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Abstract— Closed-loop stimulation for targeted
modulation of brain signals has emerged as a promising
strategy for episodic memory restoration. In parallel, closed-
loop neuromodulation strategies have been applied to treat
brain conditions including drug-resistant depression,
Parkinson’s Disease, and epilepsy. In this study, we seek to
apply control theoretical principles to achieve closed loop
modulation of hippocampal oscillatory activity. We focus
on hippocampal gamma power, a signal with an established
association for episodic memory processing, which may be
a promising ‘biomarker’ for the modulation of memory per-
formance. To develop a closed-loop stimulation paradigm
that effectively modulates hippocampal gamma power,
we use a novel data-set in which open-loop stimulation was
applied to the posterior cingulate cortex and hippocampal
gamma power was recordedduring the encodingof episodic
memories. The dataset was used to design and evaluate
a linear quadratic integral (LQI) servo-controller in order
to determine its viability for in-vivo use. In our simulation
framework, we demonstrate that applying an LQI servo
controller based on an autoregressive with exogenous
input (ARX) plant model achieves effective control of
hippocampalgamma power in 15 out of 17 experimentalsub-
jects. We demonstrate that we are able to modulate gamma
power using stimulation thresholds that are physiologically
safe and on time scales that are reasonable for application
in a clinical system. We outline further experimentation
to test our proposed system and compare our findings to
emerging closed-loop neuromodulation strategies.

Index Terms— Hippocampus, gamma oscillations,
closed-loop modulation, open-loop stimulation, posterior
cingulate cortex.
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I. INTRODUCTION

THE last ten years have witnessed a flourishing in the
development of therapeutic brain stimulation to treat

memory disorders. Nascent therapies for memory benefit from
antecedent experience in neuromodulation targeting Parkin-
son’s disease [1], [2], epilepsy [3], and depression [4]–[6],
mostly in the form of open loop stimulation. Open-loop
stimulation relies on manually setting stimulation parameters
for each patient via a trial-and-error procedure that is guided
by clinical assessment of symptoms [1]. Such open-loop stim-
ulation fails to account for the fast dynamics of electrophysio-
logical signal during cognition, although it has proven effective
for movement disorders. When applied for the neuromod-
ulation of memory (unlike movement disorders), open-loop
strategies have not only largely failed to demonstrate benefit
in memory performance, but have been shown to worsen
memory [7]–[11]. Stimulation paradigms that have shown
greater promise in improving memory rely on responsive,
closed-loop stimulation, in which a neural feedback signal
guides subsequent stimulation pulses [12]–[14]. Closed loop
neuromodulation strategies emerged from efforts within the
DARPA Restoring Active Memory (RAM) program [15]. The
effort to which we contributed, which reported a 15% aver-
age increase in memory performance across 40 participants,
used logistic regression-based classifiers to predict encoding
success [12]. Classifiers were trained for each patient from
approximately 700 milliseconds of brain recordings over 90 or
more intracranial electrodes. The trained classifier decoded
the likelihood of successful encoding following item presen-
tation within an episodic memory task and delivered during
‘unfavorable’ brain states with a low likelihood of encoding
success. While promising, several concerns remain that may
impede the practical implementation of such a device. The
first is a limit in classifier performance and generalizability
across subjects and experimental sessions, requiring bespoke
models uniquely trained for each patient [16]. Further, this
method requires a cumbersome empirical parameter iden-
tification routine to identify the appropriate brain region
and stimulation characteristics needed to predictably alter
brain activity. Finally, the logistic regression models used for
prediction of encoding success (and control of stimulation)
required extensive patient data from over 100 recording con-
tacts, more than would be feasible in a clinically-applicable
system. Results remain preliminary overall, but these reports
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highlight the potential of closed loop approaches for memory
restoration.

