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Abstract— Quantitative assessment of hand function can
assist therapists in providing appropriate rehabilitation
strategies, which plays an essential role in post-stroke reha-
bilitation. Conventionally, the assessment process relies
heavily on clinical experience and lacks quantitative analy-
sis. To quantitatively assess the hand motor function of
patients with post-stroke hemiplegia, this study proposes
a novel multi-modality fusion assessment framework. This
framework includes three components: the kinematic fea-
ture extraction based on a graph convolutional network
(HAGCN), the surface electromyography (sEMG) signal
processing based on a multi-layer long short term mem-
ory (LSTM) network, and the quantitative assessment based
on the multi-modality fusion. To the best of the authors’
knowledge, this is the first study of applying a graph convo-
lution network to assess the hand motor function. We also
collect the kinematic data and sEMG data from 70 subjects
who completed 28 types of hand movements. Therapists
first graded patients using traditional motor assessment
scales (Brunnstrom Scale and Fugl-Meyer Assessment
Scale) and further refined the patient’s motor assessment
result by their experience. Then, we trained the HAGCN and
LSTM networks and quantitatively assessed each patient
based on the proposed assessment framework. Finally, the
Spearman correlation coefficient (SC) between the assess-
ment result of this study and the traditional scale are
0.908 and 0.967, demonstrating a significant correlation
between the proposed assessment and the traditional scale
scores. In addition, the SC value between the score of
this study and the refined hand motor function is 0.997,
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indicating the “ceiling effect” of some traditional scales can
be avoided.

Index Terms— Hand motor function, quantitative assess-
ment, multi-modality fusion, graph convolutional network.

I. INTRODUCTION

APPROXIMATELY 80% of stroke survivors suffer from
motor dysfunction that affects one or both upper limbs,

especially the coordination and flexibility of the hands [1].
Hand impairment is one of the major causes of functional
limitations in individuals with post-stroke hemiparesis. Given
that the hand provides 90% of the motor function of the
upper limb, the patient’s autonomy is reduced, thus affecting
the performance of daily activities and reducing the quality
of life [2]. An adequate treatment of hand motor function
impairment is necessary for establishing a realistic prognosis,
planning customized rehabilitation interventions, and evaluat-
ing the effectiveness of those interventions [3].

In the clinical setting, assessments of hand motor function
are typically performed by the ‘standardized’ clinical scales
and tests [4]. The Brunnstrom assessment (BA) scale [5]
and Fugl-Meyer assessment (FMA) scale [6] are two most
commonly used hand function assessment scales for stroke
patients. Swedish physiotherapist Brunnstrom developed BA
in the 1970s to assess movement disorders following central
nervous system injuries. In his theory, stroke patients are
divided into six stages of recovery. The FMA scale of the
hand contains seven types of hand assessment movements.
Each movement is assigned a qualitative rating with a score
of 0, 1 or 2 depending on how well it is performed. However,
since both scales are graded according to the therapist’s own
experience, both scales are subjective and have the disadvan-
tage of the “ceiling effect”.

The “ceiling effect” widely exists in assessing post-stroke
upper extremity dyskinesia [7], which means that the scale is
insensitive to the change of those patients at the top end of
the recovery (i.e., the scale resolution is low for patients with
good motor recovery) [8]. In this study, the “ceiling effect” is
suggested to occur when the patient’s assessment score reaches
over 80% of the maximum score. In this setting, approximately
80% of patients in the experiments conducted in this study face
the “ceiling effect”. It is obvious that the scale “ceiling effect”
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affects the assessment accuracy, which should be addressed in
practice.

