM
device is based on a single Inertial Measurement Unit (IMU)
worn on the wrist and uses machine learning techniques
to interpret the resulting signals. We characterized the abil-
ity of the ARM to detect reaching actions in a functional
assessment dataset (functional assessment tasks) and an
Activities-of-Daily-Living (ADL) dataset (pizza-making and
walking task) from 12 participants with stroke. The Convolu-
tional Neural Network (CNN) and Random Forests (RF) clas-
sifiers had a Matthews Correlation Coefficient score of 0.59
and 0.58 when trained and tested on the functional dataset,
0.50 and 0.49 when trained and tested on the ADL dataset,
and 0.37 and 0.36 when trained on the functional dataset
and tested on the ADL dataset, respectively. The latter is
the most relevant scenario for the intended application of
training during a clinical visit for monitoring movements in
the in-home setting. The classifiers showed good perfor-
mance in estimating the time spent reaching and number of
reaching gestures and showed low sensitivity to irrelevant
arm movements produced during walking. We conclude that
the ARM has sufficient accuracy and robustness to merit
being used in preliminary studies to monitor arm activity in
rehabilitation or home applications.

Index Terms— Accelerometer, home monitoring, arm
rehabilitation, reach detection, machine learning.
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I. INTRODUCTION

ESEARCH into recovery of arm function following

stroke has established that repeated voluntary movements
lead to improvements in arm function [1] by inducing neural
growth and brain reorganization [2]. However, performing
rehabilitation exercises in the clinic alone cannot achieve
sufficient repetitions for optimal recovery given that the typ-
ical hourly clinical session averages only 32 arm and hand
repetitions [3].

Therapists have therefore sought to encourage in-home reha-
bilitation exercise programs to supplement functional recovery
but find it challenging to monitor patients’ adherence to
prescribed therapeutic protocols and to assess the quality
of exercises when not supervised by a therapist. Research
studies have used commercial wrist-mounted accelerometers
to quantify arm movement in home settings, primarily in
the form of activity counts [4]. Activity counts record the
occurrence of movement, but do not otherwise assess the
context, purpose or quality of the movement [5]. Therapists
are most concerned with knowing how often patients perform
functionally meaningful arm movements, rather than incidental
movements such as the arm swing that occurs with walking;
such incidental movements should ideally be excluded from
automatically documented movement histories. Researchers
have tried to overcome these limitations by asking participants
to wear additional sensors to detect walking, and then remov-
ing these time periods [6]. However, this approach burdens
participants with additional data logging expectations and
burdens researchers with post-processing of the activity counts.

A more recent implementation of activity counts proposed
by Bailey e al. [7] compared the relative activity counts of
accelerometers on both the paretic and non-paretic limb to
provide information on intensity of bilateral activity and the
contribution of each limb to the activity. Metrics obtained from
this approach can distinguish the intensity of tasks and whether
tasks were completed with both arms but are still unable to
provide information on functional arm use.

In recent years, classifiers have been used to develop gesture
recognition systems that can be used for monitoring and classi-
fying movements. Such developments have mostly occurred in
the lab setting, where there are many measurement resources
and greater experimental control over participant gestures.
Activity recognition in the lab can use multiple sensors
attached to the arms, legs and torso to detect limb orientations
and movements, which can substantially increase the detection
accuracy relative to using single sensors, though the increased
complexity of multiple-sensor setups can compromise user
comfort and present barriers to use in the home setting [8], [9].
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In addition to the variety of hardware configurations that
have been used for this purpose, there have also been many
machine learning approaches applied to gesture recognition
problems, ranging from k-nearest neighbor with similarity
measures [10], [11], to Dynamic Bayesian Models [10], Hid-
den Markov Models [12], [13], Support Vector Machines
[8], [14], and ensemble methods such as Joint Boosting [8],
[15] or Random Forests [16], [17]. More recent literature
has explored convolutional neural networks, which have been
increasingly successful in image recognition tasks, and have
the added advantage of automating feature learning from raw
data inputs, eliminating the need for hand-tailoring features
for task recognition [18], [19], [20], [21], [22].

Regardless of the preferred classifier, most machine learning
approaches train and test their classifiers on a controlled set
of activities. This constrains the classification to a reduced
number of standard tasks and typically ignores the existence
of an undefined set of activities that the classifier has not
been trained to detect. This is particularly relevant to a
device intended for home monitoring purposes, as the system
needs to be able to recognize the wide range of arm move-
ments that are performed in daily life that are nonetheless
not meaningful from the perspective of promoting functional
recovery.

Lum et al. [23] addressed this issue by exploring a gesture
classification system that detects functional activity in stroke
participants outside of the lab setting. Their approach, con-
sisting of a single accelerometer on the paretic limb, showed
that machine learning algorithms can provide more accurate
information of functional activity than traditional methods that
use accelerometer counts. They specifically showed improved
detection of functional activity when compared against counts
ratio (a method to calculate duration of activity in the paretic
limb normalized by the less-affected limb), which did not
significantly correlate with functional movement.

