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Automated Stress Recognition Using
Supervised Learning Classifiers by
Interactive Virtual Reality Scenes

Kuan Tao , Yuhan Huang , Yanfei Shen, and Lixin Sun

Abstract— Virtual reality (VR) technology offers a great
opportunity to explore stress disorder therapies.We created
a VR stress training system, which incorporates three highly
interactive stressful scenes to elicit stress, and demon-
strate the concurrent variations between physiological data
(heart rate, electrodermal activity and eye-blink rate) and
self-reported stress ratings through a self-designed cus-
tomized perceivedstress questionnaire (SSAI) and wearable
devices. Several supervised learning models were rigor-
ously applied to automate stress recognition. Our findings
include the evaluations of the VR system by computing
Cronbach’s alpha (α=0.72) and Kaiser-Meyer-Olkin (KMO)
coefficient (η=0.78) through a retrospective survey, which
were subsequently confirmed as reliable on four aspects
(sense of presence,sense of space, sense of immersion and
sense of reality) via factor analysis. Additionally, we demon-
strate the effectiveness of physiology-based stress level
classification (no stress, low stress and high stress) and
continuous SSAI score prediction, with accuracy reaching
0.742 by bagging ensemble learning model and goodness-
of-fit reaching 0.44 via multivariate stepwise regression.
This study provides detailed insight regarding the effect
of objective physiological measures on the validation of
subjective self-ratings under a novel complex VR stress
training system, which stimulates the further investigations
of stress disorder recognition and treatment.

Index Terms— Computational physiology, stress, super-
vised learning classifiers, virtual reality.

I. INTRODUCTION

STRESS, seen as a consequence of modern life [1],
has become a pervasive phenomenon that confronts

individuals daily. Psychological stress is often described as
a state of mental or emotional strain and pressure [2] which
can influence several fundamental biopsychological functions,
that is, attention [3], decision making [4], and cognitive
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development [5], [6]. Stress is commonly elicited through
internal or external stimuli, and is assessed using subjective
and objective measurements. Traditionally, subjective methods
determine the stress level of a person through questionnaires
and answers rated on a stress scale. These measures are known
to provide highly reliable data reflective of perceived emotions
[7], with widely accepted approaches including the Profile of
Mood States [8], General Health Questionnaire [9], Perceived
Stress Scale [10], and Stress Response Inventory [11].
However, extensive research has elucidated on objective
measures of stress as body functions are affected when
a person experiences stress, which fails to be interpreted
through conceptual data in a subjective manner. Body
functions, primarily regarded as physiological responses,
such as electrodermal activity (EDA), heart rate, blood
pressure and eye-blink rate, are observed using wearable
sensors [7], [12]–[14]. Objective measures completely
eradicate the possibility of user intervention and falsification,
and hereby stress levels can be automatically predicted using
fused measurements. Both subjective and objective scenarios
are complementary for automated stress recognition, hence a
novel stress procedure that overcame practical challenges by
combining physiological measures and subjective validations
was proposed in the case study of simple singing tests [2].

