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and Analysis of Brain Functional

Connectivity Networks
Xiaofang Sun , Xiangwei Zheng , Tiantian Li, Yalin Li , and Lizhen Cui , Member, IEEE

Abstract— Since multimodal emotion classification in
different human states has rarely been studied, this paper
explores the emotional mechanisms of the brain func-
tional connectivity networks after emotional stimulation.
We devise a multimodal emotion classification method
fusing a brain functional connectivity network based on
electroencephalography (EEG) and eye gaze (ECFCEG) to
study emotional mechanisms. First, the nonlinear phase
lag index (PLI) and phase-locked value (PLV) are calculated
to construct the multiband brain functional connectivity
networks, which are then converted into binary brain net-
works, and the seven features of the binary brain networks
are extracted. At the same time, the features of the eye
gaze signals are extracted. Then, a fusion algorithm called
kernel canonical correlation analysis, based on feature
level and randomization (FRKCCA), is executed for feature-
level fusion (FLF) of brain functional connectivity networks
and eye gaze. Finally, support vector machines (SVMs)
are utilized to classify positive and negative emotions in
multiple frequency bands with single modal features and
multimodal features. The experimental results demonstrate
that multimodal complementary representation properties
can effectively improve the accuracy of emotion classifi-
cation, achieving a classification accuracy of 91.32±1.81%.
The classification accuracy of pupil diameter in the valence
dimension is higher than that of additional features. In addi-
tion, the average emotion classification effect of the valence
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dimension is preferable to that of arousal. Our findings
demonstrate that the brain functional connectivity networks
of the right brain exhibit a deficiency. In particular, the infor-
mation processingability of the right temporal (RT) and right
posterior (RP) regions is weak in the low frequency after
emotional stimulation; Conversely, phase synchronization
of the brain functional connectivity networks based on PLI
is stronger than that of PLV.

Index Terms— Eye gaze, brain functional connectivity
network, multimodal feature fusion, emotion classification.

I. INTRODUCTION

AFFECTIVE computing is a multidisciplinary field
involving computer science, psychology, and cogni-

tive science, and its potential applications include disease
diagnosis, human-computer interaction (HCI), entertainment,
autonomous driving assistance, marketing, teaching, etc. [1]
Emotion classification methods can be divided into two cat-
egories. One is to use human body signals, such as facial
expressions, voices, gestures, body postures, etc., which has
the advantage of it being simple to collect experimental data.
However, humans can hide their true emotional states and
change the reliability of these data. The other is the use of
internal physiological signals, including EEG, eye gaze, tem-
perature, electrocardiography, electromyography, respiration,
etc. [2] These internal physiological signals are objective,
dissimulated, and forged reliable physiological signal data for
emotion classification research [3].

EEG signals after emotional stimulation in the brain are
nonlinear and oscillating. The linear measurement of all the
brain electrical information of the brain cannot be accurately
and comprehensively conducted. Nonlinear measurement can
effectively avoid the above problems and reveal the work-
ing state of and information feedback from the brain under
emotional stimulation [4]. EEG is the product of the gaze
of the brain neurons after the synapses are activated. Many
studies have shown that EEG is an effective physiological
signal suitable for physiological experiments and biological
feature research [5]–[7].

From the perspective of affective computing, the brain func-
tional connectivity network is one of the visual expressions
of information interactions between discrete neural units in
different brain regions. Functional connectivity is the dynamic
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coordination between different neural units in the brain func-
tional connectivity network space and their interrelationships
in time [8]. The methods of constructing the brain functional
connectivity network include linear construction and nonlinear
construction [9]; in particular, the linear construction methods
include Pearson’s correlation [10], partial coherence (time-
domain) [11] and partial coherence (frequency domain) [12],
while nonlinear methods mainly include synchronization like-
lihood [13], mutual information [14], PLI [15], PLV [16], etc.

Many researchers have made outstanding contributions to
the development of emotion classification. However, there
remain challenges to be overcome.

1) Most emotion classification methods based on EEG
signals only use single modal or multiple EEG chan-
nels, and they do not integrate different modes of the
emotional neural mechanism [17]–[20].

