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Abstract— Brain visual dynamics encode rich functional
and biologicalpatterns of the neural system, and if decoded,
are of great promise for many applications such as intention
understanding, cognitive load quantization and neural dis-
order measurement. We here focus on the understanding
of the brain visual dynamics for the Amyotrophic lateral
sclerosis (ALS) population, and propose a novel system
that allows these so-called ‘lock-in’ patients to ‘speak’ with
their brain visual movements. More specifically, we pro-
pose an intelligent system to decode the eye bio-potential
signal, Electrooculogram (EOG), thereby understanding the
patients’ intention. We first propose to leverage a deep
learning framework for automatic feature learning and clas-
sification of the brain visual dynamics, aiming to translate
the EOG to meaningful words. We afterwards design and
develop an edge computing platform on the smart phone,
which can execute the deep learning algorithm, visualize the
brain visual dynamics, and demonstrate the edge inference
results, all in real-time. Evaluated on 4,500 trials of brain
visual movements performed by multiple users, our novel
system has demonstrated a high eye-word recognition rate
up to 90.47%. The system is demonstrated to be intelligent,
effective and convenient for decoding brain visual dynamics
for ALS patients. This research thus is expected to greatly
advance the decoding and understanding of brain visual
dynamics, by leveraging machine learning and edge com-
puting innovations.

Index Terms— Brain visualdynamics, deep learning,edge
inference, amyotrophic lateral sclerosis, electrooculogra-
phy, lock-in syndrome.

I. INTRODUCTION

HEALTHCARE innovations are everlastingly attractive to
the whole society [1]. Nowadays, smart health technolo-

gies are becoming a fast-evolving interdisciplinary area where
scientific theories, mathematical tools, computing, informat-
ics, and engineering are quickly fusing. Many practices are
targeting long-existing healthcare associated challenges, from
life-assistive technologies, intelligent home units, to vital signs
tracking [2]–[5]. In this study, we focus on brain visual
dynamics that encode rich functional and biological patterns
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of the neural system, and if decoded, is of great promise for
many applications such as intention understanding, cognitive
load quantization and neural disorder measurement.

Decoding brain visual dynamics is an important and
promising technology for Amyotrophic lateral sclerosis (ALS)
patients [6]. ALS is a severe neural disease which causes irre-
versible body degeneration that breaks the neurons in brain and
spinal cord. As the connections are destroyed progressively,
the patients gradually lose the capability of walking, grasping,
eating, talking, and even breathing. Research shows than 90%
of the ALS cases may not be caused by gene inheritance, so it
can potentially happen on anyone. Every 90 minutes, there
is one new patient diagnosed. Currently, more than 450,000
patients are suffering from this disease worldwide and their
average life expectancy may even be within several years [6].
Even worse, most patients may have difficulty to afford the
expensive healthcare.

Machine learning, especially deep learning, has been
advancing intelligent data analytics dramatically, leveraging
its capability to reveal nonlinear, complex, and time-varying
patterns [7], [8]. On the other hand, new generation of easily
accessible smart hardware, especially, the smart phone, allows
the deep learning-empowered software to bring the true “intel-
ligence” to the edge, bringing us the co-called real-time edge
computing. With the advancement of intelligence, function-
ality, usability, understandability, and aesthetic of products,
smart technologies are playing increasingly important roles in
neural dynamics decoding.

In this study, we bridge deep learning, edge computing and
brain visual dynamics decoding, aiming to enable a real-time
deep learning inference system for neural dynamics under-
standing, as shown in Fig. 1. ALS patients, fortunately, may
still be able to move their eyes, which motivates us to design
a system that can understand their brain visual dynamics.
Humans reflect their emotions, thoughts, and intentions in
visual movements. Therefore, based on the logic of handwrit-
ing, we can let the patients to eye-write meaningful words,
which, if decoded, can indicate the intension of ALS patients
and reduce the suffering from the ‘locked-in’ condition.

