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A Semi-Supervised Progressive Learning
Algorithm for Brain–Computer Interface
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Abstract— Brain-computer interface (BCI) usually suffers
from the problem of low recognition accuracy and large
calibration time, especially when identifying motor imagery
tasks for subjects with indistinct features and classifying
fine grained motion control tasks by electroencephalogram
(EEG)-electromyogram (EMG) fusion analysis. To fill the
research gap, this paper presents an end-to-end semi-
supervised learning framework for EEG classification and
EEG–EMG fusion analysis. Benefiting from the proposed
metric learning based label estimation strategy, sampling
criterion and progressive learning scheme, the proposed
framework efficiently extracts distinctive feature embedding
from the unlabeled EEG samples and achieves a 5.40%
improvement on BCI Competition IV Dataset IIa with 80%
unlabeled samples and an average 3.35% improvement on
two public BCI datasets. By employing synchronous EMG
features as pseudo labels for the unlabeled EEG samples,
the proposed framework further extracts deep level fea-
tures of the synergistic complementarity between the EEG
signals and EMG features based on the deep encoders,
which improves the performance of hybrid BCI (with a
5.53% improvement for the Upper Limb Motion Dataset and
an average 4.34% improvement on two hybrid datasets).
Moreover, the ablation experiments show that the proposed
framework can substantially improve the performance of
the deep encoders (with an average 5.53% improvement).
The proposed framework not only largely improves the
performance of deep networks in the BCI system, but also
significantly reduces the calibration time for EEG-EMG
fusion analysis, which shows great potential for building
an efficient and high-performance hybrid BCI for the motor
rehabilitation process.

Index Terms— EEG classification, EEG-EMG fusion, pro-
gressive learning, semi-supervised learning, brain com-
puter interface.
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I. INTRODUCTION

BRAIN Computer Interface (BCI) is a new type of intel-
ligent sensing system that uses advanced machine learn-

ing and pattern recognition algorithms to recognize signals
from different brain activities and translate them into control
commands to directly control external devices [1]. BCI is of
great research importance and application value in fields like
medicine, industry, entertainment, and especially rehabilitation
medicine [2].

Non-invasive scalp-based electroencephalogram (EEG) [3]
signal is the most widely used signal in BCI. The motor
imagery (MI) task is one of the most common tasks in
spontaneous EEG-based BCI systems, which can activate the
related motor execution (ME) cortex of the brain, by mentally
sensing an action process (kinesthetic motor imagery) or
by imagining a motor process in the mind (visual motor
imagery) [4]. The MI-based BCI system recognizes the task
of imagining the movement of different parts of the limb, and
the recognition results are fed back to the subjects in real time
through various forms of visual stimulation, vibratory stimula-
tion, sensory stimulation, and exoskeleton. Patients with limb
dysfunction due to illnesses such as stroke can reestablish
a neural circuit from motor intention to motor execution to
perceptual feedback by actively performing the MI-based BCI
interaction process, which helps patients remodel their brain
function and restore their control ability of limb motor [5].
Therefore, MI-based BCI systems are widely used in the motor
rehabilitation of patients with limb dysfunction.

However, the generation of motor imagery features is
influenced by the cognitive and motor-sensory abilities of
the subject [6]. Due to the decline of motor sensory [7],
motor imagery features from patients with limb dysfunction
are usually less distinctive compared to healthy subjects,
and their labels for the motor imagery task are also likely
to be mismatched, resulting in low recognition accuracy of
the BCI system. Moreover, these large numbers of samples
with indistinct features and inaccurate labels are useless for
supervised learning-based BCI systems, which can lead to
long-term recognition errors and cause great frustration to
patients, possibly leading to physical and mental exhaustion.
Most of the existing EEG-based BCI systems do not perform
well on semi-supervised learning tasks, and there is room
for improvement. Therefore, how to build stable and reliable
classification models for MI tasks with indistinct features and
inaccurate labels to reduce the calibration time of the BCI
system is a major problem.
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In this paper, to better exploit the large number of unlabeled
EEG samples with indistinct features, we propose a progres-
sive semi-supervised learning strategy. State-of-the-art deep
learning models for BCI systems are trained through three
steps to achieve excellent performance. In the first step, the
model uses labeled samples for supervised learning. In the
second step, the pre-trained model generates pseudo labels [8]
for the unlabeled samples based on the proposed label esti-
mation strategy, and then some of the unlabeled samples
with reliable pseudo labels are added to the training dataset
based on the proposed sampling criterion. Then the pre-trained
model continues training using the increased training dataset
based on semi-supervised loss with label smoothing [9]. In the
third step, all unlabeled samples with their pseudo labels are
added to the training dataset, and the pre-trained model is
trained with all the labeled and unlabeled samples in a semi-
supervised fashion.

