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Policy Design for an Ankle-Foot Orthosis Using
Simulated Physical Human–Robot Interaction

via Deep Reinforcement Learning
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Abstract— This paper presents a novel approach for
designing a robotic orthosis controller considering phys-
ical human-robot interaction (pHRI). Computer simulation
for this human-robot system can be advantageous in
terms of time and cost due to the laborious nature of
designing a robot controller that effectively assists humans
with the appropriate magnitude and phase. Therefore,
we propose a two-stage policy training framework based
on deep reinforcement learning (deep RL) to design a
robot controller using human-robot dynamic simulation.
In Stage 1, the optimal policy of generating human gaits
is obtained from deep RL-based imitation learning on a
healthy subject model using the musculoskeletalsimulation
in OpenSim-RL. In Stage 2, human models in which the
right soleus muscle is weakenedto a certain severity are cre-
ated by modifying the human model obtained from Stage 1.
A robotic orthosis is then attached to the right ankle of
these models. The orthosis policy that assists walking with
optimal torque is then trained on these models. Here, the
elastic foundation model is used to predict the pHRI in
the coupling part between the human and robotic orthosis.
Comparative analysis of kinematic and kinetic simulation
results with the experimental data shows that the derived
human musculoskeletal model imitates a human walking.
It also shows that the robotic orthosis policy obtained from
two-stage policy training can assist the weakened soleus
muscle. The proposed approach was validated by applying
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the learned policy to ankle orthosis, conducting a gait
experiment, and comparing it with the simulation results.

Index Terms— Computer simulation, exoskeletons,
human-robot interaction, orthotics, reinforcement learning.

I. INTRODUCTION

ASSISTIVE robots have been developed to support various
types of human body movement [1], [2]. Specifically,

lower limb exoskeleton robots provide stability and support
during gait cycles [3] and are widely used in the field of
rehabilitation [4]–[8]. Because the lower limb exoskeleton
robot operates in conjunction with the human body, the effect
of the robot on the human body must be analyzed for effective
assistance [9]. The assistive performance of exoskeleton robots
on the human body is often evaluated through laborious
experiments. Thus, kinematics/kinetics simulation of a human-
robot system can be advantageous by minimizing the number
of experiments required to verify the effect of the assistive
device on human bodies [3], [10]. To show the credibility of
controlled motion in the simulated human-robot interaction,
it is crucial to evaluate whether the controller is designed
in a plausible manner [11]. Simulations can be made more
reliable by using controllers designed in a manner similar to
how humans generate motion. Humans use sensory feedback
during gait [12]. A neuromechanical controller resembling
the structure of human nervous system has been used for
controlling muscle-driven human models [13], [14], which
can be utilized in the human-robot simulation.

The human-robot system has a structural feature in which
the human body and the robot contact at physical interfaces
such as a straps, through which interaction forces and torques
are transmitted, referred to as the physical human-robot
interaction (pHRI). The pHRI can be used to assess motor
control ability during balancing [15]. The pHRI can provide
important information about the behavior of an exoskeleton,
such as assessing motor control ability during balancing [15],
or predicting comfort of the interface based on direction and
magnitude of forces which may loosen the attachment or cause
pain to the skin. The pHRI can be measured using force
sensors [16], [17] or spring-based distance measurement [18]
at the robot/human interface, or by using complex dynamic
models [19].
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In designing control policy for assistive devices, the
human-robot simulation must be exploited to consider pHRI
efficiently. Zhang et al. performed human-robot simula-
tions including pHRI to test assistive strategies of knee
exoskeletons [20]. In the simulation study of the knee
exoskeleton, pHRI increased further when assistive force was
applied. Ankle orthosis has a different target joint compared
to the knee exoskeleton. Therefore, the assistive timing or
magnitude will differ, and different aspects of pHRI will
appear. Vree et al. designed a controller for a human model
wearing a prosthesis through deep learning-based human-
robot simulation [21]. However, there has been less effort
to design a patient-specific ankle-foot orthosis controller for
muscle weakened patients considering pHRI using human-
robot simulation.

Therefore, our study focuses on designing a control policy
for an ankle-foot orthosis using simulated pHRI. We will show
how to design a robotic orthosis controller that assists a patient
with weakened plantar flexor through human-robot simulation.
The simulated pHRI can be used to produce the coordination
and its resulting interaction forces between a human model
controller and a robotic orthosis controller.

Previous studies related to human musculoskeletal simu-
lation used static optimization or Computed Muscle Con-
trol (CMC) tools [22]–[24] to calculate muscle force or muscle
excitations satisfying given kinematic data. The optimization-
based problems were able to calculate the muscle force that
meets the given kinematic and external force data. However,
if conditions change, such as a slight initial change of posture,
the problem must be re-solved under that setting. Unlike
optimization, if we use deep RL to solve the biomechanics
problem, we get the policy which is the system’s controller.
Using the policy, we may obtain a robust solution for different
conditions such as slight initial attitude changes.

Previous studies related to human-robot integrated simula-
tion have designed assistive control strategies [20], [25]–[27],
and investigated changes in recruitment and force of individual
muscles according to robot assistance [22], [23]. These studies
have used prescribed kinematic data [20], [22], [23], reference
kinematic data tracking using proportional and derivative (PD)
controller [26], or simple mass models [25] to drive the human
musculoskeletal system. When only prescribed kinematic data
is used, it is difficult to simulate kinematic adaptation, and
manual effort, including system modeling, is required when
designing a controller. Although such methods can generate
the gait motion of a human body model, it will not be a
simulation in a plausible manner because it does not design
a neuromechanical controller based on sensory feedback like
an actual human. Humans control gait through neural circuits
that use sensory feedback [28].