There are some previous studies reported on visual move-
ment analysis, which are usually based on cameras. The
camera-based methods [9]–[11] capture the visual movement
videos and then analyze the pupil trajectories visual movement
understanding. Kate et al. reported a screen-based visual-
typing system with a virtual keyboard for eye typing [12].
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Fig. 1. The proposed eyeSay system for decoding brain visual dynamics
with deep learning and edge computing. Note. EOG: Electrooculography,
generated during visual movements.

Ward et al. designed a visual-tracker based on a screen key-
board called ‘Dasher’ [13]. Raudonis et al. dedicated a visual-
tracker-based text-writing program with dimension reduction
and neural networks for disabled people [14]. Ishguro et al.
developed an image descriptor for gaze recognition [15].
Lupu et al. designed a camera-based visual decoding system
with possible words and sentences to be chosen and displayed
on the display [16]. Ogaki et al. proposed a method to decode
the visual movements captured by a smart and convenient
camera system, with both gaze signal and video frames
analytics [17]. Some low-resolution cameras have also been
used in replace of the expensive, high quality camera with
acceptable accuracy [18]. Zdarsky et al. applied multi-layer
perceptron with stochastic gradient descent for video-based
eye tracking analysis [19]. Eye-tracking techniques have also
been applied to fatigue measurement [20], mental tracking
[21], [22], attention monitoring [23], [24]. These studies
have advanced the field forward, nevertheless, camera-based
methods are usually constrained by the environmental light
intensities, and privacy concerns.

Some other studies focus on the physiological signal-based
methods. The common modalities include Electrooculogram
(EOG), Electroretinogram (ERG) and Electroencephalogram
(EEG). EOG is the bio-potential difference between cornea

and ocular fundus, as shown in Fig. 1, which changes during
visual movements [25]. ERG usually needs the electrodes to
be directly on eyes or very close [26], [27]. Another modality
is EEG, which directly reflects the brain’s intention [28], [29].
Paul et al. tested a wireless EEG monitor in several cognitive
tasks and signal processing methods used include discrete
wavelet transform, dimension reduction and support vector
machine [30]. This study is focusing on the eye EOG dynam-
ics, targeting the long-term real-time application scenarios.

Barea et al. developed an EOG-controlled wheelchair [31].
Xiao et al. proposed a similar work using a screen for display-
ing an a keyboard to be selected by blink [32]. Huang et al.
have reported blink and head rotation-controlled robot sys-
tem [33]. Another eye selecting/typing system was devel-
oped by Heo et al., which included two virtual eye-typing
keyboards and one virtual wheelchair controller [34]. These
systems usually need an input screen that could limit the
input speed and deployment. Another category of eye-writing
is based on handwritten-style writing. Different algorithms
have been proposed to decode eye signals, such as Hidden
Markov Model, and Dynamic Time Warping (DTW) method
by Fang et al. [35], [36]. Ding et al. applied also DTW for
character recognition [37]. Chang et al. proposed to use an
ensemble deep neural network (DNN) with inception modules
for eye-writing [38]. Kang et al. applied an ensemble network
with attention mechanisms [39]. Pérez-Reynoso et al. devel-
oped an EOG-controlled robotic system [40]. However, gap
still exists in how deep learning can further decode complex
patterns and how real-time inference can be deployed.

Targeting the challenges of brain visual dynamics decoding,
we propose to design and develop a novel system by lever-
aging both deep learning and real-time edge inference, for
intelligent, real-time, and unobtrusive decoding intensions of
ALS patients. More specifically, we first propose to leverage
a deep learning framework for automatic feature learning and
classification of the brain visual dynamics, aiming to translate
the eye EOG to meaningful words. We afterwards design and
develop an edge computing platform on the smart phone,
which can execute the deep learning algorithm, visualize the
brain visual dynamics, and demonstrate the edge inference
results, all in real-time. Evaluated on 4,500 trials of brain
visual movements performed by six users, our system has been
demonstrated to be intelligent, easy-to-use, user-friendly, and
effective for decoding brain visual dynamics for ALS patients.

