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Boosting the Evoked Response of Brain to
Enhance the Reference Signals of CCA Method

Amir Ziafati and Ali Maleki

Abstract— Brain-computer interface (BCI) systems can
be used to communicate and express desires from people
with severe nervous system damage. Among BCI systems
based on evoked responses, steady state visual evoked
potential (SSVEP) responses are the most widely used.
Canonical correlation analysis (CCA)-based methods have
been widely used in SSVEP-based online BCIs due to their
low computation and high speed, and many methods have
been introduced to improve the results. In this research,
a method for constructing reference signals used in CCA
based on the amplified evoked response of brain is intro-
duced. In the proposed method, after removing the latency
in the training signals, to construct reference signals, mul-
tilayer perceptron neural networks of the fitting type are
used instead of the usual sine/cosine signals. The results
show the success of this method in boosting the evoked
responses of brain. The detection accuracy in 100-second
time windows was 100%, and the information transfer rate
in the same period was 240 bits per minute. Making refer-
ence signals similar to the recorded electroencephalogram
allowed us to make more similarities in the CCA between
the signals under consideration, and the reference signals,
and to dramatically improve the results.

Index Terms— Brain-computer interface, SSVEP, evoked
response booster CCA (ERBCCA), CCA reference signals,
MLP neural network.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) are a direct link
between the computer and the human brain and are the

most recently developed type of human-computer interface
(HCI) [1], [2]. Unlike traditional input devices (keyboards,
mice, pens, etc.), BCIs transmit waves generated by the
brain to different parts of the human head, translate these
signals into actions, and issue commands that can be used
to control computer(s). The original idea of designing these
types of interfaces was to help patients suffering from severe
nervous system damage [3]. In these types of patients, the
brain sends motor commands to the muscles and organs,
but due to nervous system damage, the commands sent to
the organs are not transmitted. Using systems such as the
brain-computer interface can facilitate communication and
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expression of desires for these people. Therefore, the brain-
computer interface system uses commands received directly
from the brain to move prostheses and wheelchairs.

BCI systems based on evoked responses are widely con-
sidered, and among the types of these responses, steady-
state evoked visual potential (SSVEP) signals are common.
The basis of SSVEP-based brain-computer interfaces is the
fluctuations in brain activity in the visual cortex that occur
after receiving a visual stimulus. For example, if a user stares
at a light or image that is flashing at a certain frequency,
the flashing frequency of that image affects the signals in
the visual cortex of the brain, so that the change can be
detected. The advantages of SSVEP-based systems include
high information transfer rate, short training time, high average
correct detection, and safety for the user, which makes the
SSVEP signal a reliable signal for use in BCI systems [4].

Canonical correlation analysis (CCA)-based methods have
been proposed to determine the frequency of SSVEP stimu-
lation. Due to their efficiency, ease of implementation, and
no need for calibration, they have been widely used in
online BCIs in recent years [5]–[8]. The CCA method was
first introduced by Lin et al. To detect the frequency of
SSVEP stimulation using multi-channel signals and to detect
the canonical correlation between them and sine/cosine sig-
nals with frequencies corresponding to visual stimulation [9].
In this method, when two data sets have a basic correlation,
the target frequency can be determined by calculating the level
of correlation and selecting the set with the highest correlation
[10]. Two linear transformations are used, to achieve the
maximum correlation between two data sets in this method,
one on the SSVEP data and the other on the sine/cosine
reference signals, and the correlation between these signals
is calculated after the transformations are applied, [9], [11],
[12]. Since the standard CCA has a weakness that assumes
two data sets of SSVEP signals and sine/cosine reference
signals are linearly related, the Kernel-CCA (KCCA) method
is proposed to use a nonlinear mapping between them [11].
This method predicts data in a high-dimensional space, but the
internal multiplication of new data can still be calculated using
the original low-dimensional data. To achieve an asynchronous
BCI system, Poryzala et al. proposed a method called (CACC)
cluster analysis of CCA coefficient [13]. Although the standard
CCA method is powerful in detecting SSVEP, its performance
is often affected by the interference of spontaneous EEG
activities [14]. To reduce the amount of misclassification due

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7633-7986
https://orcid.org/0000-0002-2405-4164