2) Most extracted features from EEG are temporal and
frequency dimensions, while few works have extracted
and integrated spatial features by constructing brain
functionality networks to study the emotional mecha-
nism [21]–[23].

3) In the field of multimodal emotion classification, exist-
ing feature fusion methods do not comprehensively
embody the deep relationship among different fea-
tures, especially the feature relationship from different
modalities [24]–[27].

In this paper, emotions are labelled from multiple dimen-
sions, and they are classified into binary categories from
the dimensions of valence and arousal. We investigated
whether the brain functional connectivity network and eye
gaze have complementary effects on emotion classification.
After the analysis of brain functional connectivity networks,
eye gaze features and multimodal fusion effects, we could
study the neural mechanism of emotional stimulation and
the complementarity between multimodal features. The main
contributions of this paper are as follows.

• An emotion classification method based on the multi-
modal fusion of brain functional connectivity networks
based on EEG and eye gaze (ECFCEG) is proposed to
explore the left and right brain connections based on the
brain functional connectivity networks of PLI and PLV.

• Five global features and two local features of the brain
functional connectivity networks and five features of eye
gaze signals from the perspective of affective computing
are analysed to explore the influences of different features
on emotional mechanisms from different angles.

• A multimodal feature fusion method called kernel canon-
ical correlation analysis, based on the feature level and
randomization (FRKCCA) algorithm, is designed to fuse
the global and local features of the brain functional
connectivity networks and eye gaze features, improving
upon the feature fusion effect and enhancing the comple-
mentarity of physiological signals.

• Experiments indicate that the brain functional connec-
tivity networks of the right brain are defective after
emotional stimulation, and in the lower frequency bands,
the information processing ability of the right brain RT
and RP regions is weak.

The remainder of this paper is organized as follows.
Section 2 introduces the related literature on brain functional
connectivity networks, eye gaze signals, and multimodal emo-
tion classification methods. Section 3 introduces relevant infor-
mation about the dataset utilized in the paper and expresses the
framework adopted in the research of the multimodal emotion
classification method based on brain functional connectivity
networks. Section 4 shows the specific steps, experimental
results, and analysis of the experimental methods adopted.
Section 5 discusses the brain functional connectivity network
mechanism in different human states after emotional stimula-
tion. Section 6 is a brief conclusion on the research work and
future work.

II. RELATED WORK

In this section, we review EEG-related emotion classifi-
cation and some key techniques, including brain functional
connectivity networks, eye gaze and different modal feature
fusion methods.

A. EEG

In recent years, emotion classification based on EEG signals
has been widely used in mental disease diagnoses, affective
computing, HCI, and other related fields. Li et al. proposed a
transferable attention neural network (TANN) for EEG signal
emotion classification from the perspective of neuroscience,
which adaptively learns emotional discrimination informa-
tion through local and global attention mechanisms [17].
Zheng et al. proposed a novel consciousness emotion recogni-
tion method using event-related potential (ERP) components
and modified multiscale sample entropy (MMSE) [18].

B. Brain Functional Connectivity Network

The evaluation of brain functional connectivity networks
and graph theory have become powerful tools to help study
emotion classification. Zhu et al. analysed recorded EEG
and utilized the PLI to capture the emotional perception
of phase synchronization and classified emotions based on
a convolutional neural network (CNN) [19]. Wang et al.
constructed PLV-based brain functional connectivity networks,
extracted two features of functional integration and functional
separation, and analysed the differences in brain connectivity
of discrete emotions [28].

C. Eye Gaze

Studies have shown that eye gaze signals are related to
emotions, and humans’ gaze time, saccade, pupil diameter,
gaze sequence, and gaze distance are affected by emotional
stimulation. Tarnowski et al. used video stimulation to extract
18 features related to eye gaze signals (fixation, saccade and
pupil diameter) and used an SVM classifier and the leave-one-
out verification method for ternary emotion classification [29].
Peng et al discussed the changes in brain networks and EOG
signals to study the changes in cognitive ability when using
a brain computer interface (BCI) based on SSVEPs. EOG
signals are characterized by the blink amplitude and the speed
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Fig. 1. The framework of our proposed ECFCEG method.

of saccades, and brain networks were synchronously estimated
using the instantaneous phase of EEG signals [30].