Over the past two decades, cognitive behavioral therapy
(CBT) [15], [16] has served as the most conventional technique
to detect and treat stress disorders. CBT involves patients
visualizing cognitive patterns when imposed with stressors,
and can be conducted either in vitro, referring to stress caused
by internal fears, or in vivo, referring to when it is induced
through external stimuli [17], [18]. CBT is being increasingly
delivered over the Internet (iCBT) [19], as such psychological
interventions can be handled with or without therapeutic
support [20]. Other extensions of CBT, such as the generic
cognitive model (GCM) [21] and acceptance and commitment
therapy (ACT) [22], also produce beneficial outcomes for
stress detection and management. While GCM integrates early
detection and orientation of external stimuli with informa-
tion processing through specialized primal schemas, ACT
examines the principles of stress management intervention.
These exposure therapies are regarded as the gold standard
in clinical trials to identify and cure stress disorders, though
setting up controlled environments for feared stimuli could be
very costly [18]. Meanwhile, the replication of reusable and
interactive 3D environments is challenging [23].
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Advances in virtual reality (VR) technology present new
opportunities for stress recognition [18], [24]and other behav-
ior research [25], and help overcome the weaknesses present in
CBT. VR systems let participants experience immersive visual
stimuli through vivid computer-generated 3D environments
that correspond to normal physical Cartesian space, but do
not need to obey the Newtonian mechanics [26]. Additionally,
VR systems support interactions with virtual objects under
the precise kinematics of motion in response to visual stimuli,
to simulate the naturalistic way objects appear to move [25].
Due to the notable improvements in VR techniques, virtual
reality exposure therapy (VRET) is considered an efficient
tool for stress recognition. VRET assumes the possibility
that participants feel real-life stressful situations in a similar
magnitude in VR, and a recent survey study showed that it
can be equally effective as in vivo exposure therapy and have
a lower dropout rate [27], [28]. More importantly, VRET
systems succeed in tracking physiological signals [29], [30]
and recognize affective stress states, which provides a method
of linking subjective and objective measures of stress recogni-
tion. Note that VR devices should avoid causing additional
discomfort, hence wristband-based biofeedback sensors are
preferable, with physiological signals such as EDA and heart
rate being collected [31], [32].

Physiological signals exhibit unique characteristics during
stress, hence the extraction of features and classification of
stress levels from signals are gaining enormous popularity and
importance currently. Sharma and Gedeon [13] investigated
the binary classification of stress based on EDA signals via
an artificial neural network (ANN) model, with a similar
modeling structure implemented using EDA, ECG and res-
piration rate as parameters for ANN input [33]. Machine
learning algorithms are also developed with automatic feature
selection procedures to recognize complex patterns behind
physiological signals [34]. Support Vector Machines (SVMs)
with non-linear kernels in combination with physiological
signals identify emotional states in emotional rooms [35],
museums [36]and racing games [37] via VR techniques. Other
classifiers, such as k-Nearest Neighbor (kNN), Random Forest
(RF) and Linear Discriminant Analysis (LDA) are also applied
to detect stress levels, through either binary classification or
multi-class classification [13], [31], [38], [39].

This study aims to create a novel complex VR stress
training system, which incorporates highly interactive stressful
scenes to elicit stress, and demonstrate the relation between
physiological data (heart rate, EDA and eye-blink rate) and
self-reported stress ratings through a self-designed customized
perceived stress questionnaire and wearable devices. The main
contributions are twofold. First, we realize the automation of
stress recognition using several supervised learning algorithms.
Second, this study provides detailed insight regarding the
effect of objective physiological measures on the validation
of subjective self-ratings, which stimulates the further investi-
gations of stress disorder treatment.

II. METHOD

A. Participants

A mixture of 57 undergraduate and graduate students
(19 males and 38 females) from Beijing Sport University,

with an average age of 20.9 (SD = ±1.9), volunteered to
participate in the study. Notably, 15 student athletes, certified
as second-level national athletes (or above) by authorized
sports administrations in China, were included as participants.
This research was approved by the Ethic Committee from
Beijing Sport University (2022146H), which was complied
with the Declaration of Helsinki, and all participants signed
consent forms at enrollment.

B. Self-Designed Stressful VR Scenes

We created a highly-interactive VR stress training system
using 3DMAX and Unity engine, using C# as the main
programming language. Unity has well-developed systems for
detailed graphics and naturalistic physic simulations, but does
not contain any features for human behavior research [26].
The system comprises three major scenes, namely Snow Valley
Adventure, Scary Monsters and Enemy Shooting, with each
containing two subscenes divided into low-stress mode and
high-stress mode.

Snow Valley Adventure presents a highly disturbing scenario
through a dual-task model. The main task involves skiing on
a specified directional track at specified speeds. Participants
must focus on controlling their speed and trajectory to avoid
getting injured virtually. The sub-tasks include six random
events (tree falling to the ground, birds attacking, beasts
threatening, incorrect road sign, Flanker task and Stroop task)
during skiing, which deliberately interfere with participants by
causing additional stress. Participants could ski freely along
the track in low-stress mode, while they had to complete both
main and sub-tasks in high-stress mode.