2108 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

to spontaneous EEG signals, SSVEP individual calibration
data, which can better describe SSVEP time characteristics
(e.g., phase and latency), are included in the CCA-based visual
evoked potential (VEP) detection. Pan et al. [15] improved the
CCA method and named it the phase-limited CCA (PCCA),
considering the fixed-phase sinusoidal reference signals, which
were obtained based on the latency in the amplitude of the
training signals. Bin et al. [7] also developed the individual
template-based CCA (IT-CCA) method by averaging a set of
training data for each subject in the EEG recording with VEP
stimulation based on the standard CCA method. Researchers
in [16] have proposed the multi-way CCA (MCCA) method
for generating better reference signals for use in CCA, and to
optimize the reference signals in this method, the L1 multi-way
CCA method (L1-MCCA) is further developed [17]. Recently,
the multi-set CCA (MsetCCA) method has been used to gener-
ate reference signals using common features in SSVEP train-
ing data [18]. decision-making methods that use calibration
data provide better results in SSVEP stimulation frequency
detection. Authors in [19] proposed a method for synchroniz-
ing SSVEP signals with sine-cosine reference signals, which,
by examining the correlation coefficients, obtains the related
stimulation frequency. However, Wang et al. [20] improved the
Multivariate Synchronization Index (MSI) method and intro-
duced it as Inter and Intra-subject Template-Based Multivariate
Synchronization Index (IIST-MSI), considering interpersonal
and subject-specific templates.

In recent years, many studies have been proposed on
the combination of stimulation frequency detection methods
to create a final method. These methods are usually more
accurate than the primary classifiers and are called group
learning. These classifiers each build their model on the data
and store it. For the final classification, a weighting is done
between these classifiers. Among the group learning methods,
we can mention the method proposed by Oikonomou et al.,
which uses boosting and bagging methods to combine support
vector machine (SVM) and decision tree classifiers, and for
SSVEP signal on EEG recording with 256 channels, better
results than each classifier [21]. In studies [14], [22], [23],
the authors have ensembled the standard CCA method and
the IT-CCA method for detecting SSVEPs [14]. Sadeghi and
Maleki Combined EMD and CCA methods to improve SSVEP
frequency detection using neural network classification and
reported results with higher accuracy than each method [24].
In the study [25], the authors combined the experimental
mode analysis method and the decision tree classifier and
were able to improve the accuracy of the detection over a
wide frequency range. Ziafati and Maleki ensembled MLR
and MsetCCA methods using their fuzzy ensemble system and
achieved excellent results [26].

Among the improved CCA methods, such as MsetCCA
and MwayCCA, which generate new reference signals using
similarities in training signals, provide better results than
others. However, these methods do not consider the fact
that only the evoked part of SSVEP signals contains visual
stimulation signal information. In addition, since in the method
presented in this study, the evoked part of SSVEP is estimated,
it is important to determine the latency of this signal to

achieve more accurate reference signals and better frequency
recognition. This issue is not considered in these methods.
Methods based on sine/cosine signals also do not consider
the properties of real EEG signals in generating reference
signals, although they use the corresponding latencies in the
recognition by training signals. Subject-dependent methods
that use the properties of the signals recorded from the subjects
to detect stimulation frequency from their new signals have
always led to better results. The proposed method benefits
from using subjects’ real SSVEP signals and their latencies
to generate reference signals for the CCA method. Therefore,
it can be used as a subject-dependent method.

In the proposed method, a fitting type multilayer perceptron
neural network is used after removing the latency in training
signals, to construct reference signals instead of using the
usual sine/cosine signals. Making reference signals similar
to the recorded EEG allows us to find more similarities in
the CCA between the signals under consideration and the
reference signals.

In Section II, we will introduce the dataset used, examine
the construction of reference signals corresponding to the
evoked response signal of the SSVEP, and finally, construct
a new reference signal-set for use in the CCA method. Then,
in section III, the results related to the implementations will be
reviewed. In section IV, the obtained results will be discussed
and compared with other methods, and in section V, we will
have conclusions.