In this paper, we propose and evaluate a method intended
for use in recognizing functional “reaching” actions for home
monitoring applications that must account for the existence
of a large undefined set of gestures. By focusing initially
on reaching actions — i.e., a certain class of fundamental
movements that form the base for more complex gestures and
actions such as grasping and object manipulation — we hope to
demonstrate the ability to reliably detect a significant subset
of functional gestures performed in unconstrained (home-like)
settings. We call our proposed system the Arm Rehabilitation
Monitor (ARM). With ARM, we acquire arm movement
information using a single wrist-mounted inertial measurement
unit (IMU) sensor (in order to minimize obtrusiveness to
the participant and thereby increase adherence to using the
monitor) and process the data with machine learning classifiers
to discriminate between reach and non-reach actions, where
reach is defined as a movement of the shoulder and elbow
away from the body, and non-reach actions encompass any
possible gestures other than reach.

IIl. METHODS
We developed an apparatus and method for acquiring and
processing IMU data and conducted a user study involving

participants living with a stroke who were asked to perform
both standard reach assessment tasks in the clinic and tasks
simulating a complex Activity of Daily Living (ADL), similar
to what they might perform in a home setting. We report
the discriminative accuracy of the developed method on these
tasks.

A. Participants

For the user study, we recruited 12 participants. The mean
age of the participants (5 women and 7 men) was 65.4 +
13.0 and the time since stroke was 10.0 &= 7.2 years. The mean
Fugl Meyer score was 57.3 £ 10.0, and the mean ARAT score
was 49 £ 11.7, which indicates mild to moderate hemiparesis
in the upper extremities. The ARAT score was later used
to determine whether our classification algorithms’ accuracy
differs between participants with varying levels of impairment.
This study received institutional review board approval from
the UBC Behavioural Research Ethics Board (H15-02613)
and operational approval from the Vancouver Coastal Health
Authority (V15-02613).

B. User Study

We asked the participants to perform two assessments in
the laboratory while wearing the ARM sensor (described
below) on the wrist of the most-affected limb to generate
two datasets: (1) a functional assessment dataset that consists
of a series of standard functional assessment movements and
(2) an ADL dataset that consists of a pizza-making task, the
latter supplemented by a walking task aimed at collecting
arm movement data during a confounding task (i.e., not
involving a purposeful reach gesture). All tasks were video
recorded.

We used arm movement data obtained by the ARM sensor
to train a gesture discriminator (classifiers described below)
and subsequently tested the discriminator’s accuracy in iden-
tifying reach gestures. We characterized the ability of the
gesture discriminator to learn on the two different datasets
as well as its ability to transfer learning from one dataset
to another. The walking task was used to estimate the abil-
ity of the discriminator to distinguish between intentional
reaching movements and incidental limb movements due to
walking.

Additionally, during the ADL task, we fitted all the partic-
ipants with a commercially available activity count monitor
(Actical™, MM, Mini-Mitter Co) on the same wrist as the
ARM to compare the ARM’s ability to detect reach gestures
with the Actical’s activity counts. Once the study had started,
we realized it would be beneficial to also record Actical
data during the functional assessment task; we therefore also
present Actical data for the functional assessment task for the
final 6 participants.

C. Data Acquisition

The ARM monitor contains a TDK InvenSense® 9-axis
IMU (MPU9150) attached to the wrist by a watch strap
(see Fig. 1). The ARM is placed on the wrist of the
most-affected arm in the same position as a watch. The
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Fig. 1. A. System diagram depicting the IMU for data acquisition, the Teensy 3.1 microprocessor, the HC-05 Bluetooth module for data transmission,
the battery that powers the wrist-worn device and the PC that stores the data for offline analysis. B. Picture of the ARM with the IMU coordinate

system.

IMU produces a data stream consisting of three orthogonal
acceleration channels, three rotational rate channels, and a
three-axis digital compass. Only the orthogonal acceleration
channels and rotational rate channels were used for gesture
discrimination because the digital compass channels were
found in pilot studies to provide less relevant information
for reach gesture recognition. The IMU acquired movement
data at a sampling rate of 20 Hz, which is sufficient for arm
monitoring [24]. The data were transmitted over Bluetooth to a
computer, where it was stored for labelling and offline gesture
recognition.

The tasks were also video recorded with a video camera
(30 frames per second). The video camera provided a visual
record of the hand activities and the video footage was later
used to manually annotate the data.

The Actical sensor mentioned above was also attached on
the wrist of the most affected arm and acquired data at a
sampling rate of 32 Hz. The Actical data was integrated every
15 seconds to generate a metric of activity counts. The activity
counts were stored in the Actical monitor during the tests. The
data were downloaded to a computer and stored when the user
study was complete.