Studies have considered a neuromechanical controller
design to control human models, in a similar manner to
humans [13], [14]. The neuromechanical controller, which
generates gait motion of the human body from sensory
feedback similar to the human nervous system, includes reflex-
based control and central pattern generator (CPG). Neurome-
chanical control enabled the generation of human-like motions
in terrain such as slopes and curves [13] and adaptation

of motion against perturbations [14]. Most neuromechanical
simulation studies have manually designed controllers based
on prior knowledge of human motion. Recently, studies have
been conducted on designing a controller that uses sensory
feedback based on deep reinforcement learning (deep RL) to
drive a muscle-driven human model [11], [29]. Although deep
artificial neural networks (ANNs) used to learn the human
nervous system have a simpler structure than real neural
networks, neural controllers designed based on deep RL can
aid in studies related to human motor control [11], [30].

Studies related to simulating pHRI have used spring, and
damper elements [31] or artificial muscles [20] to model
the interaction forces generated in a human-robot system.
However, the elastic foundation model (EFM), which simu-
lates contact between arbitrarily complex surface geometries
represented by meshes [32], can also be considered to model
such interaction force. EFM tends to overestimate the con-
tact pressure compared to the finite element model because
it calculates the deformation and force using a simplified
elastic model. However, owing to its computational cost-
effectiveness, EFM has been widely used in the study of
contact simulation of knee joint bones [33].

The contributions of our paper are as follows. First,
we introduce EFM to predict pHRI, i.e., the interaction
force between the human and the robotic orthosis, and
develop a suitable model for human-robot simulation where
relative motion and interaction forces occur continuously.
Although several human-robot simulation studies have been
conducted [20], [31], those studies model the interaction
force as force occurring at several specified points. As our
proposed method using EFM models the contact between
object surfaces, contact force can be generated at any point
on the object surface. Our deep RL-based orthosis controller
design builds on this EFM. Second, we propose two-stage
policy training based on reinforcement learning (RL) to design
a robot controller that can assist patients. In particular, the
human model controller is designed in advance. The objective
of the human controller is to generate a human-like gait
through sensory feedback [34]; it is then used to simulate
a human model with weakened soleus. The goal of the
robot controller is to make a human model with a weakened
soleus walk normally with robotic orthosis assistance. The
observation used in designing the robot controller consists of
human and robot’s joint angles, angular velocities, and ground
reaction forces (GRFs) that can be measured in real robots.
Therefore, the robot controller can be used to control the
real robot through sim-to-real transfer [35]. We validated the
kinematic/kinetic data generated by each designed policy by
comparing it with the experimental data. Finally, we analyze
changes in ankle moments and assistive strategies of an
orthosis policy pertaining to soleus weakness. Our analysis
reveals the impact of soleus weakness on human gait and the
intention of robotic orthosis policies to support the human.
Our framework could be adapted to design a patient-specific
robotic assistive device using the patient’s data.

The remainder of this paper is organized as follows.
Section II provides preliminaries for deep RL and imitation
learning. Section III introduces musculoskeletal simulation
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Fig. 1. Overview of reinforcement learning with OpenSim-RL.
In reinforcement learning, the agent aims to find a policy π to maximize
the expected sum of discounted rewards of an MDP. In OpenSim-RL,
OpenSim provides an environment for reinforcement learning: a muscu-
loskeletal model and a physics-based simulation environment [11].

tools, two-stage policy training, the musculoskeletal model
used in the simulation, the reward function, and the gait
experiment for validation. In Section IV, we present and
discuss results for the forward dynamics simulation using
policies trained at each stage. In addition, we compare and
discuss the results of gait experiments and simulations for
validation. Section V provides concluding remarks.

II. PRELIMINARIES

In the human-robot simulation, deep RL and imitation
learning methods were used to learn a policy for generating
human gait motions and an robotic orthosis policy to support
the patient model. This section describes the methods used.

A. Deep Reinforcement Learning

We assume our environment to be a Markov decision
process (MDP), a tuple (S,A,P,R, γ ) consisting of sets of
states and actions, system dynamics, a reward function, and
a discount factor, respectively. An MDP includes a policy π ,
which governs the decision-making process. We denote the
policy as π(at |st ), as it is regarded a conditional probability
distribution of an action at ∈ A, given a state st ∈ S at
time t , as shown in Fig. 1. At each time step, an action at is
sampled from the π under st and applied to the environment
to induce the next state st+1 following the system dynamics,
P(st+1|st , at ), along with the corresponding scalar reward
rt = R(st , at ). Our task is then formalized to a standard
RL problem for obtaining for the optimal policy π∗ such
that maximizes the expected sum of discounted rewards of
an MDP.

RL attempts to recover such a solution by iteratively
evaluating and improving the policy with trajectory samples
obtained from the past and/or the current policy [36]. There-
fore, sample efficiency should be considered first when the
simulation cannot be run faster than in real-time, such as in an
environment simulating with a musculoskeletal model. We use
Soft-Actor-Critic (SAC) that has shown superior performance
regarding data-expensive environments where the agent has to

interact with a real-world, or a simulation without acceleration
capabilities [37]. Unlike other optimization methods, SAC
modifies the conventional policy objective by augmenting
rewards with additional policy entropy as follows:

π∗ = arg max
π

Eτ∼p(τ0)

[ ∞∑
t=0

[γ trt + H(π(·|st ))]
]

(1)

where p(τ0) = p(s0)
∏∞

t=0 P(st+1|st , at )π(at |st ) denotes the
distribution over trajectories starting from the initial state
s0 under the policy π , and H(π) denotes the entropy of the
policy π which measures the average amount of uncertainty
intrinsic to π . Consequently, the exploration of the stochastic
policy and robustness to the additional perturbations residing
in the model are improved.