Scary Monsters creates monster characters to elicit internal
stress in participants under a tense experience. Participants are
instructed to use handheld wireless controllers (presented as
laser weapons VR) to defeat three different types of monsters.
In the low-stress mode, participants need to eliminate the least
scary monster, which is incapable of attacking, while they need
to eliminate all kinds of monsters with attacking ability in high
stress mode.

Enemy Shooting involves three sequential missions (from
easy to hard), namely hostage rescue, bomb removal and
enemy elimination under intense first-person shooter condi-
tions. Participants receive a medal if one mission is completed
and are subject to sudden white noise at 110 dB for 5 seconds
as punishment for a failed mission. The hostage rescue and
enemy elimination missions direct participants to defeat all
enemies without a time limit, while the bomb removal mission
requires completion in 10 seconds. Participants used one
remote controller as a pistol, firing at targets as instructed.
The two modes differed with high-stress mode offering a
limited number of bullets and reducing participants’ health
point recovery.

C. Customized Perceived Stress Questionnaires

Two customized questionnaires were prepared to assess per-
ceived stress states. First, an Experience Evaluation of Virtual
Reality Scenes survey was proposed to evaluate whether the
self-designed VR scenes were adequate for participants to
experience stressful situations in the virtual environment. This
questionnaire refers to the iGroup Presence Questionnaire [40],
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[41], and has four types of questions (14 items in total), which
correspond to the sense of presence, sense of space, sense of
immersion and sense of reality. For instance, “To what degree
do you feel the external world (sounds, room temperature,
etc.)?”, “To what degree do you feel the authenticity of
the virtual environment?” and “To what degree do you feel
being absorbed in the virtual space other than playing video
games?”. Participants rate answers on a 7-point Likert scale
ranging from “strongly agree” (−3) to “strongly disagree” (3).

The other questionnaire administered was the Short State
Anxiety Inventory (SSAI), which is a validated stress inven-
tory [42] and is widely applied in research on stress recog-
nition. The SSAI encompasses stress presence and absence
types, with each having 3 items scored on a 4-point scale,
ranging from “not at all” (point 1) to “almost always” (point 4)
for stress presence type, with a reversed scale for stress
absence type.

D. Procedure

The illustrations of the experimental procedure and time-
line, which are categorized into three distinctive stages,
are presented in Fig. 1. Before the experiment, participants
were informed of the procedure in detail, and then asked
to provide written consent and take the SSAI to assess
benchmark stress states subjectively. Subsequently, with the
experimenters’ assistance, participants put on a heart rate belt
and EDA monitoring devices (a chest-strap belt and wristband,
manufactured by BodyPlus Co., Ltd and B4RealTime Co.,
respectively), a VR head-mounted display (HMD) (Vive Pro,
manufactured by HTC Co.) and a full set of motion capture
equipment (PN PRO, manufactured by Noitom Co.), which
offers acceleration information measured through knee angle
changes for skiing in Snow Valley Adventure. After adjusting
equipment, subjects were asked to log into the self-designed
VR stress training system and sit at ease on a chair for
3 min to dispel any other man-made distractions. During this,
benchmark values of EDA, heart rate and eye-blink rate were
recorded, indicating the baseline values of behavior arousal
on affective response. Participants then entered the three VR
scenes in a random order. Participants experienced each mode
from all three scenes for at least 1 min, which enabled the
biophysiological sensors to correctly record data every second.
Participants were asked to complete the SSAI after the low-
stress or high-stress mode of each scene was completed. The
procedure lasted for approximately 30 minutes per participant.
A retrospective survey on the Experience Evaluation of Virtual
Reality Scenes was completed immediately upon completion
to acquire the psychometric quality of the VR stress training
system.