Shanechi describes an alternative closed-loop, neuromod-
ulation method in the context of treating depression [17].
The strategy incorporates an oscillatory signal acting as a
‘biomarker’ of mood, namely orbitofrontal theta or alpha
power, which is used as a signal amenable to control using
state space modeling and an LQI servo-controller. A proposed
testbench for incorporating this approach was described by
Yang et al (2018). Their proposed system implements a
Kalman filter to estimate the biomarker signal and an LQR
controller to manipulate it precisely [18]. Here, we seek to
apply some of the principles described in this approach to neu-
romodulation strategies for memory disorders. Two essential
questions must be considered when developing this approach:
1) what brain signal can serve as an effective ‘biomarker’ for
memory, and 2) what stimulation strategy can modulate this
biomarker safely and effectively? Hippocampal gamma oscil-
latory power is a logical choice to address the first question.
Both animal and human studies have established that changes
in gamma oscillatory power predict memory success, along
with participating in local and regional coupling via phase
synchrony and cross frequency coupling [19], [20]. Regarding
a strategy for modulating hippocampal gamma oscillations,
we recently published data demonstrating that stimulation of
the posterior cingulate cortex (PCC) reliably elicits increases
in hippocampal gamma band oscillatory power during episodic
memory processing [8]. The PCC represents a promising
target for neuromodulation given its dense connectivity to
diverse brain regions, including participation in the default
mode network [21], [22]. These data were collected using
an open-loop stimulation paradigm (with overall reduction
in memory performance, as with previous publications tar-
geting brain locations other than the PCC). However, these
data allowed us to model hippocampal gamma power in the
presence and absence of stimulation during memory behavior,
which facilitated the construction of a control model for the
modulation of this signal.

Our efforts establish the feasibility of a control system for
memory neuromodulation predicated on posterior cingulate
stimulation using linear system identification methods similar
to those reported previously [18]. We show that we are
able to model the relationship between PCC stimulation and
responsive hippocampal gamma power using our ARX frame-
work, accurately representing the gamma power time series
in both stimulation and non-stimulation conditions. Next,
we show that a system using PCC stimulation to modulate
hippocampal gamma power is controllable in 100% of subjects
as measured by computing the rank of the controllability
matrix [23]. We then describe a simulation framework for the
PCC–hippocampal system constructed using Simulink.

II. MATERIALS AND METHODS

A. Participants

A total of 18 participants (ages 20-60, 9 female)
with medication-resistant epilepsy who underwent
stereo-electroencephalography surgery with the goal of
identifying their ictal onset region(s) participated in the study.
Participants came from our epilepsy surgery program across

a time of span of 4 years. Only patients who had intracranial
electrodes placed within the posterior cingulate were included
in the study. The research protocol was approved by the UT
Southwestern Medical Center Institutional Review Board
(082014-075 on 08/2014), and each participant gave informed
consent prior to data collection. Following implantation,
electrode localization was achieved by co-registration of the
post-operative computer tomography scans with pre-operative
magnetic resonance images using the FLIRT software
package (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). The
co-registered images were evaluated by a member of
the neuroradiology team to determine the final electrode
locations.

B. Experimental Task

Each subject participated in a verbal free-recall task in
which they studied a list of words with the intention to
commit the items to memory. The task was performed
at bedside on a laptop. In the encoding phase, lists of
10 words were visually presented. Words were selected
at random from a pool of high frequency English nouns
(http://memory.psych.uppen.edu/WordPools). Each word was
presented for 1500 ms, followed by a blank inter-stimulus
interval of 1000 ms. Stimulation to the PCC was applied
during the entire duration of the encoding phase and was
synchronized with the onset of the first word in each list.
All items were encoded in the presence of stimulation.
After presenting the word list, a post-encoding delay was
followed for 20 seconds during which there was no stim-
ulation. During this delay, each subject performs an arith-
metic task to limit rehearsal. Math problems of the form
A + B + C = ?? were given to each subject, with the
values of A, B, and C set to random single digit integers.
Subsequently, the recall period started (after 20 seconds of
math) with an auditory tone of 60 Hz of a 300 millisecond
duration. Subjects were instructed to recall as many words
as possible from the previously presented word list within
this 30 second recall period (memory retrieval). During this
recall interval, there was no stimulation. Vocal responses were
digitally recorded and parsed offline using Penn TotalRecall
(http://memory.psych.upenn.edu/TotalRecall). Further details
of the task are described previously in extensive published
work [8], [19]. The experiment included stimulation and
non-stimulation item lists. The non-stimulation lists were inter-
leaved with stimulation lists in a pseudo random fashion. This
allowed us to compare the effects of stimulation on gamma
power and control for gamma power increases resulting from
task-induced gamma.