B. Imitation Learning

Although deep RL has shown promising performances in
achieving the solution in an MDP, maximizing the policy
objective does not guarantee the optimal policy to behave
naturally like a real human. Furthermore, it is known to be
notorious to obtain proper learning signals under sparsely
rewarded environments where the non-zero reward is only
given as an indication of successful termination, known as
the credit-assignment problem [36]. Imitation learning tackles
these two problems by leveraging reference trajectories of the
expert [38].

By learning from the reference, imitation learning can
be branched out into three categories: a) behavior cloning,
b) inverse reinforcement learning (IRL), and c) auxiliary
reward learning. a) Behavior cloning is a learning method
using state-action pairs obtained from expert demonstra-
tions [39], [40] applied to autonomous driving [41] or manip-
ulator operations [42]. b) IRL aims to learn a maximized
cost function following the reference trajectory. Albeit IRL
methods can avoid covariate shift problems caused by fitting
single-timestep decisions, these are computationally costly due
to the RL process in an inner loop [43], [44]. A Gaussian
process regression is used to predict a reward function with
a small number of expert demonstrations [45]. c) Auxiliary
reward learning is an example-guided learning framework pro-
posed by combining a reference imitation objective with a task
objective [46]; the study showed that the proposed auxiliary
reward term could reduce the optimal policy of natural-looking
behaviors. Accordingly, we leveraged reference imitation
objective into our work, both in the human policy and orthosis
policy training stages.

III. METHODS

This section describes the musculoskeletal simulation tools
used, human and robotic orthosis models, and detailed meth-
ods to learn policies for human-robot simulations. In addition,
the process of performing a gait experiment on a human
subject is described to verify the applicability of the learned
orthosis policy to actual orthosis and the validity of simulated
pHRI.
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Fig. 2. Human-robot model used in the simulation. We use a mus-
culoskeletal model that moves in the sagittal plane. pHRI is generated
by the EFM between two contact spheres (Contact Spheres (1)) located
in the shank of the human model and an orthosis part modeled as a
mesh (Orthosis (Lower)). Orthosis (Upper) is attached to the upper part
of the human shank. The x, y coordinate system is shown to represent
the direction of pHRI and is a local coordinate system on orthosis. For
the GRF, three contact spheres are used on the foot of the human body
model (Contact Spheres (2)), and the forces are generated by the Hunt-
Crossley contact model.

A. OpenSim-RL

We used OpenSim-RL [11] to learn policies for human-
robot simulation. OpenSim-RL, built using OpenSim [47] and
OpenAI Gym [48], can train human motor controllers using
the deep RL method [29], which is provided as a Conda
package [11]. RL aims to train an agent to perform actions
that maximize rewards in its environment (Fig. 1). The RL
environment we used in this study comprises a musculoskeletal
model and a physics-based simulation environment in the
OpenSim-RL.

B. Model

We used the ‘gait10dof18musc’ model distributed with
OpenSim as the human musculoskeletal system model after
modification. We removed the degree of freedom of the lumbar
joint to use only the hip, knee, and ankle joints in the model.
The model was scaled using 3-dimensional marker set data
distributed with OpenSim and had a height of approximately
1.8 m, a mass of 72 kg, and 9 degrees of freedom. The
left and right hip, knee, and ankle joints have 1 degree of
freedom. Pelvic translation and pelvic rotation have 2 degrees
of freedom and 1 degree of freedom, respectively. The model
moves in the sagittal plane, and the degrees of freedom in
other directions are constrained. Hill-type muscle, widely used
in muscle-driven simulations, is used to model the relationship
between muscle length, velocity, and force [49], [50]. Eighteen
Hill-type muscles attached to the lower extremities were used
for movement. The maximum isometric force of the soleus was
weakened to create the patient model (Soleus in Fig. 2). A one-
degree-of-freedom robotic orthosis consists of three parts. One
is a part fixed to the foot of the model (Orthosis (Foot Plate)
in Fig. 2), and another (Orthosis (Lower) in Fig. 2) can rotate
relative to the fixed part. The other one (Orthosis (Upper) in
Fig. 2) was attached to the top of the shank. WeldConstraint
constrains the Orthosis (Upper) and the Orthosis (Lower).

TABLE I
CONTACT PARAMETERS USED IN SIMULATION

Bushing Force was added to the orthosis ankle joint and the
Orthosis (Upper).

The Hunt–Crossley contact model in OpenSim [32] was
used to generate the ground reaction force between the human
foot and the ground during model walking simulation. Contact
spheres, one on the heel and two on the forefoot, were used
to measure ground reaction forces (Contact Spheres (2) in
Fig. 2). To predict the pHRI, we used EFM in OpenSim,
which is computationally more efficient than the finite ele-
ment model [32], [33]. The pHRI between the orthosis mesh
(Orthosis (Lower) in Fig. 2) and the contact spheres located on
the shank (Contact Spheres (1) in Fig. 2) was generated using
EFM. The parameters for the Hunt–Crossley contact model
were similar to those used in the study of Falisse et al. [51].
The parameters of the EFM are empirically determined within
the range used in the study of Hast et al. [33]. Detailed values
are shown in Table I.

The meshlab software [52] was used to convert the CAD
file of the orthosis to a mesh file with a triangular mesh
grid recognizable in OpenSim, which is required in the EFM
contact model. The orthosis actuator was modeled as a Hill-
type muscle, and muscle activation dynamics were used.
We neglected the weight of the actuator. The Foot Plate,
Orthosis (Upper), and Orthosis (Lower) mass is approximately
0.84 kg, 0.38 kg, and 0.29 kg, respectively.