D. Multimodal Methods

With the development of pervasive data collection devices
for EEG and eye gaze, different modalities have been used for
emotion classification to improve BCI performance. Wu and
Zheng used the multimodal fusion method of deep canonical
correlation analysis (DCCA) to fuse the features of brain
functional connectivity networks with eye gaze features [31].
Zhang et al. used a hierarchical fusion convolutional neural
network model to combine six channels (FP1, FP2, AF3,
AF4, F3, and F4) and four PPS signals, including galvanic
skin response (GSR), respiratory zone (RESP), skin tempera-
ture (TEMP) and chest instrument (PLET), to perform hierar-
chical network construction [24]. Siddharth et al. used a deep
learning-based convolution-deconvolution network method to
extract EEG features and facial expression features for mul-
timodal fusion [25]. Shu and Wang used the restricted Boltz-
mann machine (RBM) to model the intrinsic dependencies
among various physiological signals, extracted the features
of EEG and surrounding physiological signals, and classi-
fied emotions using support vector machines (SVMs) [26].
Tan et al. proposed a short-term emotion classification frame-
work based on spatiotemporal EEG patterns of peak neural
network (SNN) models for the emotional classification of
audiovisual stimuli [27].

III. MATERIALS AND METHODS

Fig. 1 illustrates the proposed multimodal ECFCEG
method. The process of the ECFCEG method is described as
follows.

Step 1: Obtain the original EEG signals and eye gaze sig-
nals, and perform the preprocessing of data time normalization
and interception of the number of trials.

Step 2: Apply wavelet packet transform (WPT) to pre-
process the EEG signals of each experiment of each subject
and divide them into Delta, theta, alpha, beta1, beta2, gamma1,
and gamma2 frequency bands.

Step 3: Apply PLI and PLV to establish brain functional
connectivity networks.

Step 4: Convert the brain functional connectivity networks
based on PLI and PLV into binary brain networks using the
threshold setting method of a tensor.

Step 5: Extract the five features (gaze, saccade, pupil diam-
eter, gaze point sequence, and gaze distance) of eye gaze and
extract the five global features of brain functional connectivity
networks, including the clustering coefficient, average shortest
path length, assortativity coefficients, global efficiency and
local efficiency. The two local features of brain functional
connectivity networks include betweenness centrality and node
degree

Step 6: Devise the FRKCCA algorithm to fuse features of
eye gaze signals and brain functional connectivity networks.

Step 7: Apply SVM to classify emotions with single modal
features and fused multimodal features.

A. Materials

In this study, the MAHNOB-HCI EEG public dataset is
used for single modal and multimodal emotion classification.
Twenty-seven participants of different genders and different
cultural backgrounds participated in the emotion classification
experiments. They watched 20 emotional video stimuli and
self-reported emotions that they felt according to arousal,
valence, advantage, predictability, etc. The labels of this emo-
tional experiment used valence and arousal to evaluate the
degree of emotional stimulation. The physiological signals,
including ECG, EEG (32 channels), respiratory amplitude,
and skin temperature, were recorded at a sampling frequency
of 256 Hz. The eye gaze sampling frequency was 60 Hz [32].



SUN et al.: MULTIMODAL EMOTION CLASSIFICATION METHOD AND ANALYSIS 2025

TABLE I
WAVELET COEFFICIENT INDEX AND FREQUENCY BANDS

B. Preprocessing

In the preprocessing stage, the time of the original experi-
mental signal was uniformly intercepted at 80 s, and the sam-
pling frequency was 256 Hz, so the time sampling point was
80 * 256. The 80s included only one emotional stimulation
video. At the same time, considering the stress and fatigue
of the subjects, the experimental data of the middle 30 s, that
is, the experimental data from 30 s to 60 s, were extracted from
the experimental data of 80 s. A bandpass frequency filter from
4.0 to 45.0 Hz was applied first. Then, the data were averaged
to the reference electrode standardization technique (REST).
Independent component analysis (ICA) was used to remove
EEG artifacts.