II. MATERIALS AND METHODS

A. Database

The database used in this study is taken from the dataset
presented in [27], which includes EEGs taken from 10 male
subjects, all between the ages of 21 and 27 (all of whom
are visually normal or have been corrected). These recordings
were made in an isolated room, and each subject was placed
on a comfortable chair at a 60 cm distance from a standard
17-inch CRT monitor (85Hz refresh rate, 1024 × 768 screen
resolution). Four red squares are displayed on the screen as
actuators that flash at four frequencies of 6, 8, 9, and 10 Hz,
respectively. Twenty recordings were completed by the sub-
jects for each target frequency. During each recording, the
subject was asked to pay attention to each of the stimuli for
4 seconds, and 2 seconds were given to shift attention to the
next target. It should be noted that after recording the first
10 experiments, the subjects rested for 5 to 10 minutes, then
another 10 experiments were done. A total of 80 recordings
have been performed by subjects. The sampling rate of 250 Hz
was recorded as 30 channels according to the international
standard system 10-20. In this study, 8 channels (Pz, P3, P4,
P7, P8, Oz, O1, O2) that have been introduced as selected
channels in recent comparisons, including [18], [28] have been
used.

B. The Structure of the Proposed Method

In this study, a method for recognizing SSVEP stimulation
frequency is presented, which is based on the CCA method.
For constructing reference signals in the proposed method,



ZIAFATI AND MALEKI: BOOSTING THE EVOKED RESPONSE OF BRAIN TO ENHANCE THE REFERENCE SIGNALS 2109

Fig. 1. The general structure of the proposed method, including offline and online.

a fitting multilayer perceptron neural network is used to boost
evoked response of brain and generate new evoked-boosted
SSVEP signals instead of the usual sine/cosine signals. Mak-
ing reference signals similar to the recorded EEG allow us to
find more similarities in the CCA between the signals under
consideration and the reference signals. In addition, phase mis-
match in the reference signals with the SSVEP signal reduces
system performance. Therefore, we obtained an estimate of
their phase and generated sine/cosine signals appropriate to
the extracted phase before making new reference signals using
training signals by the cross-correlation method, to use in the
training stage of the neural network.

In the method introduced in this research, such as MsetCCA
and MwayCCA methods, we used some of the labeled signals
in the training section and used them to produce suitable
reference signals for CCA. Then, in the evaluation section,
we used the generated signals to detect the stimulation fre-
quency of unknown signals. The general structure of the
proposed method is shown in Figure 1.

The proposed method consists of several main parts, which
we will introduce in the following.

C. Offline Section

The offline part of the method includes the subsections of
latency detection, sine/cosine signal construction with obtain-
ing latency, MLP neural network training, and the use of a
trained neural network to generate new reference signals by
boosting the evoked responses of brain.

D. Signal Preprocessing

The obtained data were filtered with a low-pass filter with
a cut-off frequency of 70 Hz and a high-pass filter with a

cut-off frequency of 0.1 Hz; then a sixth-order Butterworth
filter was applied to the entire data in the range of 4 to
45 Hz. In addition, after estimating the signal latency using
the proposed cross-correlation method, several initial samples
of each signal were removed to synchronize the signal phases
with the sine/cosine base signals generated with stimulation
frequencies for use in the CCA method.

E. Latency Calculation by Cross-Correlation Method
The phase delay will always cause two sinusoidal signals to

be dissimilar. Since in the EEG signals recorded with SSVEP
stimulation, the sine signal corresponding to the stimulation
frequency is implicit, it is necessary to estimate the phase
of the recorded signals before producing the appropriate
reference signals.

In this study, we used the cross-correlation method to extract
the location of the most similarity between sine/cosine and
training signals. In this method, we used two input signals,
one of which is a zero-phase sinusoidal signal and the other
an EEG signal from our training dataset, to generate a new
signal with a maximum that occurs in a place where the two
signals are more similar. The cross-correlation signal length is
obtained from Equation (1).

LengthCross−Correlat ion (x, y)= Length (x)+Length (y)−1

(1)

If the two signals x, and y, are co-phased and with equal
length, the location of the maximum will be exactly in the
middle of the cross-correlation signal. Now, if the two signals
x and y are non-phase, the difference between the maximum
location of this signal and its center can determine a suitable
approximation of the delay rate in the phase for us.
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Fig. 2. Schematic of the proposed neural network for generating
reference signals, which include 8 neurons equivalent to 8 SSVEP
channels in the input layer, 10 neurons in the hidden layer, and 8 neurons
equivalent to 8 channels of SSVEP signals in the output layer.