Our contributions are summarized below:
1) Design and develop a novel system, eyeSay, which can,

in real-time, stream, visualize, and decode the brain
visual dynamics for neural dynamics understanding.
To the best of our knowledge, this is the first system
that leverages both deep learning and edge inference
for seamless brain visual dynamics understanding and
demonstration, targeting the ALS patient population.

2) Propose a multi-stage deep learning approach that can
learn complex and highly non-linear dynamics hidden
in the brain visual dynamics, thereby enabling efficient
learning from scarce data.

3) Design and develop an edge computing platform,
with end-to-end data streaming, visualization and deep
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Fig. 2. The deep convolutional neural network (CNN) architecture
for brain visual dynamics decoding, which includes convolutional layers
for hierarchical feature abstraction, max pooling layers for dimension
reduction, and fully connected layers for final inference. Notes. COV:
convolution; Max Pool: max-pooling; P(·�: probability of the eye-written
word.

learning-based inference, thereby enabling a real-time
and user-friendly interaction method for ALS patients.

4) Evaluate the eyeSay system on real-world experiments
and demonstrate its feasibility and potential, which
indicates how machine learning and edge computing can
advance neural dynamics decoding.

This research thus is expected to greatly advance the decod-
ing and understanding of brain visual dynamics, by leveraging
machine learning and edge computing innovations. We below
detail the approaches, results and finally conclude the study.

II. APPROACHES

A. System Architecture

As shown in Fig. 1, the eyeSay system can, not only wire-
lessly stream and visualize the eye EOG signal, but also per-
form deep learning inference on the smart phone for real-time
brain visual dynamics decoding. We here will detail the deep
learning approach, the edge inference, wireless streaming, and
real-time visualization, respectively, to demonstrate the design
principles and considerations of the proposed system.

B. Deep Learning of Brain Visual Dynamics Behind EOG

We have designed a convolutional neural network (CNN),
as shown in Fig. 2, for brain visual dynamics decoding.
Comparing with traditional multilayer perceptron, CNN has
fewer parameters to be learned through shared convolutional
filters for efficient and effective learning. We here treat the
2-channel EOG signal, both horizontal and vertical, as an
image and feed it into CNN for hierarchical pattern extraction.

The proposed multi-stage CNN contains four convolutional
layers (COV) and four max pooling layers (MP) for spatial
motif learning and dimension reduction, respectively [41].

We choose a small COV kernel size considering that, a model
with multiple lighter COV kernels can achieve similar effi-
ciency as the one with fewer but heavier COV kernels, while
the earlier method has fewer parameters [42]. In the fully
connected neural layers, every unit in one layer connects
with each unit in its previous layer, thereby summarizing
previous extracted partial features and generating higher-level
abstraction. In the end, the model outputs a probability matrix
for each eye-written word with the sum to one, and the output
node with the highest probability is determined to be the final
recognition result.

The non-linearity in our CNN architecture is introduced by
an activation function called Rectifier Linear Unit (ReLU),
which is a non-constant, monotone-increasing continuous
function whose gradient is bounded within 0 and 1 [43]. ReLU
sets the gradient no greater than zero to be zero, to effectively
depress gradient vanishing by simplifying the computation
of backpropagation. ReLU is used for all COV and fully
connected layers, except the output layer in which the Softmax
activation function is used for class probability generation.

C. Multi-Class Deep Learning Process

Since the eye-writing task will have only one high-confident
output, we transfer the sample’s labels into the on-hot encod-
ings. The Softmax activation function in the last dense layer
is given in (1), where zi is the weighted sum of neurons in
the previous layer, and the denominator is a normalization
factor to make sure the sum of all output neural nodes is one.
The CNN optimization object is defined as the categorical
cross-entropy as (2), where Pi is the ground truth distribution
of a given class i among all C classes, and yi is the generated
probability of the output neuron node i , i.e., Sof tmax (zi ).
With one-hot encoding, (2) is reduced to (3), where all other
classes except the correct class p are neglected.