Wavelet transform (WT) is a nonstationary time scale analy-
sis method suitable for EEG signal analysis [33]. Continuous
wavelet transform (CWT) generates a highly redundant repre-
sentation of EEG signals in the time scale domain [34], [35],
and is computationally very time-consuming [36]. Discrete
wavelet transform (DWT) is generally more computationally
efficient than CWT [37], and it has excellent time and fre-
quency resolution, which can adapt to the frequency content of
the examination mode to achieve the best time-frequency res-
olution in all frequency ranges. Therefore, DWT was selected
for frequency band division of EEG signals. Subsequently, db6
wavelet coefficients of the WPT were utilized to decompose
the experimental data into seven frequency bands (Delta,
Theta, Alpha, Beta1, Beta2, Gamma1, and Gamma2) [38].
The wavelet coefficient index and frequency bands are shown
in Table I.

C. Construction of Brain Functional Connectivity
Networks Based on PLI and PLV

The electrode of each EEG signal is regarded as a node
in the graph of the brain functional connectivity networks, and
at the same time, the PLI and the PLV are used to calculate the
edges between the nodes in the brain functional connectivity
networks. The PLI is a method to measure the asymmetry of
the phase difference distribution between two signals, and it
is more sensitive to the phase synchronization level [39]. The
phase change of instant t is shown in formula (1):

PLI = |< sign [�ϕ (t)] >| (1)

The asymmetry index of the phase difference distribution can
be obtained from the phase difference �(t) of the t time series.

At the same time, to calculate the phase changes of each
electrode of the brain, the PLV is calculated to capture the

nonlinear phase synchronization [40]. Assuming that the EEG
signals of any two electrodes are x(t) and y(t), the phases
of these two signals at instant t are respectively expressed
as φx (t) and φy(t), respectively, and the phase change of the
instant t is expressed by formula (2):

�ϕ(t) = ∣∣ϕx(t) − ϕy(t)
∣∣ (2)

The PLV is calculated as the connection between any two
electrodes in the time series t , which is the edge of the brain
functional connectivity network as in formula (3):

PLV =
∣∣∣∣ 1

N

∣∣∣∣
N−1∑
j=0

ei�ϕ(t) (3)

where N is the number of electrodes.

D. Binary Brain Networks and Their Features

In machine learning, redundant features are widely
introduced and lead to performance decreases in recognition
algorithms, such as overfitting and substantial time consump-
tion [41]. There are a large number of weak connections and
pseudo-connections in brain functional connectivity networks,
which often blur the topology of core connections [42].
Therefore, we chose a reasonable connection selection strategy
to reduce the connections of the unknown brain functional
connectivity network caused by noise or emotional stimulation
and decrease the connection network density of the brain
functional connectivity network.The binarization process and
feature extraction stage of the brain functional connectivity
network are not carried out for cross-subject processing.

Considering that two construction methods are employed to
construct brain functional connectivity network respectively,
there is phase synchronization difference after phase capture,
and the range of brain functional connection values is different,
so the optimal threshold is not selected, so as to prevent the
comparison difference between the two construction methods
due to different optimal thresholds. Binary brain networks are
constructed as follows.

Step 1: Set the initialization threshold T to 0.01 and the
renewal coefficient t to 0.003.

Step 2: Perform matrix binarization based on the PLI or
PLV brain functional connectivity network of seven frequency
bands of each subject to convert it into a binary brain network.

Step 3: Set the number of loops K of each brain functional
connectivity network to 10. A new threshold is generated
by loops, and then a sub binary brain network is generated.
Experiments show that K is the maximum number of loops,
and if K is larger, a zero value network will appear.

Step 4: Judge whether the weights of the connection edges
in the brain functional connectivity networks are greater than
or equal to the threshold. If they are greater than or equal to
the threshold, set the weights of the connection between the
two nodes as 1; that is, there is a connection between the two
nodes. Otherwise, set it to 0; that is, there is no connection
between the two nodes, and a subbinary brain network is
obtained.

Step 5: Repeat Step 4 to obtain all subbinary brain networks
under a threshold based on the PLI and PLV.
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TABLE II
THE FEATURES OF EYE GAZE

Fig. 2. Schematic diagram of FRKCCA model.

Step 6: Reset the threshold T = T + t and increase to
generate a new threshold; repeat Step 2 to Step 5, and continue
to loop until all of the subbinary brain networks are generated.