Besides, during the motor rehabilitation process, patients
usually have very limited motor abilities in the early stages of
rehabilitation, and motor imagery tasks can play an important
role at this time [10]. With repeated exercises, the function
of the patients’ muscles can be partly improved. At this time,
if the patients still rely on the BCI for motor imagery tasks
instead of real motor control execution, it is not conducive
to the further improvement of the patients’ motor ability [5].
Many researchers have suggested to gradually reduce the
dependence on motor imagery tasks in the BCI rehabilita-
tion system according to the actual rehabilitation situation
of patients, and encourage patients to perform real motor
control execution at the same time [11]. Moreover, it is more
meaningful to perceive and identify more refined and complex
movements of the limb with dysfunction for BCI systems that
concentrate on motor rehabilitation. However, the extremely
low spatial resolution of EEG leads to the problem with the
EEG-based BCI system’s poor discrimination ability of refined
limb movements. Although several research attempts have
been made to decode the refined movements of limbs through
decoding EEG signals [12]–[14], no satisfactory classification
results have been achieved. Prior studies have shown that
the primary motor sensor cortex of the human brain has
a wide range of 15-35 Hz neural oscillatory activity [15],
through which the motor nervous system transmits motor con-
trol information and causes synchronous oscillatory activity
in motor units. This synchronous oscillatory activity reveals
the coupled connectivity between the cerebral cortex and
muscles during movement [16]. Therefore, in recent years,
electromyography (EMG) [17], [18] have been added into
the hybrid brain-computer interfaces [19]–[22] to acquire a
more comprehensive and accurate perception of fine-grained
motion control tasks. However, most of the existing hybrid
BCI systems simply integrate the analysis results of EEG and
EMG, which usually requires accurate labels and significant
computational calibration time to calculate the correlation
between each pair of EEG and EMG channels, while ignoring
the synergistic complementarity between EEG and EMG.

The main contributions of this paper are as follows:
1) It proposes a novel progressive semi-supervised learn-

ing strategy for MI-based BCI systems to improve the

utilization of unlabeled EEG samples with indistinct features.
The proposed method adopts a stepwise training strategy that
starts with labeled samples and gradually includes unlabeled
samples. Through applying the label estimation strategy and
sampling criterion to the semi-supervised learning task, models
can efficiently learn effective feature representations of unla-
beled EEG samples, and further improve their performance.
In principle, the proposed training strategy can be applied to
almost all deep learning based BCI systems.

2) It presents a new semi-supervised learning framework for
EEG and EMG fusion analysis in hybrid brain-computer inter-
faces. By employing synchronous EMG features as pseudo
labels for the unlabeled EEG samples, the BCI system simu-
lates and analyzes the synchronous oscillatory activity between
cortical neural oscillations and muscle motor units during
motion execution, which significantly improved its ability to
perceive fine-grained and complex movements. Compared to
traditional EEG-EMG fusion analysis methods in hybrid BCI,
the deep learning-based framework largely reduced the time
cost for data preparation, calibration, and comparison.

3) It combines the majority of cutting-edge deep learning
models with progressive learning strategies on semi-supervised
learning tasks for hybrid brain-computer interfaces in the
end-to-end framework. The proposed framework improves
the performance of most deep networks on semi-supervised
learning tasks for different BCI datasets, which shows great
potential for building an efficient and high-performance hybrid
BCI for the motor rehabilitation process of patients based on
EEG–EMG fusion analysis.