Reference motion data for imitation learning was obtained
from normal level walking data included in OpenSim. The
gait data were obtained on the self-selected speed gait of
one healthy subject [53]. The data were obtained for one
gait cycle and extended to three cycles using cubic spline
interpolation to make smooth cyclic gait data. The joint angle
and angular velocity were obtained using inverse kinemat-
ics. Muscle excitation data which will be used as reference
data in the imitation learning, were obtained through inverse
dynamics, Residual Reduction Algorithm, and CMC tools
in OpenSim [23], [24]. This study uses the deep RL-based
imitation learning method to learn human policy. Unlike the
existing prescribed kinematic data research that requires GRF
data, only kinematic data is enough as reference data for policy
learning since the GRF can be estimated through the contact
spheres on the musculoskeletal model’s feet.

C. Two-Stage Policy Training

To train the orthosis policy in a patient-specific fashion,
we propose a two-stage policy training based on RL with
imitation objectives to derive the human and the orthosis
policies to be used as the controllers in the human-robot
simulation (Fig. 3). In Stage 1, the human policy (πhuman)
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Fig. 3. Overall schematic of the two–stage policy training framework. In Stage 1, the human policy (πhuman) is trained in a way that minimizes
the kinematic and muscle activation differences between the current model and the reference data. The observations (shuman

t ) of πhuman are muscle
activations, joint angles, angular velocities and GRFs states of the human model, and the action (ahuman

t ) is muscle activations. The musculoskeletal
model used in this stage is a healthy subject (Phuman). In Stage 2, we weaken the right soleus of the musculoskeletal model by ω� and attach
a ankle orthosis to the ipsilateral side (Porthω ). While the transferred policy from Stage 1 drives the musculoskeletal model, the orthosis policy
(πorthω ) is trained to output the required torque for the orthosis to assist the weakened model remain in balance. The observations (sorth

t ) of πorthω

are human right ankle joint angle, angular velocity, orthosis joint angle and angular velocity, and GRFs states, and the action (aorth
t ) is a muscle

activation.

for generating human gaits was trained, and in Stage 2, the
orthosis policy (πorthω ) for the orthosis assistance was trained.
In Stage 2, we reduce the maximum isometric force of Soleus
to model the patient and use the human policy learned from
healthy gait data to drive the human model. At this time,
we assumed a patient who could perform a healthy gait when
wearing an ankle orthosis.

In Stage 1, the human policy was trained to imitate the
human reference trajectories (Stage 1 in Fig. 3). The reference
trajectories can be replaced with the patient’s gait to learn
the patient-specific gait. The agent receives the states, i.e.,
the 37-dimensional vector consist of muscle activations, joint
angles, angular velocities, and GRFs from the environment.
The agent then sends muscle activations as an action with
values between 0 and 1. The action forms an 18-dimensional
continuous action space. Environment of Stage 1 receives
action ahuman

t , performs forward dynamics for a given time
step, and sends observation shuman

t+1 . A healthy subject is
used as a human model, and the system dynamics can be
represented as Phuman(shuman

t+1 |shuman
t , ahuman

t ). πhuman has
an input/output structure similar to human sensory feedback.
πhuman uses muscle, joint, and GRF states as input and muscle
activation as output.

In Stage 2, the orthosis policy is trained for optimal
torque of an orthosis to support the human in walking
(Stage 2 in Fig. 3). Referring to Ong et al., we generated
three models by weakening the maximum isometric force of
the right Soleus muscle to 75% (mild), 87.5% (moderate),
and 93.75% (severe), respectively [54]. In addition, a one-
degree-of-freedom orthosis was added to the right ankle to
support the soleus weakened patient model. EFM was added
between the orthosis and the human model to generate pHRI

(Fig. 2). The system dynamics of Stage 2 can be represented

as Porthω(sorthω
t+1 |sorthω

t , aorthω
t ) where ω is 75, 87.5, and

93.75 which indicates the percentage with respect to the max-
imum isometric force of the healthy model. Imitation learning
using reference motion for the joint angle and angular velocity
of the human right ankle was used to train πorthω . πhuman

derived from Stage 1 was used as a fixed policy to control
the weakened musculoskeletal system in Stage 2. Stage 2
agent does not update πhuman during the training. In Stage 2,
19-dimensional actions are input to the human-robot model,
of which 18 are actions to drive human muscles, and one is to
input orthosis actuators. As the learning policy is not a πhuman

but an πorthω , the action space size of Stage 2 is set to 1. While
the soleus weakened musculoskeletal model is controlled by
πhuman , the orthosis policy πorthω for assistance is trained
by Stage 2 agent. An RL agent for πorthω training receives
the following observations from the environment: human right
ankle angle, human right ankle angular velocity, robot joint
angle, robot joint angular velocity, and GRFs. The RL agent
sends an action aorth

t to the environment to maximize reward
rorth

t . The action is the muscle activation, which has a value
between 0 and 1. The environment of Stage 2 takes the actions
of the fixed policy ahuman

t and the trainable policy aorth
t as

inputs. It then performs integration for a given time step and
outputs the observation. The observation consists of shuman

t+1
and sorth

t+1 for the human and the orthosis policies, respectively.
πorthω receives joint kinematics data and GRFs, which are
measurable values by sensors in ankle-foot orthosis. πorthω

outputs torque as action. We use SAC as an RL algorithm for
two-stage policy training. The hyperparameters of the SAC
used in each stage are presented in Table II. The values of the
parameters were selected empirically.
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TABLE II
HYPERPARAMETERS OF THE SAC LEARNING ALGORITHM

USED IN TWO-STAGE POLICY TRAINING

TABLE III
NUMERICAL VALUES OF WEIGHTS USED IN REWARD FUNCTIONS

D. Reward Function

1) Human Policy Reward: For constructing the reward func-
tion for imitation learning, we refer to the method used in [55].
The reward function rh

t used in πhuman training is as follows:
rh

t = wpos,hr pos,h
t + wvel,hr vel,h

t + wpvelr
pvel
t + wmarma

t ,

(2)

where wpos,h = 0.6, wvel,h = 0.05, wpvel = 0.15, and
wma = 0.2. The r pos

t is set as follows to give a high reward
when the j th joint angle q j

t of the human model and the joint
angle q̂ j

t of the reference motion are close at time t .