D. Datasets

Data was collected during the functional assessment and
during an ADL task. The functional assessment dataset was
composed of measurements made during functional assess-
ment tasks aimed at determining the functional level in the
most-affected arm. We opted to use the motor function score
for the upper extremities of the Fugl-Meyer Assessment,
which has 22 upper extremity movements, and the “light
touch” section of the sensory function assessment, which
has two tasks [25]. We also used the Action Research Arm
Test (ARAT), which has 19 upper extremity movements [25],
to evaluate hand sensorimotor function. The Fugl-Meyer and
ARAT are two of the recommended key measures of the upper
extremity as determined by an international consensus panel
on stroke recovery [26]. Participants were asked to complete
each of the tasks in the assessments once. Reach gestures
made while performing these two functional assessments were
used to train and evaluate the reach discrimination models.

TABLE |
ACTIVITIES AND CORRESPONDING ACTION LABEL

Activity Action Label
Reach for roller Reach
Roll dough Reach
Reach out for pizza sauce = Reach

Open can Grab/rotate (non-reach)

Reach for spoon Reach
Pour sauce on pizza Wrist rotation (non-reach)
Reach for ingredient Reach

Place ingredient on pizza Reach

On average, participants performed 65 reach gestures in the
functional assessment dataset and spent 20 minutes completing
the assessments.

The ADL dataset was composed of tasks in which the par-
ticipant performs a complex activity of daily living. We chose
to have participants make pizzas because performing this
task requires a wide range of natural (non-stereotyped and
non-repetitive) reaching movements and because participants
require little explicit instruction. This leads to participants
performing a more natural set of movements that better mimic
their home environment. We anticipated significant variabil-
ity across participants in the number and order of reaching
actions.

The pizza-making task had three primary steps:

1. Roll the dough

2. Add pizza sauce to the dough

3. Populate the pizza with any combination of the ingredients
provided

There were no instructions regarding the participant’s body
position when making the pizza. Nine participants decided to
remain seated, while the other three preferred to stand up. The
activity took approximately fifteen minutes and participants
spent an average of 28.1% of their time performing functional
arm movements (reaching actions). The range of participant
activities observed is summarized in Table I above.
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Fig. 2. Segmentation of training and validation data by: (1) Class, and (2) window size. To ensure that all windowed samples have unambiguous
labels, all windowed samples are fully contained within one interval with the same ground-truth label (i.e., no samples cross a label boundary).

After completing the pizza task, eight participants with
the ability to walk without external assistance (such as the
use of a cane) were asked to walk around the room. These
participants walked continuously for approximately 3 minutes
while being recorded with both the Actical accelerometer and
the ARM.

E. Data Labelling

To label the data, we classified all movements as either arm
reaches or non-reaches. We defined an arm reach as any goal-
directed movement of the arm moving away from the body.
To ensure consistency, we required that the reach must involve
“visible” movement at the elbow and shoulder.

This definition of reach was used to label the datasets
through video recordings. One individual (JPG) manually
labeled all reaches from the datasets using a video labeling
tool that enabled the recording to be divided into episodes
of reach and non-reach so that the durations of each reach
and non-reach could also be identified. As the analyst gained
experience in labeling the movements, we realized that arm
reach cycles are complex movements that can typically be
decomposed into three primary sub-events:

1. Forward movement of arm: Arm moves away from
body; typically evidenced by movements at the elbow and
shoulder

2. Stationary (optional): Pause to collect object. This phase
may vary in length or may even not be detectable (e.g.,
in situations in which this event is too short to be recog-
nized, such as when there is no object to be collected).

3. Backward movement of the arm: Arm returns to body;
again, typically evidenced by simultaneous movements of
the elbow and shoulder.

An arm reach cycle is therefore normally composed of two
dynamic events (forward and backward movements), often
with a static event (pause) in between. The functional nature
of the arm reach is related to the dynamic events, which
require movement of the elbows and shoulders. The pause
in the middle of the reach may also be functional if it
involves grasping an object. However, our current study does
not include grasp detection, so, for our purposes, the pause
corresponds to an event that we do not wish to detect, and we
therefore labelled it a non-reach.

F. Data Processing

Before being used by the gesture discriminator (either for
training or discrimination), the data channels were first pre-
processed to attenuate high frequency noise. We applied an
acausal low pass 3" order Butterworth filter at 6 Hz. A similar
filter was used by Biswas er al. [14] to filter high frequency
noise artifacts and was found to work empirically.

The training data were originally segmented by class, per
the ground-truth labels assigned through video-labelling. This
class-segmented data contains examples of reach and non-
reach movements of varying lengths, per the amount of time
spent by the user in each of these states. The data were then
segmented with 1.0s sliding windows to generate uniform
length data fragments for use by the gesture discriminator
(see Fig. 2). 1.0s sliding windows were preferred over longer
window sizes (1.5s and 2.0s were also explored) because they
proved in pilot work to be better able to distinguish individual
reach instances while also being long enough to capture
meaningful characteristics of reach movements. For training
and validation, the overlap between consecutive windows
was varied depending on the label assigned to the window.
If the window was labelled as a non-reach, there was 50%
overlap between consecutive windows. If the window was
labelled as reach, there was 90% overlap between consecutive
windows. Oversampling the reach class was done to reduce
the class imbalance in the available datasets. The time spent
in non-reach states in the functional assessment dataset was
approximately ten times longer than the time spent in a reach
state, whereas the non-reach time in the ADL dataset was
about four times longer than the reach time.