The remainder of the paper is organized as follows.
Section II introduces related work. Section III details the
proposed methodology. Section IV presents the experimental
results, and discusses the effectiveness as well as limitations
of the model. Section V concludes the paper and suggests
potential future studies.

II. RELATED WORK

In this section, we briefly introduce some state-of-the-art
methods related to our approach.

A. Supervised Learning Method

Traditional machine learning models in motor imagery
tasks usually contain two stages: feature extraction and fea-
ture classification. By extracting spatial and temporal pat-
terns of the EEG signal with models like Common Spatial
Patterns (CSP) [23], Filter-Bank Common Spatial Pattern
(FBCSP) [24], Extreme Learning Machine (ELM) [25], Broad
Learning System (BLS) [26] and Internal Feature Selection
Method [27], and classifying extracted features with mod-
els like Support Vector Machine (SVM) [28] and Linear
Discriminant Analysis (LDA) [28], these two-stage mod-
els obtained superior accuracy on the motor imagery task.
In recent years, deep learning models have brought huge
improvements in the performance of MI-based BCI [29]. Deep
learning models, as opposed to traditional machine learning
models, perform end-to-end learning for raw EEG data, allow-
ing them to extract intricate, high-dimensional features from
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Fig. 1. Framework of the proposed method.

large amounts of samples. By designing appropriate temporal
and spatial convolution layers, Convolutional Neural Net-
works (CNN) achieved excellent results on supervised learning
tasks for motor imagery [30], [31]. However, supervised
learning-based models require accurate labels for each train
sample, while for large amounts of raw EEG data, performing
signal sample segmentation and label acquisition is often
difficult.

B. Semi-Supervised Learning Method

Semi-supervised learning aims to build suitable machine
learning models to learn both labeled and unlabeled datasets,
and to improve the performance of the model on both super-
vised and unsupervised learning tasks [32]. In the field of
collaborative learning, the Squared-loss Mutual Information
Regularization (SMIR) model [33], Semi-supervised Extreme
Learning Machines (SS-ELM) [34] and Graph-based Semi-
supervised Broad Learning System (GSS-BLS) [35] utilizes
the differences and similarities in model features between
the labeled and unlabeled datasets to select useful informa-
tion. The collaborative representation-based semi-supervised
extreme learning machine (CR-SSELM) [36] uses algorithms
to reconstruct the unlabeled samples based on predictions of
the ELM and define the risk degree of unlabeled samples, and
then the unlabeled samples with a risk-based regularization
term are further added into the training process of the model.
Based on the idea of pseudo label, deep neural networks
with contrastive learning and adversarial training strategies
are applied to solve the problems of label uncertainty and
label scarcity in MI-based BCI [37]. Based on the idea of
meta learning, Model-Agnostic Meta-Learning (MAML) [38]
focuses on training the model’s initial parameters such that
the model has maximal performance on a new task with

a small amount of data. Besides, transformers and con-
trastive self-supervised learning tasks are used to build a pre-
trained Bert-inspired Neural Data Representations (BENDR)
model [39], which is transferable to novel EEG recorded
from unseen subjects, different hardware, and different tasks.
However, it is still challenging for EEG-based BCI to extract
features for fine-grained motion control tasks.

C. Fusion Analysis of EEG and EMG

In addition to EEG signals, EMG signals are the most
direct physiological signals that can be used to assess the
perception of motor performance during motor rehabilitation.
EMG features can represent physiological information such as
muscle fatigue, strength, and thickness [17] that can be used to
control rehabilitation equipment, such as exoskeletons. EMG
signals are one of the first electrophysiological signals to be
used in motor rehabilitation and to assess the level of motor
function [18]. By fusing analysis of EEG and EMG, hybrid
brain-computer interfaces can obtain a more comprehensive
perception of fine-grained motion control tasks. Most of the
existing hybrid BCI systems simply integrate the analysis
results of EEG and EMG based on strategies like correlation
coefficient of power spectrum [19], time-frequency-domain
copula-based granger causality [20], cross-association analysis
of time series [21] and wavelet coherence [22], without
considering the synergistic complementarity between EEG
and EMG as motor intention and motor execution [16]. The
fine-grained motion control information obtained by these
fusion analysis strategies is very limited [40], while hybrid
BCI systems that concentrate on motor rehabilitation require
a more powerful fusion analysis strategy to extract deep level
features of the synergistic complementarity between EEG and
EMG.
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Fig. 2. Network Structure of the Encoder.