To explore the mechanism of the brain functional connec-
tivity network after emotional stimulation, from the global and
local perspectives of the brain networks, five global features
(i.e., clustering coefficient, average shortest path length, the
assortivity coefficient, global efficiency and local efficiency)
and two local features (betweenness centrality and node
degree) are adopted from different perspectives of the spatial
dimension [43].

E. Feature Extraction of the Eye Gaze

The five features of gaze, saccade, pupil diameter, gaze
sequence, and gaze distance are related to emotional stimuli
and are extracted from the eye-gaze signals. Detailed features
are shown in Table II. To more comprehensively embody the
influence of emotional stimuli on eye-gaze signals, we use
a large number of frequency-domain statistical features to
extract eye gaze features. For example, the five features,
including gaze, saccade, pupil diameter, gaze point sequence,
and gaze distance, are all used to calculate the maximum value,
mean value, variance, skewness, kurtosis and so on. Then, the
five features of all subjects are input into the SVM for emotion
classification.

F. Feature Fusion Method (FRKCCA)

For basic tasks, such as regression or classification, random
features exhibit little or no loss in performance while achieving
drastic savings in computational requirements and reducing
computational complexity [44]. In the study of multimodal fea-
ture fusion, the correlation analysis between ordinary features

cannot meet expectations. To further explore the relationship
between the two modalities, we use the mapping of features to
a high-dimensional random space to study the special features.
The fusion of multimodal features and randomizing the space
from the point of view of the algorithm increase complemen-
tary representation properties and reduce the consumption.

The algorithm of FRKCCA is described as follows. First,
the eye gaze features and the brain functional connectivity
network features are fused by FLF at the feature level in the
two dimensions of the seven frequency bands. We perform
randomized nonlinear feature mapping on the experimental
data, project the features to the high-dimensional randomized
feature space, input the features into the KCCA model for
feature fusion, and finally input the new fused features into
the SVM model to research emotion classification.

The weight attenuation of randomization theory is consistent
with a certain distribution speed; then, Fp is defined as
formula (4):

Fp =
{

f (μ) =
∫

Rdα(w)ϕ
(
μT w

)
dw

}
|α(w) ≤ Cp(w)|

(4)

α is the weight of the R to Rd mapping, and ϕ represents
the nonlinear mapping that satisfies |ϕ(Z)| ≤ 1 by R to Rd .
μ and w are vectors in the mapping space, p(w) is the
probability density value of the mapping vector w, and C is a
regularization constant. The mapping function can be defined
as formula (5):

fm(μ) =
m∑

i=1

αiϕ
(
wT

i μ
)

(5)

Assume that the features nonlinear mapping R to Rd of the
dataset D = {(

xi , yi
)}

is a finite sample of input and output
pairs extracted from a distribution Q (X, Y).

The mapping function f is searched by the method of
minimizing risk, which is defined as formula (6):

Remp( f ) = 1

m

m∑
i=1

c ( fm (xi ) , yi ) (6)

The loss function is defined as formula (7):

c(ŷ, y) = (ŷ − y)2 (7)

We use random sampling parameters wi ∈ Rd to optimize the
above parameters and formulas (5) and (6), and we construct a
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multidimensional random feature space z(X) for the input data
X ∈ Rn×d [45], and its structure is defined as formula (8):

w1, . . . , wm ∼ p(w)

zi =
[
cos

(
wT

i x1 + bi

)
, . . . ,cos

(
wT

i xn+bi

)]
∈ Rn

z(X) = [z1 . . . zm] ∈ Rn×m (8)

The nonconvex optimization of formula (6) is transformed
into a least-squares problem using the nonlinear random
feature z(X). The least-squares solution of nonconvex opti-
mization is formula (9):

min
α∈Rd

�y − z(X)α�2
2 s.t. �α�∞ ≤ C (9)

In the randomized feature space, we use KCCA to fuse the two
types of features, and the kernel function adopts the Gaussian
radial basis kernel function [46]. The KCCA is defined as
formula (10):∑

11 i j = K
(
x1i , x1 j

) = e−||x1i−x1 j |/σ 2∑
22 i j = K

(
x2i , x2 j

) = e−||x2i−x2 j |/σσ 2∑
12 i j = K

(
x1i , x2 j

) = e−||x1i−x2 j | | /σ 2 (10)

where σ is the width of a kernel. K (x1, x2) = ϕ (x1) ϕ (x2)
represents a nonlinear mapping of two features in a random
feature space.