Sof tmax (zi ) = ezi

∑
j∈allclasses ez j

(1)

Cross Entropy = −
∑C

i=1
Pi log (Sof tmax (yi ))

(2)

Cross Entropyone−hot = −log
(
Sof tmax

(
yp

))
(3)

During the backpropagation-based neural parameter updat-
ing, the gradient based on the cross-entropy loss is determined
by (4) and (5), for the ground truth output node p and any other
output node n, respectively. Further, the loss is backpropagated
to all previous layers, to adjust the neural parameters for better
pattern abstraction.

∂

∂yp

(−log
(
Sof tmax

(
yp

))) = Sof tmax
(
yp

) − 1 (4)

∂

∂yn

(−log
(
Sof tmax

(
yp

))) = Sof tmax (yn) (5)

D. Edge Inference

The proposed edge computing architecture is given in
Fig. 3. The edge inference means letting peripheral device(s)
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Fig. 3. The proposed edge computing platform that consists of wireless
streaming (BT: Bluetooth), real-time brain visual dynamics visualization,
real-time deep inference on the edge, and real-time demonstration of
decoding results.

run the deep learning tasks instead of uploading them to the
cloud, which yields multiple advantages. (1) It can avoid large
latency and provide real-time data analysis ability. Unlike
traditional cloud computing where every task should be per-
formed on central servers, edge computing schedules tasks on
the peripheral side. (2) Less data transmission to the cloud
minimizes the chance of data disclosure and privacy leakage.
Otherwise, large amounts of data need to be encrypted for
transmission to the cloud if the edge device cannot handle the
sensible tasks locally.

Edge computing platform design and develop requires opti-
mization on multiple design dimensions. To achieve efficient
edge deployment, we have firstly leveraged CNN for efficient
data learning, considering CNN uses shared convolutional
filters that have relatively low computation requirements, com-
pare to the fully connected neural network. Secondly, we have
transformed the learned CNN to a more lightweight deep
learning package, which can be efficiently executed on the
smart phone [44]. Further, we directly feed the EOG signals
to CNN without complicated data processing steps and let
the powerful CNN to analyze the raw data for deep pattern
abstraction.

One thing to further note is the TensorFlow Lite library. It is
an open-source machine learning library specifically optimized
for mobile and edge computing applications. It can make the
edge inference lightweight, low latency, and optimal for power
consumption. We have designed and trained the deep learning

architecture firstly, and afterwards used TensorFlow Lite to
generate the software component that is then integrated to our
mobile APP.

E. Wireless Data Streaming

The eyeSay application builds wireless data streaming upon
Bluetooth Low Energy (BLE) module provided by Android.
With BLE, the application greatly saves the battery con-
sumption by automatically switching to power-saving mode
depending on current streaming status.

The mobile APP we have developed keeps scanning for
available devices until they are paired. After establishing
the connection, the EOG data is then continuously streamed
to the mobile APP. The data is segmented appropriately to
accommodate the BLE transmission characteristics. The real-
time data received is then visualized on the phone and fed into
the edge inference module for eye-written word recognition.

F. Visualization

To provide real-time feedback to the users, the EOG signals
received on the phone are visualized on the top half of the
screen. The visualizer module applies smooth animation for
the flow of data in a comfortable refreshing rate. In addition,
it also supports zooming, highlighting, screen interactions,
various animating effects and other visualization enhancement,
allowing the caregiver to understand the scenarios. As the only
part users would directly interact with, the design principle of
this module is clear and easy-to-use.

Furthermore, we put another visualization module that can
immediately demonstrate the edge inference results on the
lower screen. In such a way, both the patient and caregiver
can get the decoded eye-written words in real-time. The overall
edge computing platform, with the wireless transmission, edge
interference, and visualization functions, is expected to greatly
advance the voice-free communication application for ALS
patients.