r pos,h
t = exp

⎡
⎣−10

∑
j

(q̂ j
t − q j

t )2

⎤
⎦ (3)

The term r vel
t makes the joint angular velocity of the model

q̇ j
t track the reference data ˆ̇q j

t .

r vel,h
t = exp

⎡
⎣−0.5

∑
j

( ˆ̇q j
t − q̇ j

t )2

⎤
⎦ (4)

The r pvel
t encourages the model to walk with the speed of the

reference data. ˆ̇pt and ṗt are the forward pelvic velocities of
the reference data and model, respectively.

r pvel
t = exp

[
−50( ˆ̇pt − ṗt)

2
]

(5)

The rma
t encourages the muscle activations of the muscu-

loskeletal model to track the reference data. x̂ j
t and x j

t are
the muscle activations of muscle j in the reference data and

model, respectively.

rma
t = exp

⎡
⎣−2

∑
j

(x̂ j
t − x j

t )2

⎤
⎦ . (6)

We used Eq. (6) to track muscle activations obtained from the
CMC tool under given kinematics to accelerate the imitation
learning process.

2) Orthosis Policy Reward: The reward function ro
t used in

πorthω training is as follows:
ro

t = wpos,or pos,o
t + wvel,or vel,o

t + wsdr sd
t , (7)

where wpos,o = 0.8, wvel,o = 0.2, and wsd = −10. The
ro

t provides a high value when the ankle angle and angular
velocity of the weakened model follow the reference data using
the ankle-foot orthosis. r pos,o

t generates a high reward when
the right ankle joint angle qankle,r

t of the human model matches
the joint angle q̂ankle,r

t of the reference motion at time t .

r pos,o
t = exp

[
−100(q̂ankle,r

t − qankle,r
t )2

]
(8)

Similarly, the joint angular velocity reward term is provided.
The ˆ̇qankle,r

t and q̇ankle,r
t are the angular velocity of the right

ankle joint from the reference data and the human model,
respectively.

r vel,o
t = exp

⎡
⎣−2

∑
j

( ˆ̇qankle,r
t − q̇ankle,r

t )2

⎤
⎦ (9)

r sd,o
t is added for smoothing of orthosis torque input. It gen-

erates a high reward when minimizing the variance of the last
ten orthosis actions. ao, j represent the j th previous input from
the current time step among the recent N orthosis actions, and
a value of N = 10 was used.

r sd
t = exp

⎡
⎣ 1

N − 1

N−1∑
j=0

(ao, j − āo,N−1)
2

⎤
⎦ (10)

E. Gait Experiment

To show the feasibility of whether orthosis policy can be
applied to an actual ankle orthosis, we fabricated an ankle
orthosis and performed a gait experiment on a healthy subject.
In the experiment, the ankle orthosis was controlled using the
learned orthosis policy.

We fabricated the ankle orthosis by modifying a part of the
1-degree of freedom ankle orthosis design used in the study of
Choi et al. [56] (Fig. 4). The ankle orthosis has one degree of
freedom in the direction of dorsi-plantar flexion. A pneumatic
actuator drives ankle orthosis (Pneumatic Actuator in Fig. 4).
The actuator is connected to the heel of the orthosis through
a steel wire and assists in plantar flexion during contraction.
The load cell attached to the pneumatic actuator measures the
force when the actuator contracts (Loadcell in Fig. 4). The
encoder measures the ankle joint angle (Encoder in Fig. 4).
Part 1 (Part 1 in Fig. 4) and Part 2 (Part 2 in Fig. 4) are
connected via the F/T sensor (F/T Sensor in Fig. 4), a sensor
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Fig. 4. Design and fabrication of an ankle orthosis for gait
experiment. (a) Orthosis CAD Model (b) Fabricated Ankle Orthosis.

that measures 3-axis force and torque. In other words, when
a relative force or torque occurs between Part 1 and Part 2,
it can be measured through the F/T sensor. Part 2 is connected
to the actuator, and Part 1 is engaged with the human shank.
If a force is applied from the actuator, pHRI between the
human and robot can be measured through the F/T sensor.
Force sensing resistors (FSR) for measuring vertical GRF are
attached to the shoe insole (FSR in Fig. 4) [7]. To obtain
the EMG of the plantar flexor, we measured the EMG of the
gastrocnemius, a muscle that can be measured by surface EMG
(EMG board in Fig. 4). The measured sensor data is collected
through a microcontroller unit (MCU) (MCU in Fig. 4). For
data transmission, we used Controller Area Network (CAN)
communication.

The experiment was performed on one healthy subject with
a height of 1.8 m and a weight of 83 kg. The test subject
walked on the treadmill at 1.2 m/s. The experiment was
performed in 3 sets of 50 steps each for both cases with
and without orthosis assistance. The experimental protocol
was approved by the institutional review board of Yonsei Uni-
versity (7001988-202205-HR-1560-02). We performed a gait
experiment using the orthosis policy of Stage 2 to validate the
policy. We verified the relevance of each feature on the action
by alternately masking each index to 0. It has been shown
that some of the features dominate the action mapping. For
example, in the case of the moderate orthosis policy, 2 out
of 8 observations - ankle angle and vertical ground reaction
force - had a significant effect on action. From that feature,
we used the values measured from the FSR and encoder as
observations. The experimental results were then compared
with the simulation results using a model where Soleus was
weakened by 20%.