The relationship K between the two features is calculated
as formula (11):

K =
∑

11− 1
2
∑

12
∑

22− 1
2 (11)

The singular value decomposition of formula (11) is shown in
formula (12):

K = (α1, α2, . . . , αK ) D (β1, β2, . . . , βk)
T (12)

G. Emotion Classification With SVM

In the field of emotion classification, SVM can use the
kernel function to map to high-dimensional space and use the
kernel function to solve nonlinear classification. The classi-
fication idea is simple and efficient, maximizing the interval
between the sample and the decision surface, showing good
prediction and working well for classification [47]. In this
paper, the SVM is used as the classification model of single
modal features and multimodal features. The SVM uses a
discriminant function for model training, and the discriminant
function is shown in formula (13):

g(x) = W T x + b (13)

SVM maps the classification features to another dimension
space and performs feature classification by finding the largest
hyperplane. The hyperplane is defined as formula (14):

W T x + b = 0 (14)

where W T is a multidimensional vector, and b is a scalar. The
maximum boundary and minimum error are calculated using

formula (15):

min ϕ(ω) = 1

2
�ω�2 + C

(
n∑

i=1

ξi

)

s.t. yi

[(
ωT xi + b

)]
− 1 + ξi , ξi > 0, i = 1, 2, . . . , n

(15)

where C is the weight between the maximum boundary and
the minimized error.

The kernel function of SVM adopts the radial basis kernel
function (RBF) [48], and the learning method adopts the
sequential minimum optimization (SMO) method. RBF is
calculated as formula (16):

K (xi · x) = exp
(
−g �x − xi�2

)
(16)

The SVM classification function is calculated as
formula (17):

f(x) = sgn
n∑

i=1

aiyiK (xi · x) + b (17)

IV. EXPERIMENTS AND ANALYSIS

A. Evaluation Metrics

In the following experiments, we adopt accuracy to evaluate
the classification performance. Accuracy is the ratio of the
number of samples accurately classified to the total number
of samples.

Accuracy = TP + TN

TP + FP + TN + FN
(18)

For the comparison between our proposed fusion method
FRKCCA and single modal and other multimodal fusion
methods, we use the mean to compare the accuracy and adopt
the standard deviation to compare the model classification
stability.

B. Experiments and Analysis of Brain Functional
Connectivity Networks

The experimental data are divided into 80% and 20% as the
training data and test data, respectively. Emotion classification
adopts the method of tenfold cross-validation, and SVM
parameters are selected in the training set. The grid search
algorithm is utilized to find the best c and g in the range
of [−10:10]. As shown in Fig. 3, the highest classification
accuracy of the average feature of the brain functional connec-
tivity networks constructed based on PLI was 76.82%. As we
can see in Fig. 4, the highest classification accuracy of the
average features of the brain functional connectivity networks
constructed based on PLV is 70.49%. It can be concluded
that the brain functional connectivity networks constructed by
PLI show a strong ability to transmit information after being
stimulated by emotions. As shown in Fig. 5, considering as an
example the feature assortativity coefficient of brain functional
connectivity networks based on PLI and PLV, the average
emotion classification effect of the valence dimension is better
than that of the arousal dimension.
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Fig. 3. Classification accuracy of brain functional connectivity networks
based on PLI.

Fig. 4. Classification accuracy of brain functional connectivity networks
based on PLV.

Fig. 5. Dimensional analysis of features based on PLI and PLV. (a) is the
classification accuracy of the assortativity coefficient of brain functional
connectivity networks based on PLI and (b) the classification accuracy
of the assortativity coefficient of brain functional connectivity networks
based on PLV.