E. Physiology-Based Stress Classification and Prediction

This study measured EDA, heart rate and eye-blink rate
using biofeedback sensors as subtle physiological cues are
known to indicate a change in stress states [13]. EDA data
was collected through the monitoring device, and heart rate
was recorded through the chest-strap monitor. Meanwhile,
eye-blink rates were measured through the VR HMD since

Fig. 1. Schematics of experimental procedure and timeline. Pre-
experiment (approx. 8 minutes) includes the benchmark stress assess-
ment. Ongoing-experiment (approx. 17 minutes) includes the modes
selection and VR scenes experience, during which physiological data
was collected through wearable sensors, and self-rated stress was
assessed by SSAI. Post-experiment (approx. 5 minutes) indicates the
VR-system evaluation, and the retrospective survey refers to Experience
Evaluation of Virtual Reality Scenes.

the headsets tracked head position and orientation in 3D
Cartesian coordinates and displayed stereoscopic images with
a resolution of 2160 × 1200 per eye (refresh rate = 90 Hz).
Since each participant experienced both modes in all VR
scenes, a total of 342 physiology-based data records were
included in analysis.

The authors developed stress-level classification model
incorporating logistic regression (LR), SVM, RF, kNN, and
ensemble learning approaches to automate stress recognition.
These algorithms were applied to the leave-one-out validation
scheme, with sample size ratio of training and validation sets
equaling to 8:2. Stress levels were labeled as “no stress”,
“low stress” and “high stress” based on the score intervals
from SSAI (no stress within points 1 to 2, low stress within
points 2 to 3, high stress for points larger than 3). Moreover,
the statistics (mean, median, standard deviation, maxima and
minima) of EDA, heart rate, and eye-blink rate per participant
(real-time measurements during experiments minus benchmark
values at rest state) were calculated as eleven-element feature
vectors to feed into the machine learning models. A multivari-
ate stepwise regression model was established based on these
calculated statistics to predict continuous SSAI scores.

The hyperparameters for each supervised classifier were
finely attuned. All data processing were performed using
Python 3.7, Matlab 2017b and SPSS on Windows 10, with an
Intel i7-9700 6.00 GHz CPU and NVDIA RTX 2080 GPU.

III. RESULTS

A. Evaluation of VR Stress Training System

The reliability of the VR stress recognition system was
rigorously evaluated through the Experience Evaluation of Vir-
tual Reality Scenes questionnaire. This evaluation was based
on subjective feedback from participants, which demonstrated
the novel concept of how laboratory experiments with costly
settings could effectively and efficiently be replaced with
non-laboratory settings. Validity and reliability tests were
performed by computing Cronbach’s alpha (α = 0.72) and
Kaiser-Meyer-Olkin (KMO) coefficient (η = 0.78), which
indicated a strong internal consistency for the whole scale and
a small partial correlation relative to the original correlations,
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Fig. 2. Descriptive statistics of physiological data and self-rated per-
ceived stress. SVA, SM and ES represent Snow Valley Adventure, Scary
Monsters and Enemy Shooting VR scenes, respectively. Error bar stands
for sample errors. ∗p<0.05, ∗∗p<0.005 and ∗∗∗p<0.001. (a-c) Average
heart rate, eye-blink rate and EDA during VR experiments for both low
and high-stress mode, with benchmarks at the rest state displayed.
(d) Number of self-reported stress ratings at every scene. Rest state
stands for the benchmark stress prior to the onset of experiment.

which meant that the dimensions of the questionnaire (four
aspects to evaluate sense of presence, sense of space, sense of
immersion, and sense of reality for VR system) were reliably
dependent on the 14 designed items, confirmed through factor
analysis. Consequently, four aspects took up 64.2% of the
accumulated accountability through factoring, with the scores
(from 7-point Likert scale) for sense of presence (M =
3.17, SD = 1.46), sense of space (M = 3.5, SD = 1.43),
sense of immersion (M = 2.53, SD = 1.48), and sense
of reality (M = 1.51, SD = 1.53) demonstrating that the
designed VR stress training system was effective.