By having the sampling rate and the phase of delay of the
sinusoidal signal compared to the training EEG signal, it is
possible to determine the phase difference between these two
signals. The phase corresponding to the sine signal is obtained
from Equation (2) for each training signal.

zLag = zmaximum correlat ion − LengthCross−Correlat ion (x, y)

2

θ = lag × f

fs
× 2π (2)

F. Construction of Sinusoidal Signals in Phase With
Training Signals

It is sufficient to generate signals using the phases from the
previous step, to obtain synchronous sinusoidal signals with
training EEG signals. Equation (3) shows how to generate
sinusoidal signals with training data.

Sine/Cosinenew = Sin(2π f t + θ) (3)

The resulting sinusoidal signals can be used to train the MLP
neural network, which is used to generate new reference
signals.

G. Generation of Reference Signals Using a Neural
Network for Use in CCA

In the proposed method, eight channels of EEG training
signals were applied to the input layer of a network consisting
of three layers (input-hidden-output) with 8-10-8 neurons, and
in the output layer, the phased sinusoidal signals were placed
in proportion to the input signal. Then, network training was
performed using the gradient descent method with momentum
as 90 percent of training data and the remaining 10 percent
of data to validate network performance. Figure 2 shows a
schematic of the proposed neural network.

As shown in Figure 2, the neural network used in this
research was a fitting multilayer perceptron with eight neurons
in the input layer, 8 neurons in the output layer, and 10 neurons
for the hidden layer. The number of hidden layer neurons was
estimated to be equal to 2/3 of total neurons in the input
and output layers, based on the method presented in [29].

In figure 2, f is the stimulation frequency, and θ1, θ2, . . . , θ8
are corresponding phases with the latency of 8 SSVEP input
channels. The transfer function of the hidden layer and the
output layer were hyperbolic tangent sigmoid and linear,
respectively. The training method was gradient descent with
momentum. The network used mean squared normalized error
performance function, and it was trained with 1000 epochs.
The data was supplied to the network in two modes, subject-
dependent, and subject-independent, which have dimensions of
19 × 1000 and 18 × 1000, respectively. 90% of this data was
used for network training and the rest for network validation.

According to research conducted in [30], the velocity and
distance of the brain wave propagation in the axons, by dis-
tancing from the main propagation site, which in the case of
SSVEP signals is the primary visual cortex in the occipital
region, will delay the signal. In the neural network used
to generate SSVEP signals with the boosted evoked part,
for each input SSVEP channel, an output channel is used
considering the latency of the same channel obtained from the
proposed method using correlation. Since the main harmonic
of the visual stimulation signal is sinusoidal, it is expected
to be seen in the evoked part of the SSVEP signal. as a
result, the synchronized sinusoidal signals corresponding to the
SSVEP channels were used as the desired output. Therefore,
the output generated by the trained network will be a signal
similar to SSVEP with the boosted evoked part. In order to
generate new reference signals, the signals used in the training
section are reentered into the trained neural network and the
signals obtained from the output layer of the neural network
are used as new references in the classical CCA method.
Considering that in the dataset used, there are two signal
recordings from each subject; we examined the problem in two
ways, subject-dependent or subject-independent. To check the
subject-independent mode, after removing the test data from
the data used in the reference construction, we deleted another
recording from the same subject, and for the subject-dependent
mode, we used the second signal of the subject to construct
the reference signal.

H. Online Section
The evaluation part of the method includes entering new

reference signals to the CCA method, detecting the stimula-
tion frequency using CCA, and calculating the accuracy and
information transfer rate (ITR) of the proposed method, which
are calculated in the form of Equations (4) and (5).

P = correctly recogni zed f requencies

total testing signals
× 100% (4)

I T R = 60

T
(log2 N + Plog2 P +(1− P)log

[
1 − P

N − 1

]
) (5)

Equation (5) describes the information transfer rate in which
the ITR is in bits per minute, N is the number of classes,
T is the length of the signal time windows, and P is the
classification accuracy [31].