IV. RESULTS AND DISCUSSION

To evaluate the results of our two-stage policy training, for-
ward dynamics simulation are performed using policies trained
at each stage, namely πhuman and πorthω . The kinematic
and kinetic results of the simulation are compared with the
reference motion. It is also compared with experimental data
gathered by motion capture system of healthy subjects [57]
for validation. The results of the gait experiment performed
using the manufactured ankle orthosis with the orthosis policy
are presented together with the simulation results. We have

included a supplementary file that contains eight multimedia
MOV format movie clips, which show forward dynamic sim-
ulation results for the two stages and the robustness of the
learned policies.

A. Stage 1 Training

First, Fig. 5 shows the forward dynamics simulation results
for Stage 1, where the healthy subject model is controlled by
πhuman . Joint angles, moments, and GRFs are shown to eval-
uate kinematics and kinetics of gait generated by πhuman . The
left and right joint angles generated by πhuman are similar to
the reference data given as the goal of imitation learning. The
joint angles are also located approximately within 2 standard
deviations (σ ) of the experimental data [57] (Fig. 5a). Data
falling outside of the 2σ range of the experimental data and
some oscillations are observed in the joint moment results
(Fig. 5b). The possible cause of the discrepancy includes
the dynamic inconsistency between the reference data used
for imitation learning and the RL environment. We used the
muscle activation term in the reward function to make the
muscle activation pattern of human gait be learned.

The reference data used for imitation learning was obtained
from the CMC tool in OpenSim. The musculoskeletal model
and environment used in the CMC are different from those
used in πhuman training. For example, CMC inputs external
forces from recorded data to apply GRF to the model and use
reserve actuators to drive the model. On the other hand, the
model in Stage 1 uses a contact sphere and a fixed lumbar
angle, respectively. These differences would make it difficult
for the agent to train a policy to generate data consistent
with the reference muscle activation, resulting in differences
from the reference data in joint moments.

The simulation and reference data for GRF show a similar
trend except for certain points: gait cycles of 1.9% to 5.6%
in vertical R, 1.3% to 3.9% in horizontal R, and 75% to
80% in vertical and horizontal L. GRF is a state predicted
through forward simulation using πhuman , not a state included
in the reward function for imitation learning. Nevertheless,
it shows good agreement with the experimental data except for
these points. The dynamic inconsistency between the reference
data and the deep RL environment might be the cause of
the high peak values or oscillation. A deep RL-based human
motor controller design can generate a variety of motions,
such as adaptive motion with orthosis assistance in addition to
walking, depending on how the human policy is learned [46],
[58]. Therefore, future work could be a simulation of human
adaptive behavior for orthosis assistance.

B. Stage 2 Training
Second, forward dynamics simulation results for Stage 2,

that is, when a weakened soleus model wearing orthosis on the
right ankle is controlled by πhuman and πorthω are shown in
Fig. 6. In this simulation, πhuman controls the musculoskeletal
model in which the maximum force of the soleus, which
generates propulsion during walking, is weakened by 75%,
87.5%, and 93.75%. At the same time, πorthω assists the
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Fig. 5. Results of forward dynamics simulation in Stage 1. A healthy subject model is controlled by πhuman. Joint angles (a), moments (b), and
GRFs (c) obtained from forward dynamics simulation are shown (R and L in the subtitles are right side and left side, respectively). Simulation results
(blue solid line), reference data used for imitation learning (orange dashed line), and experimental data [57] (shaded area) are compared together.
Hip flexion, knee extension, and ankle dorsiflexion are positive. The hip angles of the experimental data are shifted by -0.35 radians to offset the
difference between the experimental setup and the simulation model as in [54].

Fig. 6. Results of forward dynamic simulation in Stage 2. A soleus weakened model wearing an orthosis is controlled by πhuman and πorthω .
Joint angles (a), moments (b), and GRFs (c) obtained from forward dynamics simulation are shown (R and L in the subtitles are right side and left
side, respectively). Simulated data for the musculoskeletal model in which the maximum isometric force of Soleus muscle is weakened by 75%,
87.5%, and 93.75% (red solid line, green dash-dotted line, and blue dotted line, respectively), reference data used for imitation learning (orange
dashed line), and experimental data [57] (shaded area) are compared together. Hip flexion, knee extension, and ankle dorsiflexion are positive. The
hip angles of the experimental data are shifted by -0.35 radians to offset the difference between the experimental setup and the simulation model
as in [54].

model in which the plantarflexion moment on the right side is
insufficiently generated through an orthosis.

The joint angles of both legs for hip, knee, and ankle
show good agreement with the reference data for all muscle
weakness severity and lie within 2σ of the experimental
data (Fig. 6a). It is observed that oscillations in the hip
joint moment of Stage 2 are increased compared to Stage 1
(Fig. 6b). In particular, the right ankle moments significantly
deviate from normal gait (Ankle R in Fig. 6b).

In the nonaffected leg, a moment close to zero is observed
in 10–50% of the gait cycle, which corresponds to the
swing phase (Ankle L in Fig. 6b). In contrast, a moment
in the dorsiflexion direction occurred in the affected leg

during the same phase (Ankle R in Fig. 6b). This may be
due to the moment imbalance of the antagonistic pair, the
dorsiflexor, and the plantar flexor, spanning the ankle. During
the swing phase of a healthy subject’s gait, co-contraction of
the antagonistic pair occurs. The co-contraction of antagonistic
pair is known to improve the stability of motion by increasing
joint stiffness [59], [60]. We are also able to observe that this
co-contraction occurs during the swing phase in simulation of
healthy models (Fig. 7).

For Stage 2 simulation, the weakened maximal isometric
force of the plantar flexor reduces the plantar flexors’ con-
tribution to the ankle joint moment during co-contraction of
the antagonistic pair in the swing phase. This results in a net
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Fig. 7. Moments generated by antagonistic muscle pairs spanning
the ankle joint. Moments caused by antagonistic muscle pairs in the right
ankle of the model, i.e., tibialis (dorsi flexor), soleus, and gastrocnemius
(plantar flexors) are shown. The net moment during the swing phase due
to the muscles located in the ankle joint is almost zero. The moments
in both plantar and dorsiflexion directions are similar in magnitude and
opposite in direction at 60–100% of the gait cycle.