Due to the above shortcomings, some papers in the literature
used sensors to measure the hand kinematic information of
stroke patients accurately and used artificial intelligence meth-
ods to evaluate their hand motor functions. Fang et al. allowed
patients to perform seven FMA-specific movements above the
leap motion (LM) sensor and evaluated the patients’ FMA
scores based on the range of each finger’s angular changes
detected by the LM [9]. Hamaguchi et al. used LM to record
the finger angle changes of 24 stroke patients’ hands during
group flexion and extension within seven seconds, calculated
the peak angle and normalized peak velocity, and then used a
support vector machine method to classify the patients into
six categories [10]. Li et al. designed a set of combined
movements of the wrist and fingers and then utilized LM
to measure the angle ranges of the patient’s fingers when
performing the movements to evaluate the patients by ensem-
ble learning [11]. Song et al. designed a mobile phone-based
automated Fugl-Meyer assessment system for stroke patients.
Patients were asked to complete specific tasks when holding a
mobile phone. Afterward, the motion information collected by
the mobile phone was used in combination with the decision
tree method to evaluate the patient’s upper limb function [12].
Adams et al. built a virtual environment assessment system.
The system assessed the patient based on the task completion
time, the average speed of hand movement, and task scores.
Spearman rank correlations showed a high and significant
correlation between virtual world-derived measures and gold-
standard assessments [13], [14]. Although the above studies
used artificial intelligence methods to assess the hand motor
function of patients directly, they all used the methods adopt-
ing features by the manual extraction manner. Nevertheless,
the manually extracted features may not be optimal.

Deep learning belongs to the method which is capable
of automatically extracting features. A typical deep learning
network is the convolutional neural networks (CNNs). With
the development of graph neural networks, graph convolution
networks (GCNs), which extend CNNs to graphs of arbitrary
structures, have received increasing attention and have been
successfully used in various applications, such as image clas-
sification, document classification, and skeleton-based move-
ment recognition [15]–[17]. In particular, Yan et al. proposed
spatial-temporal graph convolutional networks for skeleton-
based movement recognition and achieved a good classifica-
tion result [18]. Whereas, hand joints can also be regarded as
a graph network structure and the GCN-based hand motion
assessment has yet to be explored.

Furthermore, besides kinematic signals, sEMG signals also
reflect the hand motor function of stroke patients to a certain
extent. Zhang et al. estimated the muscle strength by collecting
sEMG signals and using a third-order polynomial fitting
technique [19]. The muscle strength can reflect the motor
function. Some studies have realized that studying both hand
kinematics and sEMG data when conducting clinical trials
can better understand the muscle coordination in functional
recovery. However, they did not study how to implement

the multi-modality fusion evaluation and only studied healthy
people rather than stroke patients [20]–[23].

Given the above observations, the main contributions of this
paper can be summarized as follows:

1) To automatically extract practical features and make full
use of the spatial position information of the human
hand joints, we propose a hand assessment graph con-
volution network (HAGCN). The network includes the
graph convolution in the spatial domain and the temporal
convolution in the time domain. To the best of the
authors’ knowledge, this is the first study of applying
the GCN to assess the hand motor function.

2) Both the motion signal and the sEMG signal are analyzed,
and the weighted decision fusion method is used to
assess the hand motion function of patients with post-
stroke hemiplegia, which improves the accuracy of the
assessment. The SCs between the assessment result of
this study and the traditional scales are 0.908 and 0.967,
respectively, proving that there is a significant correlation
between the proposed assessment and the traditional scale
scores.

3) The therapists have refined the assessment results of
25 stroke patients facing the “ceiling effect”. These stroke
patients have been assessed by the proposed algorithm as
well. The SC between the score of this study and the
refined assessment is 0.997, indicating that the “ceiling
effect” in some traditional scales can be avoided.

The remaining parts of this study are organized as follows:
Section II introduces the proposed experimental setup and
the acquisition of multi-modality data. Section III presents
details on the assessment framework based on HAGCN,
LSTM and multi-modality data fusion. Then, the assessment
results and the related discussions are provided in Section IV
and Section V, respectively. Finally, Section VI concludes the
paper with final remarks.