C. Experiments and Analysis on Eye Gaze

We input the five features of gaze, glance, pupil diameter,
gaze sequence, and gaze distance extracted from the eye
gaze signals and all of the eye gaze features into the SVM
model for emotion classification. The comparison of average
classification accuracy is shown in Fig. 6. The analysis demon-
strates that the classification effect of FLF is better than the
classification accuracy of single-attribute features. Regarding
the classification accuracy of single-attribute features, the clas-
sification accuracy of pupil diameter in the valence dimension
is higher than that of other attribute features. At the same

Fig. 6. Comparison of experimental results of eye gaze features emotion
classification.

Fig. 7. Dimensional analysis of classification results of FLF features
fusion based on PLI and PLV. (a)is the comparison of the valence and
arousal dimension of the classification results of the FLF features fusion
based on PLI, (b) is the comparison of the valence and the arousal
dimension of the classification results of the FLF features fusion based
on PLV.

time, regardless of the single modal or FLF, the classification
accuracy of the valence dimension is better than that of the
arousal dimension.

D. Comparative Analysis of Single Modal Features
and Multimodal Features

As shown in Fig. 7, the features of the brain functional
connectivity networks and eye gaze signals are feature fused
based on FLF, and the fused features are input into the SVM
to obtain the classification results of seven frequency bands
in two dimensions. The analysis shows that the classification
effect of FLF in the valence dimension is better than the
classification results in the arousal dimension.

To further explore the effect of randomized feature space
on emotion classification, we compared single-modal and mul-
timodal feature-level fusion methods. First, the classification
effect on single modal features is compared. By comparing
the emotion classification effects of brain functional con-
nectivity network features based on PLI and PLV and eye
gaze features, it is concluded that the emotion classification
accuracy of the valence dimension is better than that of the
arousal dimension. Second, the shallow feature level fusion
algorithms are compared, and the eye gaze features are fused
with brain functional connectivity networks. It is concluded
that the features and fusion algorithm based on the PLI brain
functional connectivity network are better than those based on
PLV in both the valence dimension and the arousal dimension.
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TABLE III
THE AVERAGE ACCURACY (%) AND STANDARD DEVIATION (%) OF

SINGLE MODAL AND MULTIMODAL ARE USED TO CLASSIFY

EMOTIONS OF THE MAHNOB-HCI DATASET

Finally, a deeper FLF is performed. We used the canonical
correlation analysis (CCA) algorithm of FLF to fuse the eye
gaze features with the brain functional connectivity network
features. The fusion classification effect is better than the
single-modal feature classification, but it does not exceed that
of shallow feature level fusion. Moreover, we use the KCCA
algorithm for feature level fusion. The effect of FLF based
on PLI is better than that of shallow feature level fusion,
which is better than that of the CCA algorithm, but the effect
based on PLV is weak. We also adopt the deep canonical
correlation analysis (DCCA) algorithm of FLF to fuse the eye
gaze features with the brain functional connectivity network
features, and the sigmoid function is adopted as the activation
function, for which the learning rate of DCCA is 0.01.
Furthermore, we design a new FLF algorithm to improve
and optimize the FLF based on KCCA, and we propose the
FRKCCA algorithm to obtain better emotion classification
performance than the other multimodal and single modal
methods. The results show that our proposed FRKCCA model
has good classification performance in emotion classification
and achieved a classification accuracy of 91.32±1.81%.

Single modal features and multimodal features that use FLF,
F-CCA, F-KCCA, F-DCCA, and FRKCCA fusion methods
to combine the features of the brain functional connectivity
networks constructed by PLI and PLV and eye gaze features
are used in the SVM emotion classification model for emo-
tion classification. The mean and standard deviation of the
classification results are shown in Table III. Under the same
computing setting, we recalculated the running time of the
multimodal fusion algorithm and the total emotion classifica-
tion algorithms. It is shown that the FRKCCA algorithm can
improve the classification accuracy and save calculation time.
The results are shown in Table IV.

According to the comprehensive analysis of
Tables III and IV, FRKCCA is better than the other
three fusion algorithms in classification accuracy. In terms of
time cost, it is weaker than the CCA algorithm, but the CCA
algorithm is a linear fusion of multimodal features, losing
some feature information, and the classification accuracy is

TABLE IV
TIME COST(S) COMPARISON OF MULTIMODAL FUSION METHODS

TABLE V
BINARY CLASSIFICATION PERFORMANCE OF DIFFERENT WORKS IN

MULTIMODAL EMOTIONS (%) CLASSIFICATION ON THE

MAHNOB-HCI DATASET

lower than that of the other two. The proposed FRKCCA
algorithm is better than the KCCA algorithm in terms of the
time cost and classification accuracy. Therefore, the FRKCCA
algorithm has a certain feasibility and superiority.