C. Electrical Stimulation

Stimulation was applied to the PCC with an amplitude
of 2 mA and a frequency of 100 Hz using the Grass S88
stimulator (Grass Technologies). Stimulation parameters were
determined using accepted safety thresholds for DBS drawn
from initial work [24] and by incorporating typical parameters
used for DBS techniques [9], [11]. We used bipolar pairs of
electrodes for stimulation with the deepest contact localized
to the PCC. The critical safety threshold that is generally
accepted is 30 μC/cm2/phase [25]. Here, we used biphasic
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Fig. 1. Simulation framework for control of RMS gamma power.

matched-square wave pulses with a pulse width of 200 μs.
The surface area of depth electrodes is 0.05 cm2. All of the
18 participants had their stimulation sites in the left PCC.

For this study, we used the first word presented from each
list. Since these words were preceeded by the 50-second
post-encoding delay and recall tasks, during which there was
no stimulation, the stimulus amplitude took the form of a
step function going from zero to 2 mA at the onset of the
presentation of the first word (encoding event). Each subject
exhibited a total of 10 such encoding events. We chose to focus
on these events since it allowed us to compare gamma power
level over a 2 second period prior to stimulation onset with
gamma power during a 2 second interval after the onset of
stimulation. This eliminated the effects of changes in baseline
gamma over longer periods of time that can result from
nonstationarity in the iEEG.

D. Electrocorticographic Recordings and Simulation
Framework

Intracortical electroencephalogram (iEEG) signals were
recorded via depth electrodes (contacts spaced 5-10 mm apart)
using a Nihon-Kohden EEG system under a bipolar montage
with the most medial white matter contact on individual
electrodes as the reference (for hippocampal recordings, this
was white matter in the adjacent subcortical temporal lobe).
For each subject, ten 4-second trials corresponding to the
first encoding event for each list were collected using a
sampling interval of 0.002 seconds. Channels exhibiting highly
nonphysiologic signals due to damage or misplacement were
excluded prior to re-referencing. We utilized a bipolar ref-
erencing scheme to reduce the effect of stimulation artifact
from affected electrodes modifying signal at other locations.
A projection-based 60 Hz notch filter was applied. The notch
filter has zero phase distortion and narrow notch width [26].
In addition, a linear phase FIR notch filter having a notch
width of 98-102 Hz was applied to filter out stimulus artifact
at 100 Hz. One subject who showed significant nonstationarity
in baseline gamma power during the recording epochs was
removed from the study, leaving a total of 17 subjects.

Our simulation framework consists of a plant model that
generates gamma power and a closed-loop LQI controller that

attempts to drive measured gamma power towards a designated
setpoint. The plant consists of a stimulator, the brain, iEEG
measurement instrumentation, and a wavelet filter bank that
estimates instantaneous RMS gamma power (see Figure 1).
The input to the plant is the stimulus amplitude, and the output
is estimated RMS gamma power. Intracranial EEG (iEEG)
is passed through an analytic wavelet filter bank consisting
of Morse wavelets with symmetry parameter equal to 3 and
time-bandwidth product equal to 60 [27]. We used 10 wavelet
filters covering three gamma frequency sub-bands of 30-50 Hz,
50-70Hz, and 70-90 Hz. Estimates of instantaneous RMS
gamma power were obtained by taking the square root of the
sum of the squared magnitudes of the wavelet filter outputs,
as shown in Figure 1. Analytic wavelet filters were found
to have greater sensitivity in detecting short-duration gamma
oscillations compared to using a bandpass filter followed by
conversion to analytic signal via the Hilbert transform. In our
simulation framework, the plant is modeled using an ARX
model as described in the following section.