II. EXPERIMENTAL METHODS

A. Participants

The experiments were performed in collaboration with the
China Rehabilitation Research Center (Beijing Bo’ai Hospital)
and we recruited 35 post-stroke hemiparetic patients (27 males,
8 females, mean age of 52.7 ± 12.7 years) from the hospital.
The study imposes no subject requirements in terms of the
minimum level of required motor function, as long as the
subject has no cognitive deficits. Before the experiment, each
post-stroke participant was examined by three experienced
therapists for the Brunnstrom stage classification and the hand
section of the Fugl-Meyer assessment. Then, according to the
majority rule, the BS and FS of the patients are determined.
The detailed clinical assessment results of the enrolled subjects
are shown in Table I.

To eliminate the “ceiling effect”, three therapists selected
25 patients with the Brunnstrom stage greater than III, touched
these patients, felt the patient’s gripping strength by shaking
hands with them, and observed the patient’s completion of
some props tasks (such as drawing strokes and inserting nails)
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TABLE I
CLINICAL ASSESSMENT RESULTS OF 35 POST-STROKE PATIENTS

in the occupational therapy room to further rank the patients.
This step still follows the majority rule. The sorting result is
shown in Order 1 of Table V.

This research was reviewed and approved by the Ethics
Committee of the China Rehabilitation Research Center
(approval number: 2021-108-1). Each subject signed a written
informed consent form before enrollment.

B. Acquisition Setup

To explore the kinematic and muscular characteristics in
normal and pathological movement patterns, we collect the
kinematic and sEMG data of the subjects simultaneously.

1) Kinematics: Kinematic data are acquired by
WISEGLOVE19 (Xintian Vision, Beijing, China) at a
sampling rate of 200 Hz; the device collects data from
19 joint angles of the fingers. The data glove adopts an
optical fiber to measure the angle, with a dynamic accuracy
of 0.2 degrees.

Due to the use of optical fiber sensors, the maximum and
the minimum values of the wearer’s finger angle should be
calibrated before using the data glove to collect data. Con-
sidering the patient’s hand dysfunction, the volunteer needs to
assist the patient in calibration by performing some calibration
movements.

Fig. 1. The snapshot of the experiment.

Fig. 2. Proposed 28 hand movements in the assessment experiment.

2) Surface Electromyography: The muscular activity is gath-
ered using a Thalmic Myo armband (Thalmic Labs, Ontario,
Canada), a low-cost wireless armband containing eight single
differential sEMG sensors. The sampling rate is also set to
be 200 Hz, which is the same as the kinematic sampling rate.
Eight electrodes are evenly wound around the forearm, keeping
a constant distance from the radiohumeral joint just below the
elbow. A snapshot of the experiment is shown in Fig. 1.

C. Experimental Paradigm

The hand movements in the experiment are proposed by
therapists based on their clinical experience, aiming at eval-
uating the hand motor function, which are shown in Fig. 2.
These movements are divided into two parts: one part con-
tains five fundamental movements of the wrist (no. 1 – no. 5
in Fig. 2), four isometric and isotonic hand configurations
(no. 6 – no. 9 in Fig. 2), and five combination movements
(no. 10 – no. 14 in Fig. 2); the other part contains the left
fourteen grasping movements.

The repetitions of one action are performed in one block,
and the order of the blocks is the same as the sequence of
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Fig. 3. The structure of one hand movement experiment block.

actions shown in Fig. 2. Figure 3 shows one block. There are
video tips at the beginning of each block. The video of the
hand movements are played twice, instructing the subject on
what to do next. After resting for 3 seconds, subjects try their
best to execute the hand movement within 5 seconds. This
whole process is called a trial, and 6 trials form a block.