III. RESULTS

In this section, we demonstrate the comprehensive evalua-
tion of the system we have proposed and built.

A. Experimental Setup

The application is designed for devices running Android 9.0
and later. A GPU is not necessary. We have tested it on the
Samsung Galaxy Note 10+ (SM-975U) and Samsung S8+
(SM-G955F). The application would require functional per-
missions including Bluetooth, as well as location and external
file access. The first two permissions are required by BLE API
and the last one is used by edge device module for saving
screenshot or received data.

To demonstrate the effectiveness of the proposed eyeSay
system, we have applied an eye-writing database, which
includes 4,500 eye-writing trials: 150 words and 5 repeats
from 6 subjects. It is called Japanese Katakana database [35].
It covers common human names, actions and some adjective
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Fig. 4. The deep learning process for difference cases, indicating the
effective convergence trend.

nouns, which are suitable for voice-controlling the phone calls
as well as simple phone operations.

One thing worth noting is that the system can be easily
generalized to other languages, such as English word recogni-
tion, by adapting current deep learning model to the new eye-
writing dynamics. Another thing to mention is that, to test the
wireless streaming function, we use a simulation device, called
sender, to transmit the EOG data continuously to the phone,
called receiver, which executes visualization and inference.
A monitor can be used in future as the sender. But the overall
experimental setup is effective enough now to demonstrate the
proposed functions of the system.

B. Deep Model Learning

Our deep CNN model uses a gradient-based method, Adam,
to automatically adjust the model parameters [45]. Adam
is a fast first-order gradient and moment optimizer, which
needs very little tuning and can robustly converge for either
stationary or non-stationary problem.

We applied leave-one-trial strategy for each subject in the
evaluation. Fig. 4 gives the training loss and accuracy for
difference cases, indicating the effectiveness of the learning
process. To be visualized in the next Edge Inference section,
both intra-subject and inter-subject signal variability is high,
making EOG decoding very challenging. However, the learn-
ing curves in Fig. 4 all converge well and thus demonstrate
the deep CNN model has learned effective patterns from the
EOG signals.

C. Wireless Data Streaming

In the system, the sender transmits data to the edge receiver,
e.g. a smart phone, for both visualization and decoding. Once
the connection between the sender and the receiver is built,
the sender calls the data fragmentation to and sends them over
BLE in sequence. Meanwhile, it indexes every single piece of

Fig. 5. The wireless streaming function on the edge platform, showing
the edge APP is scanning for devices to connect.

Fig. 6. The visualization function of the edge APP, showing the real-time
EOG signal and providing many visualization adjustments options for the
caregiver.

data to avoid disorder. After the edge receiver gets the starting
notification from the sender, it begins to visualize and decode
the data.

Once the connection is built, the sender would automatically
sample EOG data at 50 Hz and send data packet by packet.



2222 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 7. The EOG signal and edge inference results for the same subject and same word, but different trials. There are two major observations: (1) there
is a high intra-subject inter-trial variability that poses challenges to deep decoding; (2) the edge inference model has successfully decoded these
signals with high variability.

Fig. 8. The EOG signal and edge inference results for the same trial and same word, but different subjects. There is a very high inter-subject
variability, indicating the biological and behavioral differences among subjects. The decoding results also indicate very robust word recognition.

For the receiver’s APP, there is an expandable drawer to set up
scanning configurations, as shown in Fig. 5. It contains a list of
nearby devices including their names, unique identities, physi-
cal addresses, advertisements, manufacturing information, and
transmission power indicators. Clicking a device in the list
would have current edge device to establish pairing.