E. Modeling Gamma Power in the Hippocampus

Rather than model iEEG, our approach seeks to directly
model hippocampal gamma power. Modelling the full spec-
trum of iEEG would have necessitated arriving at a model that
generates gamma power with the same statistical properties as
our experimentally measured gamma power, and would have
presented a more challenging modeling problem. The selection
of a suitable model for hippocampal gamma power was based
on the following criteria:

1) The model should exhibit random fluctuations in instan-
taneous gamma power regardless of whether the brain
is being stimulated or not.

2) The power spectral density (PSD) of the model output
should closely match that of actual RMS gamma power.

3) The model should predict experimentally measured
mean RMS gamma power during stimulation as well
as in the absence of stimulation.

4) Inputs and outputs for the model should reflect physio-
logically relevant quantities, namely limiting the ampli-
tude of stimulation to less than 9 mA in order to insure
that the current will be physiologically safe. [25].
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5) The model should be as simple as possible in order to
minimize the computational complexity of the controller.

We modeled gamma power using an autoregressive model with
exogenous input (ARX) model, given by,

x(t) = −
p∑

k=1

akx(t − k) + bDCu DC + bsus(t) + w(t) (1)

Here, x(t) represents the instantaneous RMS gamma power
having units of μV at discrete-time t . The exogenous input
u DC is a constant that determines the mean value of the RMS
gamma power when the stimulus current us(t) = 0. Both u DC

and us(t) are currents having units of mA, corresponding to
the amplitude of the stimulus current. This choice of units for
the input is justified since the power in a periodic signal is pro-
portional to its amplitude. For example for a sinusoidal signal
Ac cos(ωct + θ), the root mean square (RMS) power is given
by Ac/

√
2, independently of the frequency ωc and phase θ .

From the Fourier series representation of periodic signals and
Parseval’s theorem, the result holds for any periodic signal.
Therefore setting us(t) equal to the stimulus amplitude will
proportionally affect the mean RMS gamma power. The quan-
tity w(t) is a zero-mean Gaussian white noise process having
variance σ 2

w and units of μV. This noise is not measurable and
produces random fluctuations in the RMS gamma power. The
ARX model parameters, ak, k = 1, . . . , p are dimensionless,
while bDC and bS have units of resistance (m�). All model
parameters can be identified from experimental iEEG data for
given values of u DC and us . We chose u DC = 1 mA, this value
is not critical since u DC will be scaled by bDC to provide the
correct DC value for the gamma signal. An expression for
the mean RMS gamma power predicted by the model can be
established by ignoring the random signal w(t) and using the
Final Value Theorem. The result is,

lim
t→∞ x(t) = bDCu DC + bsus

1 + ∑p
k=1 ak

≡ γ̂ (2)

Equation (2) can be used to predict the mean RMS gamma
power for any fixed amplitude stimulus current with amplitude
us . In our model, us was the step function

us(t) =
{

0, t = 1, . . . , N/2

2, t = N/2 + 1, . . . , N
(3)

where N is assumed to be even. Using (2), the mean gamma
power for no-stimulation is

γ̂ns ≡ bDC

1 + ∑p
k=1 ak

(4)

while for the stimulation case, it is given by

γ̂s ≡ bDC + 2bs

1 + ∑p
k=1 ak

(5)

Using well known relationships between the power spectral
density (PSD) of the input and output of a linear time-invariant
system, we can arrive at an expression for the PSD of our ARX
model:

Px x( f ) = σ 2
w + 4b2

s /(2π f/Fs )
2∣∣1 + ∑p

k=1 ake− j2π f k/Fs
∣∣2 (6)

where f is continuous-time frequency in Hz and Fs is the
sampling frequency in Hz [28]. We will use this expression to
compare the theoretical PSD of our model with the estimated
PSD of experimentally measured instantaneous gamma power.