D. Data Acquisition and Data Preprocessing

After the experiment, we obtain two types of time-series
signals. One is the kinematic signal, which is composed of
19 channels, and the other is the sEMG signal, which is
composed of 8 channels. The kinematic data are filtered by
a second-order two-way low-pass Butterworth filter with the
cut-off frequency of 5 Hz [21]. The Thalmic Myo already
presents a notch filter at 50 Hz, so the sEMG signal requires
no extra filtering [24].

To expand the number of samples, we perform the sliding
window method, and the window size and the sliding dis-
tance are consistent with the ones given in [25]. Therefore,
each movement repetition has a window of 200 milliseconds
(20 sampling points), with an overlap of 100 milliseconds
(10 sampling points). All data preprocessing works are per-
formed on MATLAB R2019a.

III. MULTI-MODALITY FUSION FRAMEWORK FOR

FUNCTIONAL ASSESSMENT

After data collection, this section introduces the hand func-
tion assessment method based on the fusion of two data
modalities. The overall framework is shown in Fig. 4. The
method mainly includes the movement analysis based on
HAGCN, the sEMG analysis based on LSTM, and the multi-
modality fusion scheme. All methods are implemented by the
Python language (version 3.6) based on the TensorFlow and
PyTorch framework. We first introduce the classification task
of this study.

A. Classification Task

It should be noted that the classification task is not designed
to recognize the 28 hand movements but to distinguish patients
of different levels through each hand movement. We expect
to use the assessment framework to obtain more accurate
assessment results and eliminate the “ceiling effect” of the
scale, because the “ceiling effect” reduces the data interpreta-
tion accuracy and affects the effectiveness of the rehabilitation
progress [26].

The therapists select and label 25 patients among
35 recruited patients to represent 25 categories at the top end
of the recovery. The therapists suggest that 25 categories are
sufficient to avoid the “ceiling effect”. To distinguish these
25 categories, we have also added one extra category (the
healthy category). We first collected data from 35 healthy
subjects. Then, we randomly selected six groups of data
generated by the same 28 hand movements of the healthy
subjects to represent the healthy category. Since the selection is
random, the selected data can represent the movements of most
healthy subjects. In this way, there are a total of 26 categories
in the classification task.

B. Motion Analysis Based on HAGCN

HAGCN includes a spatial graph convolution net-
work (SGCN) and a temporal graph convolution network
(TGCN).

1) Skeleton Graph Construction: In this work, we utilize a
spatial graph to form a hierarchical representation of the hand
skeleton sequence. The structure of SGCN is shown in Fig. 5.
The yellow dots on the left in Fig. 5 are 19 key joints measured
by the data glove. Leveraging the natural connections between
these joints, we propose a graph structure. The structure can
explicitly exploit the spatial relationship between the joints,
which is crucial for understanding human actions. In the
spatial graph, the internal edges between human joints are
defined according to the natural connections of the human
body.

2) Spatial Graph Convolutional Neural Network: In this study,
we use G(V , E) to graphically represent the hand skeletal
structure, where V and E are the node set and the edge set
of graph G, respectively. In the graph, the node set V =
{vt i |t = 1, . . . , T, i = 1, . . . , N} contains all joints in the
skeleton sequence, where T is the length of the sequence and
N = 19 is the number of nodes. The framework of SGCN can
be written as

Y = σ((D−1/2 AD−1/2)XW ), (1)

where Y is the output matrix, X ∈ R
19×L is the input matrix,

L is the input sequence length, A ∈ R
19×19 is the adjacency

matrix, D ∈ R
19×19 is the degree matrix, W ∈ R

19×19 is the
parameter matrix, and σ(·) is the nonlinear activation function.