The experimenter used a video annotation tool to generate
the ‘ground truth’ reference for the testing data. The testing
data was then segmented into window sizes that could be
input into the classifier. The label of the testing data was
unknown to the classifier. As such, the testing data was not
segmented by class and individual data windows could contain
labels for multiple classes. If a segmented window contained
two different labels (reach and non-reach), the window was
assigned the label that was present more often. In cases where
the segmented window has an equal amount of reach and non-
reach labels, the window was given the label of the previous
window. The overlap between consecutive windows was set at
90% (see Fig. 3).
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Fig. 3. Segmentation of testing data exclusively by window size without
reference to underlying ‘ground truth’ labels.

The training data were normalized to zero mean and unit
standard deviation. The validation and testing data were then
normalized with the same parameters as the training data. The
effect of standardizing the data was two-fold:

a. Itequalized the range of the data in the different channels,
which allowed the training classifiers to assign equal
importance to the multiple data streams [27]

b. It adjusted the baseline for each user and/or each activity
performed by that user.

After classification by the gesture discriminator,
we assigned a label to each sampling point by treating
the label associated with each window segment overlapping
that sampling point as a ‘vote’ for that label and then taking
the label with the highest number of votes (majority voting).

G. Classifiers for Gesture Recognition

We chose to test two classifiers for gesture recognition:
(1) Random Forests (RF) and (2) Convolutional Neural Net-
works (CNNs). The RF classifier is an ensemble classifier that
classifies data based on hand-tailored features. This classifier
employs a collection of decision trees to classify data. Each
decision tree is trained on a different sample of the data to gain
unique insights into the data structure. Individual decision trees
are likely to overfit the presented data, so the RF averages out
the output from each tree to improve the classification accu-
racy. CNNs were chosen because they can be applied without
predefining or hand-engineering the features used; in effect,
they learn to recognize relevant features automatically [19].
Each convolutional layer in the CNN performs a non-linear
data transformation that allows it to learn complex features to
classify gestures from a multi-variate time-series data stream.

1) Random Forests: Random Forests are robust and rela-
tively easy to tune when compared to other classification clas-
sifiers that employ hand-picked features such as Naive-Bayes
and Support Vector Machines [28]. They are an ensemble-type
classifier (classifiers that average many individual results) that
have previously been shown to produce good results in human
activity recognition tasks [29].

We selected seven signal-based features (described below)
for each of nine data channels (the gyroscope data in X, Y,
and Z, accelerometer data in X, Y, Z, and the roll, pitch, yaw
calculated by the IMU from the gyroscope and accelerometer
data), and six correlation-based features (described below)
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Fig. 4. CNN Architecture 1.0s window-segmented data.

that, based on initial pilot testing, showed good discrimination
potential for reach detection. The signal-based features were
extracted from each channel in the window-segmented data.
The correlation-based features measured changes across mul-
tiple channels. The utility of pairwise correlations as features
to detect activities in multiple dimensions has been previously
demonstrated [15].

The 7 signal-based features we used were: (1) the mean
of the signal, (2) the variance of the signal, (3) the root
mean square (RMS) of the signal (the RMS is square root
of the signal power), (4) the minimum value in the signal,
(5) the maximum value in the signal, (6) the skewness of
the signal, which is a measure of symmetry in the data

(the formula for skewness is M) and (7) the
kurtosis of the signal (a measure of the distribution of the
data). A high kurtosis means that the data has many outliers
relative to the normal distribution. The formula for kurtosis is
7:‘(}:74_”)4/1\] The signal-based features were calculated for
the 9 different channels described above, so the total number of
signal-based features is therefore 63 (9 channels x 7 features
per channel). We computed the following six Pearson correla-
tions: 3 acceleration correlations (X vs Y, X vs Z and Y vs Z)
and 3 gyroscope correlations (X vs Y, X vs Z and Y vs Z).

We set the number of features to select at random for each
decision split to be the square root of the number of features.
The leaves of the trees were not pruned so that the decision
trees generated a greater number of decisions to use in learning
the data. Based on a preliminary pilot study, we selected 50 as
the number of trees.

2) CNN: We opted to design a CNN similar to Wang’s
[21] FCN model, (see Fig. 4) with three blocks in the entire
architecture. The input to the CNN is a 1 second window
(20 datapoints) of the 9 channels of data (gyroscope data in X,
Y, and Z, accelerometer data in X, Y, Z, and the roll, pitch, yaw
calculated by the IMU from the gyroscope and accelerometer
data) generated by the ARM monitor. The output of the CNN
is a binary classifier that assigns a label (reach or non-reach)
to each windowed segment of data.