In addition, we used the signal-to-noise ratio (SNR) to
evaluate the improvement of the reference signals. Signal to
Noise ratio (SNR) is a measure of the amount of useful
signal versus disturbing signal (or noise) in electrical signals.
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This number is the ratio of signal power to noise power. In the
case of SSVEP signals, the ratio of the signal amplitude in
the frequency domain for the desired frequency band to the
amplitude of its neighboring frequencies can be considered.
In the paper [36], formula (6) was used to calculate the signal-
to-noise ratio in the SSVEP signal for each optimal frequency
in the range of 8 to 15 Hz.

SN R = 28 × y ( f )∑k=15
k=8 y (k) − y ( f )

(6)

Due to the presence of 28 samples in the range specified in this
signal, its numerator is multiplied by 28 to obtain a reasonable
ratio.

Regarding the SSVEP signals in the dataset we used in this
study, we calculated the signal-to-noise ratio as Equation (7).

SN R = 4 × y ( f )∑k= f +2
k= f −2 y (k) − y ( f )

(7)

In other words, for each target frequency, we considered
two samples before and two samples after it as noise and
calculated the SNR accordingly. Finally, due to the small
amount of data in the database, the proposed method was
validated in two ways. The leave-one-recording-out cross-
validation method was used for subject-dependent mode, and
the leave-one-subject-out cross-validation method was used
for subject-independent mode. In the first method, one of the
recordings was used for the test section and the rest for the
training section, and in the second method, all recordings of
a subject were used for testing, and the remaining data were
used for training. This process was repeated for each recording
in the first method and each subject in the second method. The
accuracy and ITR were used to compare the proposed method
with other methods.

III. RESULTS

SSVEP data recorded with a length of 4 seconds were
entered to generate reference signals in the proposed method,
which is shown in Figure 3 as an example of these signals for
the frequency of 6 Hz.

In order to investigate the similarity of the reference signals
made with the proposed method and the raw SSVEP signals
and also the sine/cosine signals used in the standard CCA
method, first, the amplitude of all the mentioned signals is
normalized, and then the level of cross-correlation of these
signals with the entire dataset is calculated. The results are
shown in Figure 4.

As can be seen, the correlation of the reference signals
obtained from the proposed method in terms of correlation
to the stimulation signals and the raw SSVEP signals, showed
a higher numerical value, which indicates the proximity of
these signals to the evoked response signal of the brain.

In addition, we used the signal-to-noise ratio (SNR) to
evaluate the improvement of the reference signals. Signal to
Noise ratio (SNR) is a measure of the amount of useful signal
versus disturbing signal (or noise) in electrical signals. This
number is the ratio of signal power to noise power. In the
case of SSVEP signals, the ratio of the signal amplitude in

Fig. 3. (a) Sample of 8 channels of SSVEP raw signals at 6 Hz frequency,
(b) Sample of 8 channels of reference signal made by the proposed
method at 6 Hz frequency.

the frequency domain for the desired frequency band to the
amplitude of its neighboring frequencies can be considered.
In the paper [32], the formula (6) has been used to calculate
the signal-to-noise ratio in the SSVEP signal for each optimal
frequency in the range of 8 to 15 Hz.

SN R = 28 × y ( f )∑k=15
k=8 y (k) − y ( f )

(8)

Due to the presence of 28 samples in the range specified in this
signal, its numerator is multiplied by 28 to obtain a reasonable
ratio.

Regarding the SSVEP signals in the dataset we used in this
study, we calculated the signal-to-noise ratio as Equation (7).

SN R = 4 × y ( f )∑k= f +2
k= f −2 y (k) − y ( f )

(9)

In other words, for each target frequency, we considered two
samples before and two samples after it as noise and calculated
the SNR accordingly.

The results of the signal-to-noise ratio for the proposed
reference signals to the signal-to-noise ratio of the raw SSVEP
signals with frequencies of 6, 8, 9, and 10 Hz in the dataset
are shown in Table I.

Figure 5 shows the average value of the signal-to-noise ratio
of the signals of different subjects from the Oz channel with
the stimulation of 10 Hz in the dataset using Formula (7).
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Fig. 4. The average correlation between sine/cosine reference signals, SSVEP raw data, and proposed reference signals.