3) Spatial Configuration Partitioning: When a person is per-
forming hand movements, his/her finger joints play different
roles in the hand motor assessment. Therefore, the adjacency
matrix A is dismantled into several different matrices An ∈
R

19×19. Thus, (1) can be transformed into the following
equation:

Y = σ(�((D−1/2
n (Kn An)D−1/2

n )XWn)), (2)

where Y is the output matrix, X ∈ R
19×L is the input matrix,

Dn ∈ R
19×19 is the degree matrix corresponding to An , Kn

is a learnable parameter, Kn An is the attentional mechanism,
and Wn ∈ R

19×19 is the parameter matrix. To determine the
value of n, we use the DeepWalk method to analyze the
structure of the graph. DeepWalk proposed in [27] is one
classical method of graph embedding. The graph embedding
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Fig. 4. The overall framework of the study.

Fig. 5. The structure of the spatial graph convolution network.

algorithm represents the nodes in the graph as low-dimensional
and dense vectors so that the similar nodes in the original
graph are also similar in the low-dimensional representation
space. The DeepWalk algorithm mainly includes two steps:
the first step is to sample the node sequence by a random
walk, and the second step is to use the skip-gram model to
learn the representation vector. The 2-dimensional figure after
the process of DeepWalk is shown in Fig. 6. The figure shows
that the finger joints are symmetrical, and node 11 is located
at the center symmetrical position. Therefore, the matrix A
can be decomposed according to the symmetry of the graph.
Considering the complexity of the calculation, we set n to be
2 or 3. The ablation test demonstrates that the classification
accuracy when n = 3 is better than the one when n = 2
(i.e., the centripetal group and centrifugal group mentioned
below are combined into the same group), so n is set to be
3. We design the strategy to divide the neighbor set into three
subsets, corresponding to A0, A1, and A2 in Fig. 7. Three
subsets are:
• Adjacency matrix group: the adjacency matrix A removes

the centripetal group and the centrifugal group.
• Centripetal group: the neighboring nodes far from the

gravity center (node 11), such as (8, 7), (11, 8), (8, 9),
(11, 12), (12, 13), (12, 15).

Fig. 6. The result of the DeepWalk.

Fig. 7. The structure of the matrices A0, A1 and A2.

• Centrifugal group: the neighboring nodes close to the
gravity center (node 11), Such as (7, 8), (8, 11), (9, 8),
(12, 11), (13, 12), (15, 12).

Matrix An is obtained according to this strategy. Figure 7
graphically shows the matrices A0, A1 and A2. Note that the
coordinates in Fig. 7 start from (0,0) and the key point in
Fig. 5 starts at 1, then the point 0 in Fig. 7 is equivalent to
point 1 in Fig. 5.

4) Temporal Graph Convolution Network: After constructing
the SGCN, the task of modeling the TGCN within the skeleton
sequence is performed. The process allows us to define a
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Fig. 8. The structure of the temporal graph convolution network.

simple strategy for extending the SGCN to the spatial-temporal
domain. The temporal graph is constructed by connecting the
same joints in a continuous frame, as shown in Fig. 8. The
three green points in Fig. 8 represent the three consecutive
data points of the node in time, and the yellow and blue points
are the adjacent nodes of the green joints. The nine points in
the red grid are convolved in the spatial-temporal domain to
obtain the red point. In this study, the temporal kernel size is
set to be 3.

5) Network Architecture and Training: One SGCN and one
TGCN form the HAGCN. The whole network consists of
five HAGCN layers. The output sizes of five HAGCN layers
are 8, 16, 32, 64, and 32, respectively, and the input size
is 19. The network is optimized by the residual connection.
The whole model is trained in an end-to-end manner with
backpropagation.

The division of the dataset adopts the method of leave-one-
out (LOO) cross-validation, which is also known as the 6-fold
cross-validation. Each movement has six trials, as shown
in Fig. 3. Five trials are taken as the training set, and the
data of the remaining trial are taken as the test set to test
the classification result. In this way, six tests are performed
with different validation sets. The average value of six tests
represents the classification accuracy of the action. A total of
26 classification tasks for each of the 28 movements need to
be completed.