III. METHODOLOGY

In this section, we first illustrate the whole framework of the
proposed method and then describe every essential component
of our method.

A. Framework Overview

The whole framework of our proposed approach is orga-
nized as Fig. 1. The framework uses state-of-the-art deep
neural networks in the field of MI-based BCI as the encoder.
The proposed approach first pre-trains the encoder with labeled
samples, and then updates the encoder by the following two
steps iteratively: 1. generates pseudo labels for the unlabeled
samples based on a label estimation strategy, and then some of
the unlabeled samples with reliable pseudo labels are added to
the training dataset based on a sampling criterion. 2. continues
the training process of the encoder using the increased training
dataset based on the semi-supervised loss. Specifically, for
the first few epochs of progressive learning, a fixed number
of unlabeled samples with reliable pseudo labels are selected
for semi-supervised learning in each epoch. In the remaining
training epochs of progressive learning, all the unlabeled sam-
ples with pseudo labels are used for semi-supervised learning.
In particular, the proposed label estimation strategy could be
extended to synchronous collected EMG in hybrid BCI, which
is effective for extracting deep level features in fine-grained
motion control tasks. The proposed framework is a practical
end-to-end model for both EEG-based BCI and hybrid BCI
with combined EEG and EMG.

B. Pre-Training With Deep Encoder

By designing appropriate temporal and spatial convolution
layers, deep neural networks can learn an effective repre-
sentation of the complex EEG features with fixed dimen-
sions, which is transferable to downstream tasks like EEG
classification and Fusion Analysis of EEG with EMG. For
the proposed framework, we chose three state-of-the-art CNN
networks as the encoders, namely: Shallow ConvNet [30],
Deep ConvNet [30] and EEGNet [31]. The network structure
of Shallow ConvNet, EEGNet and Deep ConvNet is shown in
Fig. 2 (a), Fig. 2 (b) and Fig. 2 (c).

Before performing the semi-supervised learning task based
on progressive learning, pretrained encoders are needed to
extract an effective representation of the input signals. The
pretrained encoders were trained on the labeled samples with
the cross-entropy loss Lce:

Lce = − 1

Nl
∗

Nl∑

i=1

M∑

c=1

yiclog(pic) (1)

where Nl is the number of labeled samples, M is the number
of categories. yic is 1 when sample i belongs to category c and
otherwise it is 0. pic is the probability of a sample i belonging
to category c, which is predicted by the model.

C. Label Estimation Strategy and Sampling Criterion

In order to introduce unlabeled samples into the
semi-supervised learning framework, we designed a label
estimation strategy to generate reliable pseudo labels for the
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unlabeled samples. Inspired by the metric learning method,
which focuses on feature transformation of samples through
embedding learning and solves the learning task by learning
how to distinguish between different classes of samples [41],
pseudo labels are generated based on the distance between the
unlabeled samples and labeled samples in the feature space
of the deep encoder. More specifically, an unlabeled sample
xi will receive a pseudo label c if the distance between its
feature vector and the center of the feature vectors for labeled
class c samples is relatively small in the feature space, and
the distance between its feature vector and the center of the
feature vectors for all the other classes is relatively large. The
confidence of the pseudo label for unlabeled samples can be
further defined as:

Distanceik = λ1||φ(θ, xi )− Mean j∈Xkφ(θ, x j )|| (2)

Distanceic = λ2||φ(θ, xi )− Mean j∈Xcφ(θ, x j )|| (3)

Dic =
∑

k∈M,k �=c

Distanceik − Distanceic (4)

Pseudoic = ex p(Dic)∑
k∈M ex p(Dik)

(5)

where Pseudoic represents the level of confidence for an
unlabeled sample i belongs to category c. ||··|| is the Euclidean
distance. φ(θ, xi ) is the embedding of EEG sample xi from
the pretrained deep encoder with weights θ . M is the number
of categories. Xk is the set of all the labeled samples which
belongs to category k. λ1 and λ2 are weight parameters. More-
over, to further learn a more distinctive feature embedding that
makes the feature representation of unlabeled samples closer to
the center of their categories’ embedding in the feature space
and away from other categories, the metric loss Lmt is defined
as:

