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Abstract— Electromyography (EMG) signals have been
used in designing muscle-machine interfaces (MuMIs) for
various applications, ranging from entertainment (EMG con-
trolled games) to human assistance and human augmen-
tation (EMG controlled prostheses and exoskeletons). For
this, classical machine learning methods such as Random
Forest (RF) models have been used to decode EMG signals.
However, these methods depend on several stages of signal
pre-processing and extraction of hand-crafted features so
as to obtain the desired output. In this work, we propose
EMG based frameworks for the decoding of object motions
in the execution of dexterous, in-hand manipulation tasks
using raw EMG signals input and two novel deep learn-
ing (DL) techniques called Temporal Multi-Channel Trans-
formers and Vision Transformers. The results obtained are
compared, in terms of accuracy and speed of decoding the
motion, with RF-based models and Convolutional Neural
Networks as a benchmark. The models are trained for
11 subjects in a motion-object specific and motion-object
generic way, using the 10-fold cross-validation procedure.
This study shows that the performance of MuMIs can be
improved by employing DL-based models with raw myoelec-
tric activations instead of developing DL or classic machine
learning models with hand-crafted features.

Index Terms— Electromyography, motion decoding,
dexterous manipulation, deep learning, transformers.

I. INTRODUCTION

HUMAN-MACHINE Interfaces (HMI) are finding an
increased use in activities of daily living in recent years.

For this purpose, biological signals can be used to develop
such interfaces, as they carry vital information from the human
physiological system. In tasks such as controlling bionic
devices, e.g. prosthetic arms and hands, the most commonly
employed method is Electromyography (EMG). These signals
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Fig. 1. EMG-based decoding of object motion can be used for dexterous
control of robotic or prosthetic arm-hand systems.

measure the myoelectric activations of the human muscles
generated during contraction and offer an intuitive method for
developing HMIs. EMG-based interfaces can decode human
movement intention to classify hand gestures and motions
[1], [2], as well as the execution of in-hand manipulation
motions with an object or continuous human-hand motions
[3], [4]. One of the main types of dexterous, in-hand manipu-
lation is Equilibrium Point Manipulation (EPM), in which the
contact points of the fingers remain relatively stationary on
the object surface while the object is manipulated (see Fig. 1).
Robotic arm-hand systems are able to achieve EPM [5], which
can be employed to execute tasks such as object inspection or
in-hand repositioning or reorientation.

Developing an EMG-based control scheme for intuitively
executing EPM tasks with a robot or prosthetic hand is a
new research direction that has achieved promising results
[6], [7]. Machine learning (ML) techniques have been
employed to analyse and decode EMG signals in the past few
years. A classic machine learning model-based control system
for an assistive device generally depends on prior signal pre-
processing and feature engineering steps before obtaining the
desired classification/regression output [8]. With classic tools
such as RF, a feature vector set is extracted from raw data after
processing the signal. Time-domain (TD) features have been
proved to be a feature class computationally less expensive to
calculate, achieving more consistent performance compared to
frequency-domain features [9]. Castellini et al. [10] compared
the results achieved by Neural Networks (NN), Support Vector
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Machines (SVM), and Locally Weighted Projection Regression
to predict the type of grasp and the grasping force through
regression. It was found that none of the tested approaches
showed outstanding results among the others, indicating that
ML as a whole is a viable approach. Liarokapis et al. [11]
proposed a task-specific framework for myoelectric activations
based on decoding the reach to grasp motions. When compar-
ing the performance of RF with Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis, K-Nearest Neigh-
bours (kNN), NN, and SVM, they found that task-specific
models outperform general models, and RF methodology
based learned models showed better performance than other
learning techniques in classification and estimation accuracy.