C. sEMG Analysis Based on LSTM

In this study, a multi-layer LSTM network is introduced to
extract the deep features of sEMG signals, which improves
the generalization and robustness of the model compared with
the manual feature extraction [25]. The network includes six
LSTM layers and one fully connected layer. The input size
of the first LSTM layer is eight. The data within each time
window of sEMG are the input of the LSTM. The output size
of each LSTM layer is 32, 64, 128, 64, 32, and 32. The output
size of the fully connected layer is 26, which is activated
by the softmax algorithm. Sparse categorical cross-entropy is
used as the loss function. The Adams algorithm is used as
the optimization method for the network training. The LSTM
network training still employs the LOO method.

D. Multi-Modality Fusion Scheme

The proposed multi-modality fusion algorithm is given in
Algorithm 1. To better understand this algorithm, we briefly
explain its working principle and setting.

Algorithm 1 Multi-Modality Fusion Algorithm
Input: Hand kinematic data and sEMG data from

25 patients and 35 healthy subjects
Output: Hand function score

1 H k
i ← train HAGCN;

2 Lk
i ← train LSTM;

3 for m = 1,2 do
4 for i = 1,…,28 do
5 for k = 1,…,6 do
6 if m == 1:
7 pk

m,i, j ← softmax(O(H k
i, j ));

8 else :
9 pk

m,i, j ← softmax(O(Lk
i, j ));

10 end
11 end
12 H k

m ← concatenate(pk
m,i, j )

∗;
13 Ĥm ←∑

k(norm(H k
m));

14 sm ←∑
column(Ĥm)

15 end
16 s ← c1×s1 + (c − c1)×s2

The softmax function is often used as the last activation
function of a neural network to normalize the output of a
network to a probability distribution [28], which can be used
as a feature to achieve the satisfactory classification tasks [29].
In this study, the number of softmax outputs is 26, and the final
output represents the probability value of the input sample
being recognized as a healthy person by the neural network.
The patient’s hand motor function is assessed by calculating
and comparing the average probability value of each type of
the patient’s hand movement to be recognized as a healthy
subject’s movement. The assessment consists of the kinematic-
based assessment and the sEMG-based assessment. We use the
decision fusion approach for the multi-modality assessment.
The total score is the weighted sum of the kinematic modality
score and the sEMG modality score.

The details of Algorithm 1 are as follows. After training
HAGCN and LSTM networks, 336 (2× 28× 6 = 336) trained
neural networks are obtained, which are written as H k

i and Lk
i ,

i = 1, . . . , 28, k = 1, . . . , 6, respectively. Here, i represents
the i -th movement, and k represents the k-th iteration of the
6-fold cross-validation. Then, all stroke patients’ kinematic
data (including the training set and the test set) are input to
the HAGCN, and the output of the HAGCN is O(H k

i, j ) ∈
R

1× 26, where j = 1, . . . , 25 indicates the order of the stroke
patient. Similarly, all stroke patients’ sEMG data are input into
the LSTM network, which outputs O(Lk

i, j ) ∈ R
1× 26. Next,

O(H k
i, j ) and O(Lk

i, j ) are input to the layer of softmax, and
then generates Pk

m,i, j ∈ R
1× 26, where m = 1 refers to the

output of O(H k
i, j ), and m = 2 refers to the output of O(Lk

i, j ).
The last element of Pk

m,i, j represents the similarity between
the i -th movement of the j -th patient and the movement of a
healthy subject. We use (pk

m,i, j )
∗ to represent the last element

of pk
m,i, j and use (pk

m,i, j )
∗ to construct matrix H k

m ∈ R
28× 25.
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Fig. 9. The classification accuracy by the kinematic information based on HAGCN and the classification accuracy by the sEMG based on LSTM.

Here, (pk
m,i, j )

∗ is the i -th row and j -th column element of H k
m .