The basic block is a convolutional layer followed by a batch
normalization (BN) layer and a ReLU activation layer. The
convolution operation of the first two blocks is done across
the temporal space, while the third convolution operation is
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done across the channels. The first convolution operation is
done by a 1-D kernel of size 1(channels)*12(datapoints) and
a filter size of 32. The second convolution operation is done by
a 1-D kernel of size 1(channels)*9(datapoints) and a filter size
of 32. The third convolution operation is done by a 1-D kernel
of size 9(channels)*1(datapoint) and a filter size of 64. The
first two convolution sizes were large to capture more temporal
information. The number of filters was reduced with respect to
Wang’s [21] model to decrease the number of hyperparameters
to be learned given the small size of the dataset, which consists
of an average of 2125 training instances per participant. Batch
normalization is applied to speed up the convergence and
improve generalization [21].

The CNN uses a learning rate of 0.001, a batch size of 32,
trains over 16 epochs, and uses categorical cross entropy as
the loss function.

A validation dataset was generated by splitting 20% of a
continuous section of the training dataset from each partici-
pant at a randomized location. The randomized split of the
training dataset was done to ensure different sections of the
dataset were captured in the validation dataset, such that it
would provide adequate information of a classifier’s ability to
generalize to the test dataset. The classifier hyperparameters
were tuned with the results from the validation dataset.

H. Evaluation of Classifier Performance on Datasets

The functional assessment dataset and the ADL dataset
represent, respectively, data acquired from more and less
constrained functional tasks. The functional assessment dataset
represents data that is more readily obtainable in the clinical
setting, as it is comprised of testing protocols that are com-
monly administered there. In contrast, the ADL dataset is a
proxy for the less constrained tasks normally performed in
the home setting, which is our desired site of application.
We designed three experiments to evaluate three potential
future applications of the classifier.

1) Clinic-Clinic (Train on Functional Assessment Dataset, Test
on Functional Assessment Dataset): This experiment measures
how well the classifiers are able to learn to recognize gestures
acquired in the course of a standardized assessment in the
clinical environment, where it is easier to collect data from
participants, and generalize to a new participant, also assessed
in the clinic. The classifiers are trained on functional assess-
ment data from all users but one in our study and are then
tested on the functional assessment data from the user who
was left out from the training phase. This is repeated for
all the participants in the dataset. This would be of modest
clinical utility since the primary purpose is to assess patient
movements in the home environment, but because both the
training and tests assessments use standardized protocols, the
classifiers’ performance is likely to be best in this situation.

2) Home-Home (Train on ADL Dataset, Test on ADL Dataset):
This experiment measures how well the classifiers are able to
learn from training on one group of participants in the home
environment and generalize to a new participant in their home
environment. For this application, the ADL dataset is used as
the proxy for the home setting. This ADL dataset captures the

tradeoff between data richness and the capacity to discriminate
reach gestures in more unconstrained environments. It is more
difficult and time consuming to label the ADL dataset than
the functional assessment dataset because arm movements are
not as stereotyped as they are in the assessment process. The
classifiers are trained on the ADL dataset from all participants
but one and are then tested on the ADL dataset from the
participant the was left out from the training phase. This is
repeated for all the participants in the dataset. This type of
classifier would potentially be of high clinical value as it would
enable use in the home environment, but it would be difficult
to train such a classifier on movements acquired in patients’
homes due to the difficulty of obtaining reference data in this
setting. Nonetheless, this experiment will enable us to estimate
how well such a classifier could potentially perform.

3) Clinic-Home (Train on Functional Assessment, Test on
ADL): This experiment assesses how well the classifiers are
able to learn in the more practically realistic setting in
which training data is obtained on more constrained tasks in
the functional assessment and subsequently applied to less
constrained tasks in the home setting. Here, the classifiers
are trained to detect reach gestures on the data from the
functional assessment dataset and are subsequently tested on
the ADL dataset. This experiment measures the performance
we might expect from training in the clinic (the functional
assessment dataset) using data from all participants (including
the target subject, since they would have a clinical evaluation
before being sent home for monitoring) and applying them
to the home setting (modelled by the ADL dataset for the
target). This configuration most closely resembles the target
application of a home monitoring system based on training
data acquired in clinical evaluations.

. Evaluation Metrics

The accuracy, precision, recall, and Matthew’s correlation
coefficient (MCC) were used to evaluate classifier perfor-
mance. The accuracy is used since it is a recognizable metric
that can be used to compare our results to other studies. The
other metrics are used because they give a better indication of
performance in imbalanced datasets, like the ones used in this
study. Precision is the share of predicted reach instances that
are correct. Recall is the share of actual reach instances that are
predicted correctly. The MCC will generate a high score if the
binary predictor is able to correctly predict both the majority of
positive data instances (reaches) and the majority of negative
data instances (non-reaches). The MCC will lie in the interval
[—1, +1], with the extreme values of —1 and +1 reached
in cases of perfect misclassification and perfect classification,
respectively, while MCC=0 is the expected value for a random
classifier.