Deep learning (DL) approaches have great potential for
decoding the human motion or intention from the myoelectric
activity. Due to their large amount of parameters compared to
conventional function approximators and their non-linear acti-
vation functions, DL techniques allow relating more abstract
domains and counter domains. End-to-end DL-based mod-
els automatically identify and learn high-level features from
processed input or raw data using multiple hidden layers,
resulting in an increasingly complex and robust system without
the need for prior feature extraction. Two well-established
DL methods are convolutional neural networks (CNN) and
recurrent neural networks (RNN). In recent studies, they have
been employed in executing several classification [12] and
regression [13]–[15] tasks. In [14], the authors proposed a
scheme for estimating the direction and magnitude of the force
applied to a grasped object using sEMG of the forearm with
a CNN. Chen et al. [15] predicted the force of the multi-DOF
individual fingers simultaneously based on high-density EMG
signals. They compared the performance of a CNN and a CNN
plus RNN models with classical methods such as common
spatial pattern. Chen et al. concluded that methods based on
neural networks significantly outperform traditional methods.

Transformer architectures [16], represent the state-of-the-art
in Natural Language Processing (NLP) tasks and have recently
been employed in new fields, such as image recognition
through the Vision Transformer (ViT) [17]. This architecture
has great potential in solving problems that hinder the adoption
of RNNs and CNNs, such as the inherent impossibility of
parallelisation of the former and the significant computational
power needed for training the latter. Recent research has
developed Transformer-based models for usage in other tasks.
Regarding biological signals, Krishna et al. [18] proposed
an automatic speech recognition model based on Transformer
using as input statistical features extracted from EEG signals.
Other recent works also employed Transformer-based mod-
els in classification tasks using as input EEG, for emotion
recognition [19], and EMG signals, for hand gesture classifi-
cation [20]. These recent advances open up a new range of
application areas. However, to the best of the authors’ knowl-
edge, no Transformer-based model has ever been developed
for regression using raw biological signals’ data with multiple
channels and time steps as input.

In our previous works, we proposed a learning scheme
based on the RF regression method to map the myoelectric
activations of the muscles of the forearm and the hand to

TABLE I
SUBJECTS’ INFORMATION. F STANDS FOR FEMALE, M FOR MALE,

R FOR RIGHT, AND L FOR LEFT

the object’s motion. We studied the optimal muscle selection
for the sEMG-based decoding of these in-hand manipula-
tion motions [6], [21]. Then we explored how the EMG
signals vary across different subjects of different genders
and with different hand sizes, assessing the decoding mod-
els’ performance [3]. In this paper, we extend our previous
works by proposing a new Framework based on two novel
Transformer-based regression models. We further compare the
results with the results obtained with a CNN benchmark model
and with the results of the previously proposed RF model.

The rest of the paper is organised as follows. Section II
presents the details regarding the dataset used in this work,
a comprehensive description of the Transformers and ViT
architectures, and a brief explanation of the CNN benchmark
model. Section III presents the results obtained, which are
discussed in detail in Section IV. Finally, Section V concludes
the paper and presents potential future directions.

II. METHODS

A. Dataset

We used the dataset collected by Dwivedi et al. [3] to test
the proposed models’ performance. The dataset was collected
for 11 non-disabled subjects, five males and six females.
More information regarding the subjects can be found in
Table I. The experiments were performed by each subject with
their dominant hand. Each subject performed 3-dimensional
equilibrium point manipulation tasks using the Rubik’s cube,
the chips can from the Yale-CMU-Berkeley (YCB) grasping
object set [22], and a custom-made off-center cube. Each
manipulation task session was executed with a sequence
starting with a 5 sec rest period followed by five repetitions
of the manipulation motion for each trial. Adequate time
to rest (approximately 30 sec) was given to each subject
between trials to reduce the muscles’ fatigue. There were 10 of
these trials per session. The manipulation tasks performed
during the experiments were: pitch, roll, and yaw. More
information regarding the manipulation tasks can be found
in [3].

The myoelectric activations were measured from eight
muscles of the hand and eight forearm muscles using dou-
ble differential EMG electrodes. The EMG signals were
acquired at a sampling rate of 1200 Hz by the bioamplifier,
which bandpass filtered the data using a Butterworth filter
(5 Hz-500 Hz). The electric line noise was filtered out using
a notch filter of 50 Hz.
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B. Preprocessing

To evaluate the motion decoding capabilities of our pro-
posed methods, we tested the models for raw and processed
data. In order to train models using these methods, the input
data needs to be segmented first.