Then, each matrix is normalized and they are added to obtain
Ĥ1 and Ĥ2, respectively. Ĥ1 and Ĥ2 represent the scoring
matrices of kinematic signals and sEMG signals versus healthy
people. Each column in the matrix represents a patient, and
each row represents a movement. Therefore, by calculating
the sum of each matrix’s column separately, the patient’s
movement score is obtained. There are two types of scores for
each patient: the kinematic score s1 and the sEMG score s2.
Finally, s1 and s2 are fused according to (3) to obtain the final
score s.

s = c1×s1 + (c − c1)×s2, (3)

where c1 ranges from 0 to c = 10. Equation (3) belongs to
the weighted decision fusion strategy.

IV. RESULTS

A. Data Collection

Thirty-five stroke patients and thirty-five healthy subjects
participated in collecting trial data. We design a visual inter-
face that displays the movement of the hand in real-time to
ensure the patients to follow the guide. We also evaluate
the effect of experimental factors on the range of the joint
angles. Factors affecting the joint angles include the individual
joint, the movement, the subject, and the movement repetition.
The evaluation results show that the data collection quality is
reliable.

B. Classification Results

After 6-fold cross verification, the classification accuracy is
shown in Fig. 9. The blue histogram represents the classifica-
tion accuracy by the kinematics, with an average accuracy of
91.2%. The red histogram shows the classification accuracy
by the sEMG signal, with an average accuracy of 79.1%.
Classification accuracy shows that we can distinguish patients

with the same Brunnstrom grade or the same FMA score.
Table II shows the order of the classification accuracy, and
the following facts can be observed:
• In the traditional FMA scale, the diameter of the cylinder

is not considered as an affecting factor. In this experiment,
three types of cylinder grasping actions with different
cylinder diameters are designed (marked by the blue
background in Table II). Among them, the classification
accuracy of grasping a large diameter cylinder is the
highest. This finding shows that the more challenging
the movement is, the easier it is to distinguish patients
at different levels. This finding is also consistent with the
physiological characteristics of stroke patients. They are
easy to bend fingers but not easy to stretch fingers.

• The three-finger sphere grasp has the highest classifi-
cation accuracy among three spherical grip movements
designed in this experiment (marked by the red back-
ground in Table II). Therefore, this movement can be
used as a representative action of the spherical grasp,
which is consistent with our previous kinematic analysis
results [30].

• Among the top 6 movements with the highest classifica-
tion accuracy based on two kinds of signals, the same
movements are: (1) the abduction of all fingers and (2)
the lateral grasp. This finding suggests that the hand
extension and thumb movement are more effective in
identifying the patient’s hand movement level.

C. Performance of Quantitative Assessment

To prove the validity of the proposed quantitative assess-
ment, we need to select a performance metric. Generally, the
Pearson correlation coefficient (PC) is the most commonly
used metric to prove the correlation between two datasets.
However, PC can only be applied if the sample is normally
distributed. Therefore, the first step is to verify whether the
sample follows a normal distribution. Considering that the
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TABLE II
ORDER OF THE CLASSIFICATION ACCURACY

Fig. 10. SC under different values of c1 (the red line is the SC based on
FS and the blue line is the SC based on BS).

number of samples is less than 50, the Shapiro-Wilk test
is used to assess whether the samples followed a normal
distribution. As a result, the p-values of the Shapiro-Wilk
test results of the Brunnstrom score and FMA score are both
less than 0.05, indicating that the sample does not exhibit the
normal distribution. Therefore, Spearman’s rank correlation
coefficient (SC) is selected as the metric. In general, an SC
greater than 0.8 indicates a strong correlation.

Table III presents the SC of the quantitative assessment
based on the single modality. The quantitative evaluation

TABLE III
SC BETWEEN THE ASSESSMENT RESULT BASED ON THE SINGLE

MODALITY AND THE TRADITIONAL ASSESSMENT

results based on the kinematic signal are more consistent with
two traditional methods.