Precision, recall, and MCC are calculated as follows:

. TP
Precision = ——
(TP + FP)

TP
Recall = ————
(TP + FN)

TP+«TN —FPxFN
mMcCcC

= J(TP+FP)(TP+FN)(IN+ FP)(IN+FN)
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where, TP = True Positive, TN = True Negative, FP = False
Positive, FN = False Negative.

We also generated two clinically relevant metrics of classi-
fier performance on the experiments by estimating: (1) Reach
time, and (2) Reach counts. The reach time is the sum of
time durations for all sampling instances which are classified
as reaches. The reach count is the sum of the number
of instances where there are consecutive sampling instances
labelled as reaches with non-reaches on either side. Discrete
reach counts are relatively easy to understand, provide the
participant with quantitative data on arm activity, and are
superior to the activity counts provided by most existing
commercial activity trackers, which do not have a meaning-
ful measurement unit. These two metrics reflect related, yet
distinct, considerations. For example, if a reach occurred that
lasted 1.0 s as estimated from the video record, and our device
properly identified that a reach occurred, but estimated its
duration as being only 0.75 s, then the reach time accuracy
would be 75%, but the reach count accuracy would be 100%.

I1l. RESULTS

Table II. summarizes the performance of the classifiers on
the three experiments. The CNN and RF classifiers show simi-
lar performance, with no statistically significant differences on
the accuracy or MCC scores between the two classifier types
on the different experiments when evaluated with a paired
t-test. Both classifiers showed the best accuracy and MCC
scores in the clinic-clinic configuration, followed by the home-
home configuration, and finally the clinic-home configuration.

A. Reach Time Prediction

In order to evaluate the ability of the classifiers to esti-
mate the time participants spent performing reaching actions,
we plotted the cumulative reach time predicted by each
classifier against the cumulative reach time, as labelled in the
video recordings, at each instance in the dataset (see Fig. 5. A
below). The plot line therefore starts at time=0, when the
cumulative predicted reach time is 0 s and the cumulative
labelled reach time is also O s. The endpoint of the plot
line shows the cumulative predicted reach time against the
labelled reach time at time=end (over the entire dataset).
If the resulting plot line rises at 45 degrees, this means
that the classifier perfectly predicts the duration and time at
which a reaching action occurs. Therefore, a plot line with
an angle above 45 degrees is over-predicting the amount of
time spent reaching at that moment, while any line with an
angle under 45 degrees is under-predicting the amount of time
spent reaching at that moment. The results of Fig. 5. A do not
show a strong dependency of reach time prediction errors on
the degree of impairment of the participant for either classifier.

Fig 5. B compares the % time spent performing reaching
actions in the test dataset (as measured by video) against the
classifier predictions. An ANOVA, followed by t-tests with
a Bonferroni correction reported a significant difference in
the reach time % between the video labelling and the CNN
classifier for the Clinic-Home experiment (P < .005).

A RF Clinic<Clinic

. RF Home-Home G RF Clinic-Home

200 |

100 |

1]
0 100 200 ] 200 400 600 0 200 400

CMHN Clinic-Clinic CHN Home-Home CHNN Clinic-Home

400

Predicted Reach Time (s)

300

200

100

0 200 400 600
Labelled Reach Time (s)

I
12 iI I
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Reach time (% total activity
time)
(5]
=

Home-Home Clinic-Home
Datasets

= Reach time per video labelling = RF predicted reach time
CNN predicted reach time

Fig. 5. A. Cumulative predicted reach time (s) vs cumulative labelled
reach time (s) for all test configurations and both classifier types. Each
participant is plotted as a different line, and the degree of impairment
for the most affected arm is colour-coded (green: score >= 50 on ARAT
scale, orange: 30 >= ARAT < 50, and red: ARAT < 30). B. Reach time
(per video labelling) compared against the predicted reach time by RF
and CNN classifiers. *Significant difference, p < .05.

B. Reach Count Prediction

Similarly, we evaluated the ability of the classifiers to
estimate reach counts. Table III shows the precision and recall
of the classifiers in estimating the number of reaching counts
Note that, as described in the evaluation metrics section,
a successfully predicted reach count occurs whenever there is
overlap between the classifier prediction and the video-label,
regardless of whether the start point and end points of the
reaching action match. As such, classifiers are more likely to
correctly predict reach counts than reach time, which leads to
higher precision and recall scores in Table III than Table II.

Fig. 6 below compares the classifiers’ cumulative predic-
tions of reach counts to the number of reach counts identified
on the video recording at each point in time. This plot shows
the same general trends as for the reach times: generally tighter
correspondence in slope in the Clinic-Clinic mode and more
varied in the Clinic-Home mode, few differences between the
classifier types, and no obvious relationships between degree
of impairment and slope.