E. Comparison of Different Studies Related to
Emotion Classification

In recent years, multimodal physiological signal fusion for
emotion classification methods has attracted much attention.
The method of EEG and other modal fusion reveals the neural
mechanism of emotion. A comparison of different studies
related to emotion classification is shown in Table V.

V. DISCUSSION

We compared and analysed the two types of brain functional
connectivity networks in different frequency bands. Generally,
the scalp area of the brain is divided into left and right
hemispheres (LH and RH); the frontal region is divided into
left frontal (LF), right frontal (RF), left temporal (LT) and
right temporal (RT) areas; the central region is divided into
left central (LC) and right central (RC); and the posterior is
divided into left posterior (LP) and right posterior (RP) [49].
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Fig. 8. Comparison of brain functional connectivity networks in seven
frequency bands based on PLI and PLV.

Fig. 9. Synchronization analysis based on PLI and PLV.

A large number of studies of EEG have found that different
brain waves represent different human body states. Further-
more, the original EEG signals are decomposed into seven
frequency bands, and different frequency bands correspond to
different brain waves and human body states. When people
are in infancy or immature intellectual development and adults
are in a state of extreme fatigue, drowsiness or anaesthesia,
the Delta wave can simulate the EEG signals of the temporal
and parietal lobes in this state. The Theta wave is the “sub-
conscious level” – the state of the brain in which memories,
perceptions, and emotions are present and usually occur during
dreaming and deep meditation. The Alpha wave is gradual,
shallow consciousness of the brain, and then the consciousness
gradually moves towards the paste; usually, the brain is in a
blank state before sleeping. The Beta1 wave indicates thinking
and processing of information heard or thought from the
outside world when the brain is relaxed but focused. The Beta2
wave indicates heightened awareness of the human body when
the person is agitated or anxious. Gamma waves are highly
concentrated, usually when people ruminate and are mentally
focused but their emotional state is high [50]. Fig. 8 shows
the brain functional connectivity networks constructed based
on PLI and PLV in the seven frequency bands. The figures are
drawn with the help of the HERMES toolbox [51].

As shown in Fig. 8, the brain functional connectivity net-
works based on PLI and PLV indicate the deficiency of left
and right functional connections after emotional stimulation; in
particular, there are some differences in functional connections
between the RT and RP of the brain functional connectivity
networks based on PLI and PLV in the Delta, Theta, Alpha,
Beta1, Beta2, Gamma1 and Gamma2 frequency bands. The
results further indicate that, when humans cannot be highly
concentrated, there are some differences in functional con-
nections in the RT and RP areas of the brain functional
connectivity networks, indicating that right brain information
processing is weak.

Comparative analysis shows that the brain functional con-
nectivity networks of the right brain are defective after emo-
tional stimulation and in the lower frequency bands, so the
information processing ability of the right brain RT and RP
regions is weak. In this study, the 32 electrodes are connected
in pairs to form a 32 * 32 connection matrix. The stronger that
the connection is, the more yellow that the colour is, and the
weaker that the connection is, the more blue that the colour is.
The electrode itself is not connected by default. As shown
in Fig. 9, the phase synchronization of the brain functional
connectivity networks based on PLI was stronger than that of
the brain functional connectivity networks based on PLV.

VI. CONCLUSION

In this paper, we propose an ECFCEG method in the
field of affective computing. At the same time, the brain
functional connectivity networks based on PLI and PLV and
eye gaze features were fused using FLF, FRKCCA, and
other algorithms. Finally, single modal features and multi-
modal features were fed into the SVM to classify positive
and negative emotions. The experimental results demonstrated
that the proposed FRKCCA model had good performance in
emotion classification and achieved a classification accuracy of
91.32±1.81%. These results demonstrate the complementary
features between brain functional connectivity networks and
eye gaze in the field of affective computing.
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