D. Edge Visualization of Incoming Data

The visualizing chart is a 2D line chat of time and mag-
nitude information, as shown in Fig. 6. Two-channel ECG
is visualized simultaneously, corresponding to the horizontal
and vertical EOG, respectively. Besides, the chart leverages
animation to smoothly update itself with the new data com-
ing in. Meanwhile the chart keeps its center focusing on

the latest data point and automatically scale the axis for
a better view. Furthermore, there are many other display
effects to use, e.g., showing referencing values of the lines,
filling the downside of curves, marking or highlighting data
points, disabling gesture control, and imitating the incoming of
dataset.

E. Edge Inference – Same Subject & Same Word

The edge device, i.e., the receiver, handles deep learning
tasks through TensorFlow Lite, a light-weight framework
optimized for energy efficiency. We have thoroughly illustrated
the effectiveness of the edge inference function in Fig. 7 to 9.

On the main screen of the edge APP, the upper half visual-
izes the received EOG data, and the lower page displays the
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Fig. 9. The EOG signal and edge inference results for different subjects, trials, and words. This comparison further demonstrates the variability
among the EOG signals, which make the deep learning even more challenging. But the proposed deep CNN model on the edge can still robustly
decode the eye-written words.

real-time inference. The deep learning classifier begins to work
when the assembled input meets the dimension request of the
model. Furthermore, the edge APP keeps updating the results
with a refresh interval of 0.5 second till the data transmission is
over. Experiment shows that eyeSay can successfully decode
the long, continuous and complex EOG signal to Katakana
words for each user.

In Fig. 7, we have illustrated the EOG signal and edge
inference results for the same subject and same word, but
different trials. There are two major observations: (1) there is a
high intra-subject inter-trial variability that poses challenges to
deep decoding; (2) the edge inference model has successfully
decoded these signals even with high variability. When the
same subject writes the same word for several times, there
may still be significant variability, due to the high degree
of freedom of the eye movements. But our proposed deep
learning model can still robustly decode the highly complex
and time-varying eye dynamics.

F. Edge Inference – Different Subjects & Same Word

In Fig. 8, we have further demonstrated the EOG signal and
edge inference results for the same trial and same word, but
different subjects. Obviously, there is a very high inter-subject
variability, indicating the biological and behavioral differences
among subjects. The decoding results also indicate very robust
word recognition.

G. Edge Inference – Different Subjects & Different Words

Fig. 9 gives EOG signal and edge inference results for
cases of different trials, different words, and different subjects.
When comparing the EOG visualizations, we can find the huge
inter-subject and inter-word difference. Though, the decoding
results indicate very robust word recognition again.

Overall, our experimental results on 4,500 eye-writing trials
and a detection accuracy of 90.47%, have clearly demon-
strated the feasibility and effectiveness of the proposed eyeSay
system.

H. Clinical Applications and Future Study

It is promising to apply the system for ALS patient appli-
cations to enable voice-free communications through visual
dynamics decoding, and further, it is promising to apply
the system in cognitive quantization and neurodegeneration
disease evaluations. In future, it will be interesting to conduct
more experiments and data to train the deep learning algorithm
for robust data analytics in diverse scenarios. Besides, it will
be promising to introduce recurrent learning algorithms [46]
to the framework to further learn the temporal patterns.

IV. CONCLUSION

In this study, we have proposed eyeSay, an innovative
system empowered both deep learning and edge comput-
ing for brain visual dynamics decoding, targeting the ALS
patients. We have developed a multi-stage deep CNN model
to dynamically decode the eye-generated EOG signals into
meaningful words. We have further designed and developed
an edge computing platform, to wirelessly stream, visualize,
and decode eye EOG in real-time. Evaluated on 4,500 eye-
written trials performed by multiple users, our novel system
has demonstrated a recognition rate up to 90.47%. The system
is demonstrated to be intelligent, effective, and convenient
for enabling human-computer interaction for ALS patients.
Besides, the novel system can be easily generalized to other
languages. This research thus is expected to greatly advance
the understanding of the neural system and dynamics decod-
ing, by leveraging machine learning and edge computing
innovations.
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