Lmt = 1

N
∗

N∑

i=1

N∑

j=1, j �=i

yi j Dis2
i j

+ (1− yi j )max(M − Disi j , 0)2 (6)

Disi j = λ3||φ(θ, xi )− φ(θ, x j )|| (7)

where N is the number of labeled and unlabeled samples.
yi j is 1 when sample i and sample j have the same (pseudo)
label, otherwise it is 0. M and λ3 are hyperparameters.
The metric loss enables the model to learn to distinguish
between the unlabeled samples, by maximizing the distance
between pairs of the samples with different (pseudo) labels,
and minimizing the distance between pairs of the samples with
the same (pseudo) label.

To avoid model overfitting on unlabeled dataset with pseudo
labels, we propose an efficient sampling criterion. For samples
in the same category, the confidence of pseudo labels is
measured by the distance between the unlabeled samples and
the center of each category in the feature space, which reflects
the feature similarity between the unlabeled samples and each
category. Therefore, a high sampling threshold of confidence
for pseudo labels will filter out unlabeled samples with distinct
features, and we pick the sampling threshold of confidence as
95%. However, some subjects of MI-based BCI are unable to
produce the distinct patterns after long-term training, resulting

in ineffective control of BCI, i.e., the problem of BCI Illiter-
acy [42]. Based on the indistinct features of these subjects, the
deep encoder will extract invalid feature representations, which
lead to the errors of pseudo labels. To mitigate the problem of
error labels, the proposed framework uses an improved label
smoothing technique rather than cross-entropy to calculate the
semi-supervised loss of pseudo labels from unlabeled samples.
The label smoothing technique is a regularization method
based on cross-entropy loss that can improve the generalization
ability of deep networks [9]. The improved label smoothing
loss for pseudo labels is defined as:

Lls = − 1

Ns
∗

Ns∑

i=1

M∑

c=1

Pseudoiclog(pic) (8)

where Ns is the number of selected unlabeled samples, and
Pseudoic is calculated by equation 5. By softening the
training targets based on the confidence of the pseudo label,
the improved label smoothing technique prevents the encoder
from overfitting, and makes the prediction probabilities of the
encode more accurately represent the confidence of the pseudo
label.

D. Progressive Learning Scheme

By iteratively learning a more accurate representation of
the unlabeled samples, we progressively train the model
based on the semi-supervised dataset. To achieve the goal
of simultaneously extracting feature representations from the
labeled dataset and distinguishing as well as extracting feature
representations from the unlabeled dataset, the training loss of
the entire semi-supervised learning framework is defined as:

L = ω1 Lce + ω2 Lmt + ω3 Lls (9)

where Lce is the cross-entropy loss for supervised learning task
on labeled dataset from equation 1. Lmt is the metric loss for
label estimation task on unlabeled dataset from equation 6.
Lls is the label smoothing loss for semi-supervised learning
task on unlabeled dataset from equation 8. ω1, ω2 and ω3 are
weight parameters.

For the semi-supervised learning task, we progressively train
the pre-trained deep encoder based on the label estimation
strategy and sampling criterion. More precisely, the progres-
sive learning scheme is summarized in Algorithm 1.

E. Fusion Analysis Strategy of EEG and EMG

Existing methods for EEG and EMG fusion analysis usually
select pairs of EEG and EMG channels with high correlation
in fixed frequency bands as the feature representation for the
hybrid BCI tasks. However, the fusion analysis models from
these methods, such as the correlation coefficient of power
spectrum [19] and wavelet coherence [22], usually require
accurate labels and significant computational calibration time
to calculate the correlation between each pair of EEG and
EMG channels at each frequency band, which is not suitable
for the semi-supervised task. Inspired by the self-supervised
learning method, which focuses on learning from unsuper-
vised information from unlabeled samples [43], the feature
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Algorithm 1 Progressive Learning Scheme for EEG-Based
BCI.
Require: Labeled dataset DL , unlabeled samples SU , pre-

trained deep encoder φ(θ, ·), number of epochs for first
learning stage E1, number of epochs for second learning
stage E2, number of selected unlabeled samples Ns .