Fig. 7 illustrates the cumulative Actical activity counts
against the labelled reach counts for the functional assessment
and ADL datasets. Once again, we plotted the activity counts
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TABLE Il

CLASSIFIER RESULTS

Experiments

Classifier Evalua_tion Cli_ni_c- Home- Clinic-
Metric Clinic Home Home
Random  Accuracy (%) 924 +1.8 771+£57 74.8+9.5
Forests  precision (%) 64.8+122 59.0£17.4 5882 17.2
Recall (%) 60.3+11.1 72.8+13.4 46.9+24.8
MCC (-1, 1) 0.58 + 0.09 0.49 £ 0.05 0.36 £ 0.17
CNN Accuracy (%)  92.2+1.7 76.6 +5.0 76.5+8.9
Precision (%) 61.9+10.6 56.4+16.6 629+ 14.0
Recall (%) 66.2+13.3 79.3+16.2 43.0+15.2
MCC (-1, 1) 0.59 £+ 0.09 0.50 £ 0.07 0.37+£0.13
TABLE Il

CLASSIFIER RESULTS FOR REACH COUNT PREDICTIONS

Evaluation

Experiments

Classifier Metri Clinic-Clinic Home-Home Clinic-Home
etric
Random Precision (%) 665:+158 69.4:17.0 67.9:12.2
Forests Recall (%)  73.6+239 93362  84.7+10.5
CNN Precision (%)  69.0 £ 13.3 63.4+17.0 64.6 + 10.7
Recall (%) 74.2+14.1 942+8.2 88.7+15.2
RF Clinic-Clinic RF Home-Home RF Clinic-Home
150 200
7 150 |
s
100 / 100
100
50 50 V,f/
z ,_/_’_
0 / 0 2 0
0 50 100 150 0 100 200 0 50 100 150

CNN Clinic-Clinic CNN Home-Home CNN Clinic-Home

150

150

100 100 2 38

Predicted Reach Counts

50 50

0 50 100 150 0 100 200 0 50

Labelled Reach Counts

Fig. 6. Progression of predicted reach counts vs labelled reach counts
for all test configurations.

at every point in time against the labelled reach counts at
that moment. Note that because the Actical device measures
an abstract activity metric called a ‘count’ that does not
correspond to a discrete action such as a reach, we cannot
directly compare the ARM reach count to the Actical activity
count. Nonetheless, the lines in the functional dataset appear
to have a similar relative range of slopes as we found with
our classifiers, whereas the lines in the ADL dataset appear to
have a larger range of slopes than our classifiers.
Participants that included walking activities in their ADL
task showed a sudden increase in activity counts when walking
was taking place. In fact, while walking tasks accounted for
only 6.9% of the total time in the ADL dataset, on average

Functional Assessment Dataset ADL Dataset
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Fig. 7. Cumulative Actical activity counts vs video-labelled reach counts
for the functional assessment dataset (left) and ADL dataset (right).
The red circles on the right plot show the increase in Actical activity
counts during walking when there are no functionally meaningful reaches
occurring.

15.6% of the counts measured by the Actical happened during
this time. This suggests that the Actical sensor confounds arm
movements arising from walking with more specific reaching
actions. In contrast, the ARM classifiers do not show this rapid
increase in reach counts during walking activities. While there
are incorrect reach predictions during walking, on average
5.3% of all reaches predicted by the classifiers took place
during walking activities. This is roughly three times less than
the proportion for the Actical system.

V. DISCUSSION

In this paper, we presented a prototype for a stroke reha-
bilitation monitoring system that detects discrete reaching
actions in relatively unstructured ADLs in order to facili-
tate a future application in in-home rehabilitation monitoring
of arm function following stroke. We trained two machine
learning classifiers, Random Forests and Convolutional Neural
Networks, to detect reaching gestures from movement data
recorded by a wrist-worn IMU with an accelerometer and
gyroscope and characterized the classification performance
using two different datasets (functional assessments and ADL)
which were designed to emulate two key use environments
(clinic and home) for applying such a classifier.

The classifiers were most accurate when trained using
discrete tasks from standardized functional assessments and
tested on these same tasks (Clinic-Clinic tests). In turn, the
Clinic-Home configuration likely had the lowest performance
because the classifiers were trained on a dataset that was sub-
stantially different from the test dataset. Since the Clinic-Home
configuration is most relevant to the proposed implementation
of these classifiers in a home monitoring system, it is important
to consider whether the performance we obtained here would
be sufficient to justify such use.

Existing methods to capture arm activity outside of the
clinic, such as the Actical activity counts, fail to distinguish
between functional and non-functional arm movements and
are therefore insufficient to monitor rehabilitation at home.
We have seen further proof of this during our study, since
the Actical monitor calculated higher counts during passive
(non-functional) arm movements associated with walking.
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TABLE IV
COMPARISON OF ARM MONITOR TO LITERATURE

Type and sensor . Number of Classification
Study location Classifier Dataset Classes Accuracy (%)
Random Forests Clinic - Clini 924+19
3-axis Accelerometer CNN e meme 922x17
ARM -~ - Random Forests 7T71+57
Monitor and 3-axis G_ymscope CNN Home - Home 2 766+ 5.0
on wrist
Random Forests Clinic - Home 748+95
CNN 7165+89
Lum et 3-axis Accelerometer Random Forests - Intrasubject 9261 +35
al. . . 4 ADL Tasks 2
2020 on wrist Support Vector Machine- 749+114
( ) Intersubject T
h 3-axis Accelerometer
B;’\:?S ~on wrist K-means clustering with Euclidean/  Make a cup of 3 70312
(2015) J-axis G\z:]pssicope on Mahalanobis distance measure tea 658+ 18.2

Successful home monitoring requires unobtrusive classifiers
that can discriminate functional movements. Table IV above
compares our results with studies that also explored recog-
nition of functional arm movements with wrist-worn sensors
in unconstrained environments. These other studies all used
at most 1 sensor per arm to classify functional arm gestures
in stroke participants; however, they used different sensors,
classifiers, and trained their classifiers on different datasets.