F. Identification of ARX Model

The ARX model parameters can be estimated with a least
squares linear prediction approach using only the ARX data
samples x(t), and the exogenous inputs, u DC, us(t), t =
1, . . . , N . This approach seeks to minimize the quantity

εpred =
N∑

t=p+1

e(t)2 (7)

over the ARX model parameters, ak, k = 1, . . . , p, bDC , and
bs , where the prediction errors are given by

e(t) = x(t) −
p∑

k=1

ak x(t − k) − bDCu DC − bsus(t) (8)

with t = p + 1, . . . , N . In matrix notation, (8) represents an
overdetermined system of equations,

Cv ≈ d (9)

with

C =

⎡
⎢⎢⎢⎣

x(p) · · · x(1) u DC us(p + 1)
x(p + 1) · · · x(2) u DC us(p + 2)

...
. . .

...
...

...
x(N − 1) · · · x(N − p) u DC us(N − p)

⎤
⎥⎥⎥⎦
(10)

d = [
x(p + 1)x(p + 2) · · · x(N)

]T and the ARX parameter

vector v = [
a1 a2 · · · ap bDC bs

]T
. It is well known that

these least squares equations have a unique solution provided
that the matrix C has full column rank [29]. This is discussed
in detail in Section VI. The least squares solution to (9) is
given by v∗ = (

CT C
)−1

CT d , although in practice, it is
more computationally efficient and accurate to compute a QR
decomposition of C [30]. A commonly used quality metric
for ARX models is the minimum mean-squared prediction
error, which can be estimated using the squared norm of the
minimum prediction error vector [31]

ε∗
pred = 1

N
‖Cv∗ − d‖2 (11)

where Cv∗ is the optimal least squares prediction of the values
in d and ‖·‖ is the vector 2-norm. A normalized measure which
takes into account the variance of x(t) is the “fit percentage”,
given by

FitPerc = 100

⎛
⎝1 −

√
ε∗

pred

‖d − μd‖

⎞
⎠ (12)

where μd is the sample mean of the data vector d [32]. Note
that a low mean squared prediction error leads to a fit per-
centage close to 100%. In Section VI-C we demonstrate that
the linear prediction approach to identifying the parameters of
our ARX model gives good results.
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Fig. 2. Linear quadratic integral servo-controller.

G. State-Space Model

Our controller requires that the model be in state-space
form, given by

xt+1 = Axt + But + Gw(t)

y(t) = Cxt + Dut + v(t) (13)

where xt is the system state vector at discrete-time t ,
ut = [

u DC us
]T

and yt are scalar input and measure-
ments, respectively, and w(t), and v(t) are the (scalar)
system disturbance and observation noise signals, respec-
tively. The dimensions of these vectors, as well as that
of matrices A, B, C, D, and G, depend on the state-space
model. The ARX model can be readily implemented using
a state-space model. In our case, the state vector consists
of p consecutive samples of the RMS gamma power signal,
xt = [

x(t) x(t − 1) · · · x(t − p + 1)
]T . Both the observation

y(t) = x(t) and the system disturbance w(t) are scalar quan-
tities. The observation noise v(t) accounts for measurement
noise and modeling uncertainties. Correspondingly, in order
for (13) to agree with (1), we must have:

A =

⎡
⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −ap−1 −ap

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

bDC bs

0 0
...