Ensure: The best deep encoder φ(θ∗, ·).
φ(θ∗, ·)← φ(θ, ·), P ← 0
for i = 0 to E1 do

Estimate pseudo labels for SU by equation 5
Select Ns samples with pseudo labels from SU based on

sampling criterion → DS

Update φ(θ∗, ·) on DL and DS by equation 9→ φ(θ i , ·)
Evaluate φ(θ i , ·) on the validation set for the task →

performance Pi

if Pi > P then
P ← Pi , φ(θ∗, ·)← φ(θ i , ·)

end if
end for
for j = 0 to E2 do

Estimate pseudo labels for SU by equation 5
Select all samples with pseudo labels from SU → DU

Update φ(θ∗, ·) on DL and DU by equation 9→ φ(θ j , ·)
Evaluate φ(θ j , ·) on the validation set for the task →

performance Pj

if Pj > P then
P ← Pj , φ(θ∗, ·)← φ(θ j , ·)

end if
end for

representation of the EMG signals from the deep encoder is
used as the pseudo labels in the proposed framework for the
hybrid BCI system. More precisely, during the progressive
learning process, the synchronous unlabeled EMG samples
and unlabeled EEG samples are fed into two pre-trained
deep encoders separately to obtain their feature embeddings,
then the similarities of these feature embeddings are used to
calculate the fusion loss of the model. The fusion loss of the
unlabeled synchronous EMG and EEG samples is defined as:

L f u = − 1

Nu
∗

Nu∑

i=1

log
ex p(sim(φ(θ1, xeeg

i ), φ(θ2, xemg
i )))

∑Nu
j �=i ex p(sim(φ(θ1, xeeg

i ), φ(θ2, xemg
j )))

(10)

where Nu is the number of unlabeled synchronous EMG and
EEG samples. sim(v1, v2) represents the cosine similarity
between vector v1 and v2. φ(θ1, xeeg

i ) is the embedding of
EEG sample xeeg

i from the pretrained deep encoder with
weights θ1. φ(θ2, xemg

i ) is the embedding of EMG sample
xemg

i from the pretrained deep encoder with weights θ2. More-
over, the training loss of the entire semi-supervised learning
framework for the hybird BCI system is defined as:

Lhybrid = ω1 Lce + ω4 L f u (11)

where Lce is the cross-entropy loss for supervised learning
task on labeled synchronous EMG and EEG dataset from
equation 1. L f u is the fusion loss for semi-supervised learning
task on unlabeled synchronous EMG and EEG dataset from
equation 10. ω1 and ω4 are weight parameters.

IV. EXPERIMENTS AND DISCUSSION

In this section, we demonstrate the effectiveness of the
proposed framework by applying it to public BCI datasets and
hybrid datasets with synchronous EMG and EEG.

A. EEG Datasets and Experimental Settings

BCI Competition IV dataset IIa [45] and BCI Competition
III dataset IVa [46], as the public benchmark datasets for
the motor imagery task in EEG, are used to evaluate the
performance of the proposed framework. The BCI Compe-
tition IV dataset IIa comprises EEG measurements from nine
subjects with four classes of MI tasks, namely, left hand
imagery, right hand imagery, feet imagery, and tongue imagery.
During the sessions, 22 channels of EEG data were recorded
at 250 Hz and bandpass-filtered between 0.5 Hz and 100 Hz.
Each session is comprised of 288 trials, with 72 trials for
each of the four categories. The BCI Competition III dataset
IVa collects EEG data for the motor imagery task from five
healthy subjects. For each subject, 280 trials of data are
collected. There are two classes of MI tasks: right hand
movement imagery and foot movement imagery. The EEG data
is collected on 118 channels at 1000Hz and bandpass-filtered
between 0.05 Hz and 200 Hz.