Biswas et al. [14] collected accelerometer and gyroscope
data on the wrist to detect 3 functional tasks (reach and
retrieve, lift cup to mouth, and pouring action) in 4 stroke
patients on an activity of daily living - “making-a-cup-of-tea”.
Their work showed greater accuracy with the accelerometer
than the gyroscope data and obtained their best results with
a k-means clustering algorithm. Even though our datasets are
different, our results compare favorably to theirs in terms of
accuracy. A key difference between our studies is that they do
not evaluate the system performance on unscripted tasks, and
it is therefore difficult to determine how well their classifier
would recognize tasks in an unconstrained environment.

Lum et al. [23] presented machine learning algorithms
that can measure the amount of functional movement during
unscripted ADL tasks (laundry activities, kitchen activities,
shopping activities, and bed making activities). They acquired
data through a single accelerometer worn on the wrist to
estimate the % of functional arm use during the activities.
Their method represents the most clinically relevant study
to date. They obtained a measure of functional movement,
as opposed to counting any movement, and they did so in
relatively unconstrained environments that better model the
conditions at the patient’s home. Their intrasubject accuracy
was 92.6% and their intersubject accuracy was 74.2%. Their
experimental method is closest to the Home-Home experi-
ment presented in our study since they trained and tested
on data obtained during the ADL tasks. We obtained the
highest accuracy for our own Home-Home experiment with the
Random Forests classifier at 77.1%. Our results are therefore
comparable to theirs, providing further proof that machine
learning models can be used in combination with wrist-worn
sensors to calculate functional activity outside of the clinical

setting. In their limitations, they stated that annotating the
ADLs for the training dataset can be burdensome and that they
would look to evaluate the use of a reduced activity script. The
Clinic-Home experiment presented in our study shows that this
is possible since we were able to train classifiers on activities
derived from functional assessment such as the ARAT and
Fugl-Meyer and recognize functional movements in an ADL
with adequate accuracy.

V. LIMITATIONS

The datasets used in this study are small, given that they
were obtained from 12 participants who required an average
of 20 minutes to complete the functional assessment, and
15 minutes to complete the ADL. They are also skewed by
the characteristics of the participant population, which is rep-
resentative of a mildly impaired population. Classifiers trained
in this study may therefore not generalize well to a more
impaired population. Furthermore, while the pizza-making
task required a wide range of natural reaching movements,
it may not represent larger ranges of motion or different trunk
and reach configurations. In particular, there are activities such
as walking that would be much more prevalent in the home
setting than what is captured by the ADL dataset. Additionally,
the video annotation was performed by a single person without
verification from a second party. A future study would benefit
from having more people annotating the data to reduce bias
and errors.

VI. CONCLUSION

Overall, the results of our study are likely reasonably indica-
tive of the performance that could be expected of wrist-based
motion assessment systems for home monitoring of stroke
recovery. They demonstrate that it is possible to identify a
fundamental action such as reaching in unconstrained environ-
ments. Although the performance of the ARM system is worst
when attempting to generalize from training data acquired in
structured functional assessments to testing in less constrained
environments (Clinic-Home), the reach count and reach time
results indicate that there is a reasonably tight correlation in
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individual participants between the predicted values and the
reference values (most results lie within a factor of two of
the reference values), and the consistency of the slopes in
individual participants suggests that it might be possible to
identify an individual ‘correction factor’ that a clinician could
apply to a participant’s data to adjust it to more accurately
reflect the actual level of activity the participant performed.
In addition, our classifiers appear to be relatively immune
(compared with the existing Actical device) to irrelevant arm
motions such as those induced by walking.

Prior to clinical deployment, some key device design issues
would need to be addressed. In particular, the sensor would
need to be reduced in size and more appropriately packaged,
and protocols for data storage and transmission would need to
be developed and implemented. Since the current results are
based on only 12 participants, additional training data would
need to be obtained, and, ideally, the results evaluated in a
more realistic home setting over a longer period of study
that should include a full day’s cycle of activities of daily
living.

In summary, we believe that these results show that a single
wrist-mounted IMU-based sensor coupled with an appropriate
classifier may be of important value in monitoring in the
rehabilitation or home setting of functionally important reach-
ing movements in recovering stroke patients, and this work
therefore justifies further development of the system.
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