B. Physiological Data and Self-Rated Perceived Stress

The variations in physiological data (heart rate, EDA, and
eye-blink rate) in response to stress during different immersive
VR scenes are presented in Fig. 2. Unsurprisingly, rest-state
values for all collected data were significantly lower than those
in stress modes, which meant that both modes elicited stress
for the subjects. Average heart rate and EDA were higher in
the high-stress mode than the low-stress mode (Fig. 2 a and
Fig. 2 c), indicating that physiological responses of greater
intensity were activated when facing circumstances eliciting
higher stress. However, eye-blink rate showed a different
picture. The rate obtained in low-stress mode in Snow Valley
Adventure was higher than that obtained in the same mode
in Scary Monsters and Enemy Shooting (Fig. 2 b) because
subjects were distracted by dodging unexpected obstacles
in the Snow Valley Adventure sub-task, which increased the
eye-blink rate. Meanwhile, due to limited health points and
bullets, participants had to be highly attentive to avoid mission
failure which led to a lower rate of eye-blink in the other
scenes. Meanwhile, the dynamical evolutions of physiologi-
cal data in all the immersive VR scenes were presented in
Appendix. As for the self-reported stress ratings, all three

TABLE I
PERFORMANCE COMPARISONS OF DIFFERENT SUPERVISED

LEARNING CLASSIFIERS

VR environments had largely reduced no-stress cases and
increased low and high stress cases, respectively (Fig. 2 d).

C. Automated Stress Level Classification

Since subjective measures and objective stress ratings vary
concurrently, the natural problem of automatically classify-
ing stress levels arises. To address this concern, we applied
supervised learning algorithms containing SVM, LR, RF, kNN,
XGBoost, and Bagging. Performance metrics are listed in
Table I. Bagging achieved the highest scores on accuracy
(0.742), F1-score (0.709) and recall (0.774), while RF obtained
the best performance on precision (0.714). Also, both ROC
curves and AUC values (Fig. 3) indicated that the performance
of these classifiers was robust. The LR algorithm performed
slightly worse than others, possibly because the self-reported
stress ratings were not functions of physiological data, and
could not be logistically regressed. Though visualization of
high-dimensional data was challenging, it can be inferred
that the features of physiological data exhibit clustered or
even multiple linear-separable patterns, and thus distance-
based approaches (SVM, kNN, RF and Bagging) perform the
stress classification task well.

D. SSAI Score Prediction

Additionally, the prediction of SSAI scores was investigated,
which directly linked physiological responses to subjective
stress ratings from a continuous perspective, to automate
stress level classification. Multivariate regression was used
on the whole dataset (N = 342) based on ordinary least



2064 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 3. Evaluations of automated stress classification models. The false
positive rate versus true positive rate figure, also named as Receiver
Operating Characteristic (ROC) curves, of the proposed supervised
learning algorithms presented in Table I. Also, the area-under-curve
(AUC) values were displayed accordingly. Red dashed line represents
the benchmarks of classification algorithms.

square criteria by selecting features as inputs step-wise, with
optimal feature combinations consisting of the mean, median,
maximum, and minimum of heart rate and EDA, as well as
the standard deviation of EDA and the maximum eye-blink
rate. The goodness-of-fit R2 = 0.06 (p = 0.39), which meant
that SSAI score was barely related with the selected features.

The gathered physiological data were clustered, and hence
it was inappropriate to treat them as a whole. To that end, the
strategy was adjusted by assembling similar clusters preceding
stepwise regression. The entire dataset was split into several
subsets (with minimum inclusion N = 96 guaranteed), and
this time the adjusted R2 = 0.44 ± 0.002 (p = 0.05), which
was highly robust, significantly improved.

IV. DISCUSSION

The findings of the current study were threefold. First,
an interactive VR system was created to elicit stress, which
was proven to be reliable and successful. Second, the concur-
rent variations of self-reported stress ratings and physiological
data were demonstrated through the designed questionnaire
and wearable devices. Third, automated stress recognition
from discrete (stress level classification) and continuous (SSAI
score prediction) scenarios was verified through several super-
vised learning algorithms and multivariate stepwise regression.