1) Window Size: The procedure described in [3] was
employed to segment the data. The signals were segmented
into sample sets using a sliding window of 200 ms with a
10 ms increment. According to the literature, the window size
is selected to be larger than 125 ms to avoid high biases
and variance [23] and smaller than 300 ms due to real-time
constraints [24].

2) Raw Data: Raw data implies minimal preprocessing is
employed. In the case of raw data, the signals are only filtered
by the bioamplifier and segmented before being fed to the
algorithms. The use of raw data as input is only possible due
to the ability of DL algorithms to learn discriminative features
even from noisy data. The RF method can not be used to train
successful decoding models, as shown in our last work [3].
Employing automatic feature extraction in other biological
signals, such as EEG, using DL has been reported as being
more robust and with more potential than those hand-crafted
features [25]. Our models identify patterns and characteristics
that feature engineering could miss.

3) Processed Data: Three time-domain features were
extracted from each EMG channel: Root Mean Square Value
(RMS), Waveform Length (WL) and Zero Crossings (ZC).
More information regarding the features used can be found
in [26].

C. Training and Evaluation

Our models were trained on a Google Colab Pro virtual
machine with GPU. The models were developed in Python
using Tensorflow and Keras, employing a hyperparameter
optimization framework [27] during 200 trials. Then, the
hyperparameters were fine-tuned by executing cross-validation
with 10% of the available training data for optimization by
empirical evaluation. The mean squared error (MSE) loss
function was employed during training. The MSE is defined
as follows

l(y, ŷ) = (y − ŷ)2 (1)

where l is the loss function, y is the desired output, and ŷ is the
predicted output. All models used Adam as the optimizer [28].

The trained model’s efficiency is assessed using the Pearson
correlation coefficient and the percentage of the Normalized
Mean Square Error (NMSE) representing accuracy in compar-
ing the predicted and the actual object motion. The NMSE
value of 0% denotes a bad fit, whereas the NMSE value
of 100% denotes that the two trajectories are identical. The
NMSE value is derived as follows

N M SE(%) = 100 ∗
(

1 −
∥∥xr − x p

∥∥2

‖xr − mean(xr)‖2

)
(2)

where, ‖.‖ indicates the 2-norm of a vector, xr is the actual
reference motion, and x p refers to the predicted motion. All

the results presented in Section III are an average of the 10-
fold cross-validation, in which one separated repetition of the
dataset is used for testing per fold.

To assess the robustness of our algorithms, we compared
the results for specific and generalized models, analyzing four
different sets:

Subject-Specific and Object-Specific Models: For each
subject, we trained and tested one model for each object.

Subject-Specific and Object-Generic Models: For each
subject, we trained and tested one model for all the objects.

Subject-Generic and Object-Specific Models: With this
set, we trained and tested subject-generic and object-specific
models for females, males, small hand size (hand length
≤ 165mm), medium hand size (165mm < hand length ≤
185mm), and large hand size (hand length > 185mm).

Subject-Generic and Object-Generic Models: With this
set, we trained and tested subject-generic and object-generic
models for females, males, small hand size, medium hand size,
and large hand size.

Finally, we evaluated the prediction time of each model for
raw and processed data as input to assess the applicability of
the solutions developed here in online applications.

D. Models

The following sections describe the DL models designed
for decoding continuous motion (regression) using EMG acti-
vations as input. The last layer in all models comprises three
neurons with a linear activation function to perform the roll,
pitch, and yaw regression.

1) CNN: The first DL model that we built for regression
is a CNN. This technique can identify patterns and extract
spatial characteristics of the data. It is one of the most
well-established DL techniques, representing the state-of-the-
art in several tasks and application fields. Hence, the CNN
is evaluated as a benchmark model in order to compare its
results with our novel DL techniques. Our CNN model, shown
in Fig. 2, comprises three convolutional blocks. Each block
contains a convolutional layer, followed by batch normaliza-
tion [29] and dropout [30] layers. The dropout rate is set to
0.3. The first two blocks also count with max-pooling layers
with dimensions of 1×5 each. The filters of the convolutional
layers have dimension of 1×20, 4×4, and 2×2, respectively.
Three fully-connected layers follow the convolutional blocks
with 256, 128, and 64 neurons.