TABLE I
THE AVERAGE RATIO OF SNR OF GENERATED DATA TO SNR OF RAW

DATA IN DIFFERENT TIME WINDOWS

The blue lines correspond to the SNR of the raw SSVEP
data and the red color indicates the corresponding SNR of
the generated reference signals. As it shows, the SNR for
the generated signal has the main peak at 10 Hz, and the
second harmonic (20 Hz) also has the second peak. However,
in the SNR of the raw SSVEP signal, these peaks are weak
or unobserved, which will cause an error in the stimulation
frequency detection. This indicates the amplification of the
evoked response signal of the brain, which is done with the
proposed method. Figure 6 and Table II show the average
accuracy obtained in detecting the stimulation frequency for
different frequencies of the dataset based on the length of
the time window and the different subjects of the dataset in
subject-dependent and subject-independent modes using the
proposed method.

In the next step, the reference signals obtained from the pro-
posed method were used using the CCA method to recognize
the stimulation frequency of SSVEP signals, the accuracy of
which was checked with time intervals of 0.1 second.

TABLE II
AVERAGE ACCURACY OF STIMULATION FREQUENCY RECOGNITION

FOR DIFFERENT FREQUENCIES OF DATA SET BASED ON TIME WINDOW

LENGTH WITH STEP 0.1 SECONDS TO THE 1-SECOND LENGTH

By examining the accuracy of recognition as subject-
dependent and subject-independent, it is found that subject-
dependent recognition is associated with higher accuracy and
has a 100% accurate recognition in 500 milliseconds, which
is the case for subject-independent for 500 milliseconds the
proposed method obtained 97.5 percent and 100 percent of
accuracy for 600 milliseconds.

In the case of ITR, both the subject-dependent and subject-
independent forms of the results are shown in Figure 7.

It is observed that in the range of 0.4 to 0.5 seconds, we have
the highest values of ITR with a detection accuracy of more
than 90% in both subject-dependent and subject-independent
implementations. This value reaches 240 bits per minute in
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Fig. 5. The average value of the signal to noise ratio for signals of
different subjects from the Oz channel with the stimulation of 10 Hz in
the dataset.

Fig. 6. Average accuracy of stimulation frequency recognition for data
set based on time window length depending on the subject with a step
of 0.1-second to a length of 4 seconds.

Fig. 7. Average ITR obtained for 20 subjects in different time windows
subject-dependent.

the subject-dependent mode in the 0.5-second window, which
is 20 bits per minute higher than in the subject-independent
mode. It should be noted that the results for 0.1-second
time windows are not acceptable because the accuracy of
recognition in these time windows is below the minimum
probability for the 4-target system.

IV. DISCUSSION

Signals recorded by visual stimulation always have two
main components; The spontaneous activity of the brain and
the evoked response related to sinusoidal stimulation of the
vision. If the evoked response signal brain can be extracted
from the SSVEP signal, or this part is amplified in the
signal, it can be expected to be detected by correlation with

Fig. 8. Average accuracy obtained from CCA, MsetCCA, several state-
of-the-art methods, and the proposed method in different time windows
in subject-dependent and subject-independent modes.

better results. In this study, we generated a new dataset for
use in the classic CCA method by considering the SSVEP
response delay and using the corresponding sine signals to
train the network to make these two signals closer. In terms
of correlation, (as shown in Figure 4) the signals generated
by the proposed method have a higher correlation coefficient
with the sinusoidal stimulation signals compared to the raw
SSVEP signals, which indicates that these signals are more
similar to each other. In addition, the correlation of raw SSVEP
signals with the reference signals generated by the proposed
method is greater than their correlation with sine signals.
As a result, it would be reasonable to use the set of signals
generated using the proposed method to detect the SSVEP
stimulation frequency. Moreover, it has been shown in Table I,
and Figure 5 that the signals generated as new references used
in the CCA method have a significant improvement in terms
of SNR compared to the raw SSVEP signals, which are useful
for stimulation frequency detection with higher accuracy.

One of the methods similar to the proposed method in which
new reference signals are generated for use in classic CCA is
the MsetCCA method, which is suggested in [18]. In Figure 8,
a comparison between the average accuracy of SSVEP stim-
ulation frequency detection in CCA, MsetCCA, and several
state-of-the-art methods, and the method proposed in this study
has been made in subject-dependent and subject-independent
modes using the dataset used in the proposed method.