...
0 0

⎤
⎥⎥⎥⎦ (14)

G = [
1 0 · · · 0

]T , C = [
1 0 · · · 0

]
, and D = 0. The choice

of an ARX model has an important advantage compared to
a general linear state-space model (LSSM). Since the state
vector consists of consecutive samples of the RMS gamma
power, there is no need to estimate the state vector using a
Kalman filter.

H. LQI Servo-Controller

When stimulating to control gamma power, we are faced
with two competing goals: to bring gamma power to some
predetermined setpoint r as quickly as possible while mini-
mizing the amount of stimulus energy delivered to the patient.
These conflicting aims lend themselves to employing linear
quadratic integral (LQI) control [33]. The cost function for
our controller takes the form:

J =
∞∑

t=0

zT
t Qzt + Rus(t)

2 (15)

where zt = [
x T

t ei (t)
]T

, and

ei (t) = Ts

t∑
k=0

r − y(t) (16)

is the discrete-time integration of the difference between the
gamma power setpoint r and the observed gamma power
y(t). The user sets the parameters Q and R, in order to
tune the controller’s performance. The parameter Q adjusts
the rate at which gamma power approaches the setpoint,
while the parameter R determines the amount of stimulus
energy delivered to the patient via the stimulus amplitude
us(t). This optimal control problem has a well-known solution,
the cost function in (15) is minimized using the control law
us(t) = −K zt , where K is the solution to an algebraic Ricatti
equation that depends on the state-space model A, B, C, D, G.
The controller takes the buffered plant output as the state
vector xt , which after augmenting with the integrated setpoint
error ei (t), is multiplied by the gain vector −K to deter-
mine the stimulation current amplitude. The resulting LQI
servo-controller is shown in Fig. 2. In practice, the optimal set
point can be modified based on subject-level empirical obser-
vations. We assigned ‘guardrails’ to the maximum stimulation
amplitude delivered by the Blackrock device with a maximum
of 9 mA to reflect safety requirements; this kept stimulation
well-within the approximately 25 μC per cm2 employed in
clinical systems [25], [34].

III. RESULTS

A. Prediction of Mean RMS Gamma Power Levels With
ARX Models

The Matlab “arx” function was then used to estimate ARX
models for each of the 15 subjects who experienced RMS
gamma power increases, based on the 10 trials where the
stimulus was a step function as described in Section II-C.
We used the exogenous inputs given by u DC = 1 mA and
us(t) given by (3). The ARX models derived for each trial
were then averaged to form a composite ARX model for
each subject. The mean squared prediction error (ε∗

pred ) and
fit percentage (FitPerc) quality metrics were computed for
p = 1, . . . , 20, and are shown in Fig. 3. To select a model
order, we concluded that p = 6 offered a reasonable trade-off
between mean-squared prediction error, fit percentage, and
computational complexity. At p = 6 all but one subject
had mean-squared prediction error values lower than 10−6.
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Fig. 3. Model quality metrics for all subjects.

Fig. 4. Mean RMS gamma power level predictions by ARX model.

Moreover, fit percentage approached 100% for model orders
satisfying p ≥ 4. In order to check that these results were not
due to over-training, we performed 10-fold cross validation,
by computing an ARX model based on 9 of 10 trials and
checking the ability of the model to predict the data in the 10th
trial, then averaging over all test trials. There was virtually
no change in the model quality metrics. The mean 10-fold
cross validation fit percentage was 99.9930% averaged over
all subjects, compared to 99.9931% when using the model for
the test trial.

Given the results of the previous section, we conclude that
the ARX model is adequate for instantaneous RMS gamma
power. Next we compared the model predictions of mean RMS
gamma power for the no-stimulus and stimulus intervals with
actual quantities. The results are shown in Fig. 4 and show
good agreement between experimental and model-predicted
mean RMS gamma power levels for both stimulation and non-
stimulation conditions.