2) TMC-T: The Transformers networks [16] were a mile-
stone in NLP applications, as most of the state-of-the-art algo-
rithms in this area are based on this architecture. Transformers
are designed to process sequential data without suffering from
vanishing gradients like the RNN, without presenting such
complexity as the GRU or LSTM or the impossibility of
parallelization inherent to these recurrent techniques. These
architectures are based only on attention mechanisms, dispens-
ing with any convolution or recurrence.

Transformer architectures employ attention mechanism to
create an attention-based representation for each element in
the input sequence. Then, the Transformer focuses on the
regions of most significant interest for a given input and,
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Fig. 2. CNN Model for raw EMG data. The EMG signals are 16 × 240 matrices, in which the lines are the 16 electrode channels, and the columns
are 240 time-steps, i.e. windows of 200 ms acquired at 1,200 Hz. Input dimensions will be gradually reduced through max-pooling layers while the
relevant input information is maintained. Filters are shown in the figure in orange. The three time-domain features are extracted and fed to the model
when processed data is used as input with dimension of 16 × 3. The filters’ sizes are 4 × 1, 4 × 3, and 2 × 3 respectively and no max-polling is
employed.

consequently, spends a greater computational resource in this
area. Unlike the attention mechanisms employed with RNNs,
the Transformer computes these representations in parallel
for each input element. The attention mechanism used by
Vaswani et al. [16] was the Scaled Dot-Product Attention,
given by

Attention(Q, K , V ) = so f tmax(
QK T

√
dk

)V , (3)

where
√

dk is the so-called scale factor, and Q, K , and V
are vectors called query, key, and value, respectively, that are
going to be used inside attention layers in order to compute
the attention value for each element.

Vaswani et al. [16] employed attention in different posi-
tions of different representations of input subspaces through a
mechanism called Multi-Head Attention, which allows parallel
computation and calculates a richer representation of the input
sequence. In the Multi-Head Attention, the same Q, K , and V
vectors are multiplied by learned weight matrices. Hence, the
attention is calculated for each head h, and the concatenation
of these three values is multiplied by a matrix WO to generate
the output of the Multi-Head Attention, as follows

Multi H ead(Q, K , V ) = concat (head1, . . . , headh)WO

headi = Attention(Q W Q
i ,K W K

i ,V W V
i ),

(4)

where W Q
i , W K

i e W V
i are the learned weight matrices, one for

each head. The Transformers’ encoder receives the input after
going through an embedding to convert each input element
to vectors of the same dimension. Following the embedding
step, since this model does not use convolution or recurrence,
position information for each element is added to the input
via a positional encoding. Then, these embeddings get fed to
a Multi-Head Attention block within the encoder with h heads.
The resulting matrix is provided to a feed-forward network.
Residual connection (Add) [31] is employed after both the
Multi-Head Attention and the feed-forward network to pass
along positional information through the encoder, together
with a normalization (Norm) layer [32] to speed up learning.
This encoder structure is shown in Fig. 3.

Advantages of using Transformers are the ability to per-
form parallel computing and fast training time at the cost

Fig. 3. Transformers’ encoder.

of not supporting large input sequences since the atten-
tion mechanisms scale quadratically with the input length.
For many machine translation applications, in which the
input is not that long, the quadratic cost to run the algo-
rithm might not be a problem. However, the quadratic
cost represents an obstacle with biological signals acquired
at high frequencies for several seconds or even hours.
To fulfil the task of processing biological signals with
several channels, we developed a Transformer-based model
named Temporal Multi-Channel Transformer (TMC-T). The
TMC-T model comprises a Transformer block with eight
heads and feed-forward networks with 32 neurons. For posi-
tion encoding, learnable embeddings were used. For token
embedding, a convolutional network was used. Using a CNN
to generate the inputs’ embedding has two purposes:

1) Learn and extract the embeddings. This model employed
an embedding dimension of 32 for each token, which
is the number of filters in the last convolutional layer
within the CNN block.