Fig. 8. Assistive torques of the orthosis. The assistive torque inputs
applied to the human body by πorthω in Stage 2 simulation are shown.
For comparison, the ankle joint moment occurring in a healthy subject is
also shown. The shaded area is the torque curve obtained from the ankle
orthosis experiment on healthy subjects using the orthosis policy. The
pink dashed line is the simulation result for the 20% Soleus weakened
model.

joint moment of the ankle joint in the dorsiflexion direction,
which can explain the same directional moment occurring in
the swing phase of the affected side. The dorsiflexion moment
should have caused a change in ankle joint angle. However,
in the swing phase, the ankle angle is almost constant, close
to 0 (Ankle R in Fig. 6a). From this, it can be inferred that
an external moment is acting on the ankle to make the joint
angle constant, which is observed in the assistive torque of the
orthosis (Fig. 8).

In the GRF of Stage 2 simulation, fluctuations are observed
in the 25%–60% gait cycle of the right GRF (Vertical R in
Fig. 6c), which is the section where the assistive torque of
orthosis is transmitted to the human body. Other than that,
the overall trend is consistent with the reference data and
experimental data (Fig. 5c). A high peak value is observed
in the 0%–10% gait cycle of the right horizontal GRF as in
Stage 1 simulation.

The orthosis controller required for normal walking of the
soleus weakened musculoskeletal model is learned in πorthω

as shown in Fig. 8. The peak torque in the plantarflexion
direction to assist the push-off movement in the stance phase
was the smallest in the mild deficit model, and the moderate
and severe cases were similar. For comparison, the ankle
joint moment during walking of a healthy subject obtained
through Stage 1 simulation is also shown (orange dashed line
in Fig. 8). Assistive torques in plantar flexion direction are
observed in approximately 75%–95% of the gait cycle, which
corresponds to the swing phase. These torques contribute to
making the ankle angle constant by compensating the ankle
moment generated by muscles.

The result of a gait experiment performed by applying
the orthosis policy to actual ankle orthosis was shown in
Fig. 8 (shaded area in Fig. 8). For comparison, simulation
result for the 20% soleus weakened model was added using
the same orthosis policy as the experiment (pink dashed line
in Fig. 8). An orthosis policy that outputs a value between
0 and 1 was used in simulations and experiments. However,
the difference in the maximum force of the actuator used in
the simulation and experiment causes a difference in torque.
In the experiment, the timing of the orthosis policy’s assistive
torque was similar to the results of other simulations.

Classical optimization algorithms could have solved the
problem. However, such an optimization method is effective
only in specific settings, and if a small initial posture change is
applied, we must solve the problem again. On the other hand,
if deep RL is used, we can obtain a policy and a robust solution
for conditions changes such as slight initial attitude. In the
process of the policy synthesis, the policy can be fine-tuned
via manipulation of the reward function in a systematic way.
In addition, it can be applied to control the actual system
through additional tuning to the learned policy.

We used a time step of 0.005s when learning policies.
When performing forward simulation, using the time step
in policy learning is unnecessary. We confirmed forward
simulation is possible when using time step in the range of
about 0.001–0.015s.

C. Analysis of pHRI

The pHRI at the contact area between the orthosis and the
human body tended to increase as the deficit of the soleus
became more severe (Fig. 9). This was because, the more
severe the muscle weakness, the more assistive torque with
greater magnitude is transmitted to the human model. In the
swing phase, an interaction force of approximately 0.2 body
weight (BW) in the −X direction and approximately 0.1 BW
in the +Y direction was generated. The forces appear to be due
to the moment in the plantar flexion direction from the orthosis
to compensate for the moment deficiency. The peak value of
the interaction force goes up to 0.5 BW in the −X direction
and up to 0.25 BW in the +Y direction for severe deficit
model. Such a large pHRI would have occurred because most
of the torque for propulsion was assisted by the orthosis, which
would not be suitable for actual assistance.

We show the results of pHRI in the X and Y direc-
tions obtained using the F/T sensor that measures the force
between the human body and the robot in the gait experiment
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Fig. 9. pHRI results according to the severity of muscle weakness
in the model. The x and y directions of pHRI are vertical and horizontal to
the contact surface, respectively. The x and y coordinate system are the
local coordinates attached to the orthosis, as shown in Fig. 2. The shaded
area is the pHRI result obtained from the ankle orthosis experiment on
healthy subjects using the learned orthosis policy. PHRI tends to be
proportional to the amount of assistive torque. (Fig. 8).

(shaded area in Fig. 9). For comparison, the pHRI simula-
tion results of the 20% Soleus weakened model are shown
together (pink dashed lines in Fig. 9). In the experiment,
the X and Y directional pHRI increased at about 25–60%
gait cycle, the timing at which the assistance was applied.
In the 20% Soleus weakened model, the magnitude of
the X-directional pHRI was twice as large in that section.
However, the magnitude of the Y-directional pHRI was located
within one sigma of the experimental data. In our gait experi-
ment, the pHRI due to the assistive torque applied in the swing
phase (60–100% gait cycle) was almost nonexistent. The cause
of pHRI in the Y-direction in 80–100% of the gait cycle was
not due to the assistance, but it seems that the dorsiflexion
of the late swing phase was measured in the load cell of the
orthosis due to the structure of the orthosis.