In the semi-supervised learning experiments, we used
three different deep learning models, namely, Shallow Con-
vNet [30], Deep ConvNet [30] and EEGNet [31], as the
encoders of the proposed framework. For the loss equation 9
and equation 11, the weight parameters ω1, ω2, ω3 and ω4 is
empirically set to 1.0, 1.0, 3.0 and 3.0, as recommended in [8].
For the classification tasks, the samples from the training
session are used as the training dataset, while the samples
from the evaluation session are used as the evaluation dataset,
and the performance is evaluated in terms of the mean kappa
value of 100 training procedures. During the semi-supervised
training, we randomly selected some of the samples from the
training dataset as the labeled dataset, while the remaining
samples were treated as the unlabeled dataset.

B. Results on EEG Datasets

To evaluate the performance of the proposed framework,
comparative experiments have been conducted between the
proposed framework and other state-of-the-art semi-supervised
learning models based on the EEG datasets. According to
the experimental settings of most state-of-the-art models,
we randomly selected 20%, 50% and 80% samples from
the dataset as the labeled samples for the semi-supervised
classification tasks on each subject, and also provided experi-
ments with 100% labeled samples to compare with supervised
learning models. As shown in Table I, the proposed framework
achieved an average improvement of 3.10% compared to the
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TABLE I
COMPARISON OF PROPOSED METHOD AND STATE-OF-THE-ART METHODS ON EEG DATASETS

TABLE II
COMPARISON OF PROPOSED METHOD AND STATE-OF-THE-ART METHODS ON HYBRID DATASETS FOR EEG-EMG FUSION ANALYSIS

state-of-the-art models on the semi-supervised classification
task for BCI Competition IV Dataset IIa. Moreover, the pro-
posed framework achieved an average improvement of 3.60%
compared to the state-of-the-art models on the semi-supervised
classification task for BCI Competition III Dataset IVa. The
proposed framework brings performance improvement in all
these three experiments with different ratios of unlabeled
samples. For the supervised learning tasks with 100% labeled
samples, the model will not bring performance improvement
to the deep encoders, since the proposed progressive learning
scheme does not modify the structure of the deep encoders
and the supervised learning task does not provide unla-
beled samples for the proposed label estimation strategy and

sampling criterion. More precisely, the proposed framework
is ineffective for supervised learning tasks. A possible future
optimization method is to improve the structure of the deep
encoders based on metric learning methods.

C. Hybrid Datasets for EEG-EMG Fusion Analysis

The hybrid datasets with synchronous EEG and EMG are
collected from the previous study of enhanced EEG–EMG
fusion analysis [22] and the impact of loss of control on move-
ment BCIs [44]. For the Upper Limb Motion Dataset [22],
the EEG data was collected from the C3 channel. The EMG
data was collected on the subject’s ulnar extensional wrist
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Fig. 3. Visualization of the feature space of deep encoder for different tasks on different datasets.

muscle (ECU), radial extension of the wrist muscle (ECR) and
flexor digitorum (FD). Five subjects were asked to perform
three fine-grained motion control movements, including hand
fisting, wrist extension, and wrist flexion. Three sessions were
recorded for each subject. Both EEG and EMG data were
sampled at 512 Hz. For the Two-finger Gameplay Motion
Dataset [44], the EEG data was collected from 32 channels.
Two pairs of EMG signals were collected over the left
and right flexor digitorum profundus. Nine subjects were
asked to perform four fine-grained motion control move-
ments, including key pressing with the left index finger
and key pressing with the right index finger for normal
condition and LOC condition. In the LOC condition, 15%
of the keyboard input was ignored, and a visual lag was
induced.

In the semi-supervised learning experiments, we keep the
structure and parameter settings of the framework consistent
with those in Section IV-A. For the classification tasks of
hybrid datasets with synchronous EEG and EMG, the perfor-
mance is evaluated in terms of the mean accuracy and mean
kappa value using 100 × 10-fold cross-validation for all the
sessions.