As can be seen, the CCA method has results with an
accuracy of less than 53.75% for time windows of less than
one second, which has been increased to 85% using the
MsetCCA method. The proposed method not only for the
1-second time window but also by using the 0.5-second time
window has 100% accuracy for frequency detection, while
in the 0.5-second window, the average detection accuracy in
CCA and MsetCCA methods is 35% and 48.75%, respectively.
The results obtained from the proposed method are also in
comparison with CCA and MsetCCA methods in subject-
independent mode are shown in Figure 2.

In the proposed method, the average accuracy obtained in
subject-independent mode using a 0.5-seconds time window
was equal to 97.5%, and using a 0.6-seconds time window was
equal to 100% which is less than the subject-dependent mode
but still is much higher compared to CCA and the MsetCCA
methods.
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TABLE III
COMPARISON OF THE ACCURACY OF STIMULATION FREQUENCY

RECOGNITION AND INFORMATION TRANSFER RATE FOR DIFFERENT

METHODS ON THE DATASET USED IN THE PROPOSED METHOD

In addition, the proposed method was compared with MLR
methods and the ensemble of MLR and MsetCCA methods
introduced in [26], which show a significant improvement in
the accuracy of SSVEP stimulation frequency detection in the
proposed method.

In the following, the results related to using the dataset
obtained from the proposed method in detecting the stimu-
lation frequency will be compared with other methods using a
similar dataset in Table III. Some of these methods were also
proposed to improve the classic CCA method by constructing
new reference signals.

The proposed method presents much stronger results in
terms of ITR and average accuracy in SSVEP stimulation
frequency detection among similar and new methods imple-
mented on a similar dataset.

One of the most important factors in using BCI systems
is their ability to be used with short-length signals. Short-
length data allows the system to send commands to related
devices faster and makes it more suitable for practical applica-
tions. The proposed method is capable of accurate stimulation
frequency recognition and achieving high ITR with short-
length signals. Therefore, it is preferred to similar methods
for clinical applications. In addition, the generalizability of
the proposed method makes it possible to obtain acceptable
detection results for new frequency options without retraining
the method.

The most important factor in improving the results with
the proposed method is the use of reference signals obtained
using the evoked response signal of SSVEP. These signals
are very efficient for use in the CCA method in two ways.
First, they are more similar to sinusoidal stimulation signals
because they amplify the evoked portion, and second, they
are closer to the SSVEP signals understudy to maintain their
spontaneous effect. As a result, the values of their correlation
coefficients are higher than the use of any sine/cosine signals
or methods such as MsetCCA and MwayCCA, which use only
training signal subsets to generate reference signals, regardless
of the evoked response signal of SSVEP stimulation frequency.
In the proposed method, by increasing the number of training

data, the neural networks can be trained more effectively and
provide more efficient results.

V. CONCLUSION

Many methods have been proposed to detect the frequency
of SSVEP stimulation, including CCA-based methods, which
have been widely used in online BCIs in recent years because
they are highly efficient, easy to implement, and do not require
calibration. In this study, a method for recognizing SSVEP
stimulation frequency is presented, which is based on the CCA
method. In the proposed method, after removing the latency
in the training signals, to construct reference signals, a fitting
multilayer perceptron neural network was used to generate new
reference signals instead of the usual sine/cosine signals. The
reference signals obtained from this method have acceptable
properties and similarities to the raw SSVEP signals, also have
a boosted evoked response signal. Therefore, by using these
signals in the standard CCA method as a reference, results
with higher accuracy and higher information transfer rate were
obtained using short-length signals.

The method introduced in this study significantly improved
the SSVEP stimulation frequency detection results, using
which we were able to achieve 100% accuracy in the
subject-dependent mode in 0.5-second time windows and an
ITR of 240 bits per minute. In the subject-independent mode,
the proposed method achieved 97.5% accuracy in 0.5-second
and 100% accuracy in a 0.6-second time window. Here, also,
the maximum ITR obtained in the time window of 0.5-second,
is equivalent to 221.7 bits per minute. The proposed method of
this research allowed us to generate a reference signal dataset
for use in the CCA method offline, and use the high-speed
CCA method in online detection of stimulation frequency.
Since the method presented in this paper is supervised, it has
some considerations. The proposed method requires enough
training data samples to train neural networks for boosting
the evoked part of SSVEP signals. However, after network
training, short-length signals can also be used to generate a
reference signal.
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