When pHRI occurs, pressure, which is the force divided by
the contact area, acts on the wearer’s skin. Accordingly, the
pressure applied to the wearer may be reduced by increasing
the contact area between the robot and the wearer. In order to
minimize the pHRI in the unwanted direction, one can design
the orthosis to minimize the misalignment of the rotation axis
of the human joint. To predict the wearability of a designed
robot using simulated pHRI, it may be possible to calculate the
pressure considering the human-robot contact area. In addition,
attention should be paid to adjust the contact area and contact
parameters to resemble the actual system.

When a human wears an orthosis, a human and a robot
form a closed kinematic chain. In this case, if a rigid contact
is used for the joint, there may be cases where the joint cannot
be moved if there is a mismatch in link length and rotation axis
between the human and the robot. Therefore, it is necessary
to model a joint or contact part so that it can move relatively.
The EFM we used is a contact model that can measure the

Fig. 10. Results of gait experiment The right vertical GRF (GRF
Vertical R) and ankle angle (Ankle Angle), observations of the orthosis
policy in the gait experiment, are shown. Also, the orthosis policy’s action
(Orthosis Action) and the applied torque (Assistive Torque) are shown.
For comparison, simulation results of a 20% soleus weakened model
using the same orthosis policy as the experiment are shown together.
Experimental results are shaded areas, and simulations are pink dashed
lines.

force at the site where such relative motion occurs. In a future
study, a study to optimize the contact parameters of EFM to
be realistic will be investigated.

D. Analysis of Gait Experiment

We implemented the orthosis policy learned in Stage 2 on
the fabricated ankle orthosis and performed a gait experiment
on healthy subjects. For the experiment, it is necessary to
scale the sensor data to the extent of the observation of the
simulation. The pneumatic actuator we used in this experiment
has an operating delay compared to the simulation due to the
contraction time. The action had to be output earlier for the
assistive torque to be input at the push-off timing. The orthosis
policy outputs high action when the ankle angle is 0.13 rad or
more under the condition of vertical GRF of about 0.6 BW or
more. Also, in the swing phase with little GRF, high action was
generated when the ankle angle was 0 rad or more. Therefore,
we set the scale factors of angle and GRF to output the action
earlier. In the gait experiment, we confirmed that the right
vertical GRF (GRF Vertical R in Fig. 10) and the right ankle
angle (Ankle Angle in Fig. 10) were similar to the simulation
results. High output of orthosis action occurred earlier than
simulation from the scale factor we set considering the delay
of the pneumatic actuator (Orthosis Action in Fig. 10). We can
see that assistive torque was input at the push-off (Assistive
Torque in Fig. 10). In addition, the integrated EMG (iEMG)
of the gastrocnemius, a plantar flexor, was reduced by 9.12%
compared to the case without assistance. This result shows
that the learned orthosis policy can be applied and utilized in
the actual orthosis.

E. Limitations

The models and simulation methods we used made it
possible to design human and robot controllers, including
pHRI. However, there exists some limitations. First, we used
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a simplified musculoskeletal model. The planar model, which
can only move on the sagittal plane, limits the joint degrees
of freedom in different directions. This would have caused the
kinematic/kinetic characteristics somewhat different from the
actual human movement to be simulated. The use of a planar
model also makes the use of muscles for balancing movements
in the medial-lateral direction untrainable in the πhuman .
Second, the parameters used in the contact model are different
from the real world. In the simulation, foot-ground contact and
pHRI contact were included. The contact forces are calculated
using predefined parameters such as stiffness, damping, and
friction coefficient. We empirically determined the parameters,
which may have caused the contact motion to differ from
reality. For more accurate contact simulation, research on
optimizing contact parameters based on the physical properties
of the real environment is required. Third, while training the
orthosis policy in the human-robot simulation of Stage 2,
we kept the human policy from Stage 1 fixed. This assumption
was due to the fact that human adpatation is much slower
than deep RL’s learning speed. Humans will tend to re-update
their policy to better leverage the orthosis. For example,
a person’s self-selected walking speed is affected by robot
assistance because of motor learning [61]. However, we kept
the human policy fixed for a learning period of deep RL to
minimize the complexity of the problem in this paper. A multi-
agent RL study can be investigated to include the effect of
human policy adaption into our problem that might result
in competing or cooperating policies. Fourth, we performed
a gait experiment on healthy subjects, not patients. Testing
our method to patient and control groups requires careful
composition of a new experimental protocol by clinicians and
very expensive recruitment of many patients to meet the power
analysis, which is beyond the scope of this study. Therefore,
we focused on showing the feasibility of the trained policy
and conducted a gait experiment on a healthy subject. In a
future study, an experiment on the patient may be conducted
after sufficient verification of the safety of the orthosis and
controller. Fifth, in the gait experiment, we did not use all eight
observations of the orthosis policy, but only two observations
that dominated the action. Ideally, the measurable sensor data
in orthosis should match the observation of the orthosis policy.
In future studies, such an orthosis with all sensors will be used
for the experiment.

V. CONCLUSION

In this paper, we showed how to design a policy πhuman

capable of generating human gait motions from sensory
feedback and a policy πorthω to assist a muscle weakened
model through our proposed two-stage policy training using
deep RL. As a result, the trained human policy was able to
generate the gait of the human model successfully, and the
orthosis policy was able to generate appropriate assistance
so that the model with weakened soleus could generate a
healthy gait. In addition, the pHRI predicted using EFM
was verified through a gait assistance experiment using the
learned orthosis policy. To the author’s knowledge, this is the
first study to propose an ankle orthosis policy synthesis that

performs human-robot simulation through two-stage policy
training without manual effort, including system modeling to
control the human body with an orthosis. Our results can
be used, for example, to design orthosis to reduce pHRI
and predict performance indicators through simulation. In this
study, we used the soleus weakened model, which can be
similarly applied to other muscles, for example, the dorsiflexor
muscle of the ankle, such as the tibialis anterior.
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