2) Reduce the input dimension. Since the Transformers
scale quadratically with the input length and our input is
a matrix of 16×240, i.e. 16 channels of EMG samples of
200 ms acquired at 1,200 Hz, the convolutional layers
followed by max-pooling layers reduce the input size
while keeping the most relevant information.

For raw data as input, the CNN block is composed of
convolution layers followed by batch normalization and a
dropout with a rate of 0.3, and max-pooling layers after each
of the first two convolution layers. There are three convolution
layers of 16, 32, and 32 filters of dimensions 1×20, 4×4, and
2 × 2. The max-pooling layers have dimensions of 1 × 5 and
1 × 4. After the CNN block, the output is reshaped to a
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Fig. 4. TMC-T Model for raw EMG data. Three convolution layers extract the embeddings and reduce the input dimension. After that, the result of
the convolutions is flattened and supplied to Transformers’ blocks. For processed data, filters of 4 × 1, 4 × 3, and 2 × 1 dimensions are employed.
A max-pooling layer of 2 × 1 is used between the second and third convolutional layers, reducing the data dimensions from 16 × 3 to 8 × 3. After the
convolutional layers, the data is reshaped to 24 × 32, in which 32 is the embedding dimension.

Fig. 5. TMC-ViT Model for raw EMG data. Three convolution layers extract the embeddings and reduce the input dimension to a 2D data grid of
16 × 16 with an embedding size of 64, which are interpreted as images by ViT and further split into patches of 4 × 4. When processed data is used
as input, only one max-pooling layer of 2 × 1 is employed between the second and third convolution. The number of filters is 16, 32, and 32 with
dimensions of 4 × 1, 4 × 3, and 2 × 1 respectively. For this case, the embedding dimension is 32. The patches for processed data have dimensions
of 4 × 3.

matrix of dimensions 192×32, i.e. an input sequence of length
192 and embedding size of 32. After the Transformer blocks,
a dropout of 0.5 and a dense layer of 64 neurons with ReLU
activation function is employed (see Fig. 4).

3) TMC-ViT: ViT is a Transformer model adapted to use
images as input. Thus, instead of processing 1D sequential
data, ViT will use 2D images as input. In a first step, the
ViT will subdivide the input image x ∈ R

H×W×C into a
sequence of flattened 2D patches x p ∈ R

N×(P2 ·C), where
(H, W ) is the resolution of the original image, C is the
number of channels, (P, P) is the resolution of each image
patch, and N = H W/P2 is the resulting number of patches.
Then, a linear embedding sequence of these patches and
position embeddings are provided as input to a Transformer
encoder (see Fig. 3). While the position embedding adds input
topology information, the ViT processes the image with a
linear projection of the flattened patches, whose components
indicate low-dimensional correlations in the patches, and the
Multi-Head Attention mechanism aggregates image informa-
tion across all layers. Dosovitskiy et al. [17] employed this
architecture for classifying 16 × 16 images. To adapt this
network to process multi-channel EMG signals as input,
we developed the Temporal Multi-Channel Vision Transformer
(TMC-ViT) model. A CNN was used at the input to create
the embeddings and reduce the input matrix to dimensions
16 × 16. The patches we used have the size of 4 × 4. Thus,
sequential signals from multiple channels will be interpreted
as 2D images. The CNN mentioned above has 16, 32, and

64 filters of dimensions 1 × 20, 4 × 4, and 2 × 2. The first
two convolutional layers are followed by max-polling layers
of 1 × 5 and 1 × 3, respectively. After each convolutional
layer, a dropout rate of 0.2 and batch normalization layers
are employed. Again, learnable embeddings were used for the
position encoding, and a convolutional network was used for
the tokens embedding. Since the last layer of the convolution
has 64 filters, embedding has a dimension of 64. The number
of attention heads and Transformer layers adopted was respec-
tively 4 and 8. The last dense layers have dimensions 2,048
and 1,024. This model is illustrated in Fig. 5.