D. Results on Hybrid Datasets

To evaluate the performance of the proposed framework,
comparative experiments have been conducted between the

proposed framework and the state-of-the-art models on the
hybrid datasets with EEG and EMG for fine-grained motion
control. According to the experimental settings of most
state-of-the-art models, we randomly selected 30% and 60%
samples from the dataset as the labeled samples for the
semi-supervised classification tasks on each subject, and also
provided experiments with 100% labeled samples to com-
pare with supervised learning models. As shown in Table II,
the proposed framework achieved an average improvement
of 5.53% compared to the state-of-the-art models on the
semi-supervised classification task for Upper Limb Motion
Dataset. Moreover, the proposed framework achieved an aver-
age improvement of 3.15% compared to the state-of-the-
art models on the semi-supervised classification task for the
Two-finger Gameplay Motion Dataset. The proposed frame-
work brings performance improvement in these two experi-
ments with different ratios of unlabeled samples.

E. Ablation Analysis

To analyze the effectiveness of the proposed framework,
Fig. 3 uses t-stochastic neighbor embedding (t-SNE) [47],
a high-dimensional feature visualization technique, to illustrate
the feature space of the deep encoder with and without the
proposed framework for both motor imagery classification
tasks on the BCI Competition IV Dataset IIa and fine-grained
upper limb motion classification tasks on the Upper Limb
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TABLE III
ABLATION ANALYSIS OF DEEP ENCODERS

TABLE IV
ABLATION ANALYSIS OF THE PROPOSED FRAMEWORK

Motion Dataset with synchronous EMG and EEG. As shown
in Fig. 3 (a), (b), (c) and (d), the samples from different
categories are spread into more distinguishable and tighter
clusters after applying the proposed framework for these two
datasets, which means that the deep encoders have learned
a more distinctive feature embedding on the semi-supervised
learning tasks, further demonstrating the effectiveness of the
proposed framework.

To further illustrate the effectiveness of the proposed
framework, the ablation analysis results of deep encoders
are shown in Table III. For the three deep encoders, the
proposed framework achieved an average improvement of
5.20% for semi-supervised learning task on BCI Compe-
tition IV Dataset IIa with 50% labeled samples, and an

average improvement of 5.86% for semi-supervised learning
task on the Upper Limb Motion Dataset with 60% labeled
samples. The proposed framework improved the profermance
of these three deep encoders without changing their net-
work structure. The proposed framework is suitable for most
deep networks and can be applied to both EEG-based BCI
and hybrid BCI without changing the architecture. Besides,
ablation experiments have been conducted to illustrate the
effectiveness of different components of the proposed frame-
work. As shown in Table IV, while using the proposed label
estimation strategy alone produces pseudo labels with low con-
fidence and leads to performance degradation, when combined
with the proposed sampling criterion, the effective sampling
strategy would extract high-confidence pseudo labels, which
improve the performance of the whole framework. Moreover,
while using the proposed label estimation strategy alone
produces potentially erroneous pseudo labels and leads to
performance degradation, when combined with the proposed
semi-supervised loss, the effective semi-supervised loss would
perceive and reduce the metric loss of the pseudo labels
during the training process, which improves the performance
of the whole framework. Combining these three components
together, the proposed framework obtained excellent results on
semi-supervised learning tasks for both EEG-based BCI and
hybrid BCI.

V. CONCLUSION

In this paper, we presented an end-to-end progressive
learning framework for the semi-supervised learning task in
the fields of both motor imagery EEG classification and
EEG–EMG fusion analysis. Starting from the deficiencies of
the related model, our method aims at alleviating the prob-
lems of low recognition accuracy on subjects with unlabeled
samples and indistinct features and the huge calibration time
for EEG-EMG fusion analysis in the fine-grained motion
control task. Based on the effective label estimation strategy
and sampling criterion, the proposed framework learned dis-
tinctive feature embedding from the unlabeled EEG samples
and synchronous EMG samples, which significantly improved
the recognition accuracy of subjects with unlabeled samples
and indistinct features and substantially reduced the data
calibration time for EEG-EMG fusion analysis. Extensive
experiments have been conducted and the proposed framework
obtained superiority results on semi-supervised learning tasks
for both EEG-based BCI and hybrid BCI. Moreover, the
proposed framework can be applied to almost all deep learning
based BCI systems.

Our approach shows great potential in the development
of both high-performance EEG-based BCI systems and
high-performance hybrid BCI systems with strong generaliza-
tion capability and practicality, which can be applied to build
an efficient and practical BCI motor rehabilitation system, and
we take this part as our future research work.
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