Figure 10 shows the changing trend of SC under different c1
values, and the resolution of c1 is 0.001. By Fig. 10, when c1
equals to 8, SC reaches the maximum value. Table IV shows
the SC of the fusion scheme when c1 is an integer. As noted
in the table, when c1 equals 8, SC reaches the maximum
value, which is higher than that based on one modality. This
finding suggests that the fused assessment results are closer
to the traditional assessment results, as shown in Fig. 11.
More detailed assessment results are provided in Table V.
From Table V, the SC between FUS and Order 1 is 0.997,
indicating that the multi-modality fusion assessment results are
significantly correlated with the therapist’s refined judgement
on the patient’s hand recovery level and can avoid the “ceiling
effect” in some traditional scales.

V. DISCUSSION

The main objective of this study is to develop a hand
motor function assessment system for the quantitative analysis
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Fig. 11. Scores of traditional scales and the score obtained by the proposed algorithm (BS, FS and ORDER 1 are Brunnstrom scores, FMA scores,
and the order of patients assessed by the therapists, respectively; ORDER 2 is the order of patients assessed in this study. The x-axis represents
the patient’s sequence number.).

TABLE IV
SC BETWEEN THE ASSESSMENT RESULT BASED ON THE

MULTI-MODALITY FUSION AND THE TRADITIONAL ASSESSMENT

of motor impairment in patients with post-stroke hemiplegia.
The system is constructed based on the kinematic data and
the sEMG signals which are collected synchronously during
28 well-designed hand movements. Under the framework of
multi-modality fusion, the quantitative evaluation results of
different modalities are well weighted and integrated, which
results in a comprehensive assessment of the hand motor
function.

The proposed HAGCN can achieve a classification accuracy
of 91.2% based on the kinematic modality. Although, in the
sEMG modality, the LSTM network could only achieve a clas-
sification accuracy of 79.1%. By exploiting the complemen-
tarity between motor characteristics of different modalities,
the obtained fused results show that the clinical relevance
can be enhanced by fusing the multi-modal information. It
should be noted that the classification accuracy solely based
on the sEMG is relatively low. Because the sEMG signal
can only reflect the neuromuscular activity to certain extents,
the classification accuracy using sEMG signal is naturally

TABLE V
DETAILS ON THE ASSESSMENT RESULTS

inferior to the one using the motion information. However,
it is reasonable to keep the sEMG modality in the assessment
system. This is because if the motion information is collected
by some non-contact devices like Leap Motion (Leap Motion’s
price is much lower than the data glove used in this paper),
the hand movement measurement is susceptible to illumina-
tion and occlusion. This can cause the measurement missing
problem, while the sEMG signal can be stably measured by
the wearable bracelet. More importantly, the muscle strength is
also crucial for the rehabilitation assessment. In Brunnstrom
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and FMA, there are also some items reflecting the muscle
strength. The muscle strength can be well estimated by the
sEMG [31]. Therefore, from the perspective of the assessment
scalability, it is necessary to keep the sEMG modality.

In this study, as shown in Table V, each patient can be given
a specific score by the proposed assessment algorithm rather
than a rough grade, and even patients with the same scale can
be distinguished, avoiding the “ceiling effect” of the traditional
scales.

VI. CONCLUSION

In this study, we propose a multi-modality (kinematics and
sEMG) fusion assessment framework based on HAGCN and
LSTM, and apply this framework to the self-collected dataset
to quantitatively evaluate the rehabilitation levels of 25 stroke
patients. The SCs between the assessment results of this study
and the traditional scales (Brunnstrom scale and Fugl-Meyer
assessment scale) are 0.908 and 0.967, respectively, providing
a significant correlation between the proposed assessment and
the traditional scale scores. In addition, the SC value between
the score of this study and the refined rehabilitation level of
patients with the same grade is 0.997, suggesting that the
quantitative assessment of 25 stroke patients can avoid the
“ceiling effect” of traditional scales to some extends.
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