III. RESULTS

This section presents the object motion decoding accuracies
obtained using the TMC-ViT, TMC-T, and CNN. Respective
decoding models were developed using raw and processed
myoelectric activations. All the results presented are an aver-
age of 10-fold cross-validation. For each evaluation set, the
results for the motion decoding models developed using raw
data will be presented first, followed by the results for the
models developed using the processed data. The DL models
were statistically validated using the analysis of variance
(ANOVA). The null hypothesis for the analysis was that all
models are the same. However, a p-value of 0.0049 was
obtained for the models developed using raw EMG data,
implying the results are statistically significant (p-value<0.05),
thus rejecting our null hypothesis and concluding that there is
a significant difference among the tested models developed
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TABLE II
SUBJECT-SPECIFIC AND OBJECT-SPECIFIC MODELS FOR RAW DATA. C STANDS FOR CORRELATION AND A FOR ACCURACY

for raw EMG data. On the contrary, for the models developed
using processed EMG data, a p-value of 0.40 was obtained,
indicating that there is no significant difference when trained
using the processed EMG data, due to the limited amount of
information that can be extracted from processed data.

A. Subject-Specific and Object-Specific

In this set, one model was trained for each object in a
subject-specific way.

1) Raw Data: The results obtained by our Subject-Specific
and Object-Specific models for raw EMG data are shown in
Table II.

2) Processed: The results obtained by our Subject-Specific
and Object-Specific models for processed data are shown in
Table III. The results are further compared with our previously
RF model [3].

B. Subject-Specific and Object-Generic

Here, we developed subject-specific models for all objects.
1) Raw Data: The results obtained for the subject-specific

and object-generic models for raw data are presented in
Table IV. It can be noticed that our TMC-ViT model surpassed
the CNN benchmark model in both correlation and accuracy,
achieving 89.68% and 79.09%, respectively. Moreover, the
TMC-ViT presented a correlation above 80% for all tested
subjects, demonstrating its robustness in learning the unique
characteristics of each individual’s EMG, performing the
regression with more than 60% accuracy for all subjects,
reaching the regression up to 93.63% accuracy for subject
number nine. The TMC-T model achieved better accuracy and
competitive correlation compared to the CNN model.

2) Processed Data: The results obtained for the
subject-specific and object-generic models for processed
data are presented in Table V together with the results
achieved by the RF model. All the DL techniques learned
from the features extracted during preprocessing. The DL
models trained in this work and the RF model from our
previous paper [3] achieved similar results. This indicates
that our models could have reached a threshold in which

TABLE III
SUBJECT-SPECIFIC AND OBJECT-SPECIFIC MODELS

FOR PROCESSED DATA

the algorithms learned as much as possible from the data
available. The TMC-ViT achieved the best results, with an
average correlation of 81.01% and an accuracy of 63.10%.
As was expected, the RF model could benefit from processed
data, presenting competitive performance with the DL models
when features extracted through feature engineering were
used as input.

C. Subject-Generic and Object-Specific

This section presents the results for models trained for a set
of subjects and each object.
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TABLE IV
SUBJECT-SPECIFIC AND OBJECT-GENERIC MODELS FOR RAW DATA

TABLE V
SUBJECT-SPECIFIC AND OBJECT-GENERIC

MODELS FOR PROCESSED DATA

1) Raw Data: The results obtained for subject-generic and
object-specific models for raw data are shown in Table VI.
The TMC-ViT model achieved the best results compared with
the other models for raw data for any group of subjects or
objects. The TMC-T and CNN obtained competitive results
with each other.

2) Processed: The results obtained for subject-generic
and object-specific models for processed data are shown in
Table VII. Once again, all the models for processed data
presented similar results. The DL models achieved better
performance for the males, those with medium and larger hand
sizes.

D. Subject-Generic and Object-Generic

1) Raw Data: The results obtained for subject-generic and
object-generic models for raw data are shown in Table IX.

TABLE VI
SUBJECT-GENERIC AND OBJECT-SPECIFIC MODELS FOR RAW DATA

The TMC-ViT achieved better performance than the TMC-T
and CNN models, presenting correlation above 81% and
accuracy above 65% for all the tested groups. The males
achieved 93.14% correlation and 86.6% accuracy, representing
the group with the highest results. Fig. 6 shows the actual vs
decoded motion for the participants of the male group achieved
by the TMC-ViT model.