A. A Novel Complex VR Stress Training System

The VR stress recognition system developed in this study
has advantages over existing VR environments. One salient
characteristic is the complex human-computer interaction
involved for participants in immersive scenes; for instance,
inertial measurement units are used to control the speed of
skiing in Snow Valley Adventure. In Scary Monsters and Enemy
Shooting, participants should be prepared to wave handheld
controllers to defeat monsters or shoot enemies coming from
360 degrees in corresponding missions. Existing research
on stress recognition induced stress in new laboratory and
portable settings using VR technology [25]. However, they
provide little evidence on such interactions. Some studies were
conducted to explore the effects of virtual reality natural scenic
videos on stress detection [43] and reduction [44], [45], with

additional tasks, that is, performing digits calculations [45],
used to induce stress. Others presented more specific stressful
scenarios using VRET, such as public speech anxiety [18],
dental phobias in adults [46] and fear of heights [47], which
were achievements of the immersion perceived from experi-
encing videos, images, and sounds in a VR world.

The software that encompassed diverse scenarios pertaining
to different types of stressors took over a year to develop;
the stressors include distraction-induced stress in Snow Valley
Adventure, feared-stimuli-based stress in Scary Monsters, and
bonus-penalty-stimuli-based Enemy Shooting, which promoted
user feasibility and motivation during task completion. Such
designs are in line with recent multidimensional evaluations
of VR paradigms in behavior research [48].

B. Objective Measures on Subjective Validation

As noted earlier, this study is not the first to suggest
linking objective measures to subjective validation by advanc-
ing knowledge about physiological stress responses to social-
evaluative mechanisms. However, this framework is still worth
in-depth investigation, since stress-related changes in human
physiology are extremely subtle and comprehensive, such that
even participants themselves lack awareness of the changes to
truly report stress. Most existing studies focus on stress scales
[2], [18], [49] (by rating a single level) to label stress levels
after physiological data processing ranging from EDA, heart
rate, skin temperature signals to salivary cortisol measures and
MRI brain scanning, which are seemingly over-simplified.

The stress scale was extended to SSAI, which reflects the
subjective ratings more fairly as it contains 14 meticulously
designed items, and provides a plausible solution to multiple
treatment sessions [18]. Several supervised learning models,
besides the widely-used SVM and RF [13], and ensemble
learning algorithms were used to classify stress levels. Mul-
tivariate stepwise regression was applied to predict SSAI
scores, to find the mechanisms between objective measures
and subjective validations.

It is noteworthy that features of physiological data, which
constitute a high-dimensional vector, are hypothetically clus-
tered, and must be treated separately. Unfortunately, no exist-
ing research considered separation. Lee et al. investigated
the stress level and concentrations in urinary Hyp and Pro
via stepwise multivariate regression, with the adjusted R2 =
0.05 (N = 97) [50]. Another group regressed psychiatric
characteristics and coronary angiograms (physiological traits
for chest pain), with R2 = 0.29 (N = 139) [51]. Others
presented cross-sectional studies on regression between health
factors and stress scales, with R2 < 0.20 [52], [53]. Therefore,
this study provides heuristics to researchers regarding splitting
dataset before performing regression in order to increase the
model’s predictability.

V. OUTLOOKS

This study has several limitations which can be addressed
in future studies. First, the VR system could be modified to
monitor real-time stress by incorporating the automated stress
recognition results. Second, participants could be recruited
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Fig. 4. Dynamical evolutions of physiological data in each immersive VR scene separately. (a-c) Variations of heart rate in Snow Valley Adventure
(a), Scary Monsters (b) and Enemy Shooting (c), respectively. (d-f) Variations of EDA in Snow Valley Adventure (d), Scary Monsters (e) and Enemy
Shooting (f), respectively. (g-i) Variations of heart rate in Snow Valley Adventure (g), Scary Monsters (h) and Enemy Shooting (i), respectively.

Fig. 5. Dynamical evolutions of physiological data in all VR scenes. (a-c) Variations of heart rate (a), EDA (b) and eye-blink rate (c), respectively.

from more diverse backgrounds (in terms of age and occu-
pation), and the results obtained might increase the scale’s
effectiveness and robustness. Third, the transferability deter-
mined by high-quality immersive VR systems can be tested in
clinical trials, which is an important application of behavior
research. Finally, although the SSAI score prediction model
is acceptable (R2 = 0.44), it still has much room for
improvement. Future research should delve into the internal
connections between objective and subjective data and clarify
the patterns they possess.

APPENDIX

See Figs. 4 and 5.
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