2) Processed: The results obtained for subject-generic
and object-generic models for processed data are shown in
Table VIII. The TMC-ViT model achieved the best results,
whereas the others showed similar results. The medium and
large hand sizes presented competitive results for processed
data and Transformer-based methods. The CNN and RF mod-
els performed worse for the large hand sizes when compared
to medium hand sizes, indicating higher robustness of the
TMC-ViT and TMC-T models. The DL models performed
better when raw data was used as input compared with the
RF model.

E. Prediction Time

In this section, we measured the time required by each
model to predict a new motion sample. The TMC-ViT and
other models were developed and optimized to present a high
correlation and accuracy. The time presented here is an average
of 100 trials for classifying 12,000 samples. First, we calcu-
lated the time required for processing the data, i.e. extracting
the three hand-extracted features. It was found that the feature
engineering takes an average of 1.43 seconds to extract the
features from 12,000 samples. Table X presents the prediction
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Fig. 6. Plots of actual vs decoded motion from the myoelectric activation
of the male participants by the TMC-ViT subject-generic object-generic
model. Subfigure (a) presents the pitch motion, subfigure (b) depicts the
roll motion, and subfigure (c) shows the yaw motion.

time for the three DL models for raw and processed data as
input. In the latter case, the data processing time is already
considered. Moreover, in this table, we show each model’s
prediction frequency and number of parameters. Finally, the
results obtained for the RF model are also presented.

For the sake of comparison, we also optimized a deep
CNN (DCNN) with a similar number of parameters to the
ViT. The DCNN was trained and tested for the subject-
generic object-generic set. This subset of experiments was
chosen because it is the largest and most generic set with
the greatest potential to benefit from a deeper model. The
DCNN is composed of three convolutional blocks. The blocks
contain two, three, and four convolutional layers with 32,
64, and 128 filters, respectively. This model achieved an
accuracy of [49.80%, 84.20%, 47.92%, 75.05%, 82.24%] for
the “female”, “male”, “small hand”, “medium hand”, and
“large hand” groups respectively. Comparing these results with
those presented in Table IX shows that the DCNN achieved
the worst results among the tested models. Adding complexity
to the model did not improve the performance compared to the
smaller CNN.

IV. DISCUSSION

A. Subject-Specific and Object-Specific Models

The analysis of the Table II and III highlights the bet-
ter performance of the DL techniques to the classic ML
algorithm tested, i.e. the RF model. All tested DL models
outperformed the RF model in correlation and accuracy for

TABLE VII
SUBJECT-GENERIC AND OBJECT-SPECIFIC MODELS

FOR PROCESSED DATA

TABLE VIII
SUBJECT-GENERIC AND OBJECT-SPECIFIC

MODELS FOR PROCESSED DATA

raw and processed data. Regarding the tested DL techniques,
the success of the Transformer-based models developed here
is noticed. Both TMC-ViT and TMC-T outperformed the
CNN benchmark model in correlation and accuracy for each
data type. The TMC-ViT model achieved more than 83%
correlation and 64% accuracy for all objects. Using raw
data as input for our DL models enhanced correlation and
accuracy. DL algorithms employing raw data showed better
results in relation to DL or classical ML methods employing
processed data. Higher performance for raw data as input
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TABLE IX
SUBJECT-GENERIC AND OBJECT-GENERIC MODELS FOR RAW DATA

TABLE X
PREDICTION TIME FOR EACH MODEL

is only achievable due to the ability of DL techniques to
learn the relevant features even from raw data, extracting
information that could be lost during feature engineering.
Another advantage is that using raw data minimizes the need
for prior knowledge regarding the signals.

B. Subject-Specific and Object-Generic

The analysis of the Tables IV and V leads to two con-
clusions: i) once again, employing raw data to train the
DL models improved both accuracy and correlation when
compared to DL or classic ML techniques for processed data,
ii) our TMC-ViT for raw data and processed data outperformed
any other model for the respective data type. When comparing
the results achieved by the TMC-ViT model for raw data and
the RF model from our previous work, we can observe an
increase of 10.31% in correlation and 17.35% in accuracy.
Another interesting finding is that the performance difference
between DL and classical ML techniques is even more sig-
nificant for the Subject-Specific and Object-Generic models.
The Subject-Specific and Object-Generic model’s accuracy
employing TMC-ViT and raw data is 1.28 times larger than
the model’s accuracy using RF. For the Subject-Specific and
Object-Specific models, for the Chips Can object, for example,
this ratio is only 1.14. This fact is explained by DL models
outperforming classical ML models the larger the dataset.

C. Subject-Generic and Object-Specific

From the Table VI, it can be noted that the female subjects
and those with small or medium hand sizes have a considerable
drop in motion decoding accuracy and correlation for the
chips can as compared to the Rubik’s and the off-center mass

Fig. 7. Average accuracy (solid line) and correlation (dashed line)
obtained by the subject-generic object-generic TMC-ViT models for each
input data type and DL technique. The results of the RF model for
processed data are also presented.

cube. Whereas the male subjects and those with bigger hand
sizes have better performance with the off-center mass cube
and worse with the chips can. When comparing the results
obtained by the subject-generic and object-specific (Table VI)
with the subject-specific and object-generic (Table II) models,
it is noted that the DL models with raw data could benefit
from the larger dataset, performing better for subject-generic
models than for the subject-specific models. One thing that
is interesting to notice is that, for the RF model, the females
and those with smaller hand sizes have a considerable drop
in motion decoding accuracy for the off-center mass cube
compared to the Rubik’s cube, the opposite of the DL models.
The DL models performed better when raw data was used as
input, surpassing the RF model as expected.

D. Subject-Generic and Object-Generic

In Fig. 7 we present both the correlation (dashed line) and
accuracy (solid line) obtained by the TMC-ViT model for raw
and processed data. The results of the RF model for processed
data are also compared. Here is noticed the behaviour shown
in all the training sets: i) the TMC-ViT model achieves higher
results than the RF model and ii) using raw data as input
enhanced both correlation and accuracy for the DL models.

E. Prediction Time

The DL models performed better for raw data as input than
for processed data, showing that removing feature engineering
steps during data preprocessing can improve the applicability
of the DL models in real-time applications. The DCNN
achieved the worst prediction time among the tested models.
The TMC-T and the CNN models for raw data presented a
shorter prediction time than any other model for processed
data, including the RF model. The TMC-ViT is the most robust
model, which showed better accuracy and correlation results in
all tests. The TMC-ViT is also one of the deepest models, pre-
senting 4,950,067 parameters for raw data and, consequently,
a longer prediction time. Even though the TMC-ViT model
has shown a longer prediction time than the other models,
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it is still a suitable candidate method for online applications
with a prediction frequency for 12,000 samples higher than
4 kHz.

V. CONCLUSION

In this work, we have proposed a novel end-to-end deep
learning approach for decoding object motion in dexterous,
in-hand manipulation tasks based on EMG signals. The pro-
posed framework employs a Transformer-based architecture
modified to receive as input EMG signals in order to achieve
motion decoding. In particular, two new models called Tempo-
ral Multi-Channel Transformer and Temporal Multi-Channel
Vision Transformer are introduced for solving the EMG-based
decoding problem. We tested our models with raw and
processed data as input and compared the results with a CNN
benchmark model and an RF model proposed in previous
works, representing the classic machine learning techniques.

Our models have been trained in subject-generic and
subject-specific ways and an object-generic and object-specific
manner. It can be seen that both the accuracies and the corre-
lations increase when using DL models with raw data instead
of DL or classic ML techniques with processed data. The DL
models also generalized better than the classic ML models,
achieving better results for the subject-generic object-generic
model. In terms of accuracy and correlation, the Temporal
Multi-Channel Vision Transformer achieved the best results
among the tested models. The DL models showed a faster
prediction time for raw data than for processed data. Hence,
end-to-end DL approaches surpassed the use of processed data
and/or classic ML techniques, such as RF.

Future work will focus on the information learned by the DL
techniques by evaluating the patterns learned by the different
attention heads in the Temporal Multi-Channel Vision Trans-
former model, using both sEMG and high dimensional-EMG
signals as input.
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