Another goal was that our model should closely match the
power spectral density (PSD) of instantaneous RMS gamma
power. For each subject, we computed the periodogram of
each of the 10 trials (using a N = 2000-sample Hanning
window) and averaged them. The averaged periodograms were

Fig. 5. Instantaneous RMS gamma power trials, x�(t), . . . , x10(t) and
their ensemble average x(t). The stimulation signal amplitude us(t) is a
2 mA step function.

then compared to the theoretical power spectral density for
the identified ARX model (see (6)). Typical results for several
subjects are shown in Figure 6. From around 0-100 Hz, there
is a fairly close match between the periodogram estimate of
instantaneous RMS gamma power PSD and the theoretical
PSD for the ARX model.

B. Aggregate Impact of Stimulation on RMS Gamma
Power

For each of the 17 subjects, ten 4-second trials were col-
lected using a sampling interval of 0.002 seconds. Henceforth,
we will use actual time samples in seconds rather than integers
to represent discrete time. Each trial can be represented as
xk(t) where t = −2,−1.998, . . . , 1.998 are time samples
corresponding to a sampling interval of 	t = 0.002 seconds
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Fig. 6. Comparison of averaged periodogram of instantaneous RMS gamma power (experimental) with theoretical power spectral density of identified
ARX models, as given by (6) with p = �.

and k = 1, . . . , 10. Stimulation was applied at t = 0. The
ensemble average of the trials was then computed as

x(t) = 1

10

10∑
k=1

xk(t)

An example of the data collected from a single subject is
shown in Fig. 5. We compared RMS gamma power levels
over a 2-second interval prior to stimulation onset with RMS
gamma power over the 2-second interval immediately after
stimulation onset. This reduced the possibility that long-term
baseline drift in mean RMS gamma power levels affected
our results. No-stimulation and stimulation RMS gamma
power was compared two different ways. First, for each
trial, we tested the null hypothesis that the mean of the
no-stimulation data xk(t), t = −2, . . . ,−0.002 was equal to
that of the stimulation data, xk(t), t = 0, . . . , 1.998, k =
1, . . . , 10. A single-tailed t-test was used to test the null
hypothesis for each of the 10 trials. The percentage of trials
for which the null hypothesis was rejected at the 0.05 signif-
icance level (implying stimulation RMS gamma power levels
are greater than no-stimulation levels) is shown in Fig. 7a.
The second comparison was similar but rather than testing
individual trials, we compared the mean of the no-stimulation
ensemble average data, x(t), t = −2, . . . ,−0.002 with the
mean of the stimulation ensemble average data, x(t), t =
0, . . . , 1.998 using a single-tailed t-test. Fourteen of 17 sub-
jects showed significant increases in mean RMS gamma
power. Figure 7b shows the normalized increase in mean RMS
gamma power levels,

	γ % = xs − xns

xns
× 100%

where

xns ≡ 1

1000

−0.002∑
t=−2

x(t), xs ≡ 1

1000

1.998∑
t=0

x(t)

In comparable no-stimulus experiments with the same sub-
jects, only 8 of the 14 subjects showed significant RMS
gamma power increases. The mean of 	γ % was 7.8% during
stimulation versus 2.8% during comparable no-stimulation

Fig. 7. Impact of stimulation on mean gamma power.

trials, a significant difference (2-sided t-test, p = 0.05). This
suggests that stimulation is likely to increase gamma power
beyond the levels that would be expected from performing
free-recall memory tasks alone.

C. Controller Performance in Simulated System

We implemented an LQI servo-controller in Simulink using
a sampling interval of 2 ms and a simulation time of 4 seconds
ranging from t = −2 s to +2 s [35]. The parameters in the
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Fig. 8. LQI controller simulations with control signal starting at t = 0 s for several subjects, showing mean and standard deviations over
100 independent trials.

Fig. 9. Percent increase in RMS gamma power (Δγ�, see (17)) for open-
loop (based on iEEG data) and closed loop conditions. The closed-loop
results are based on simulated LQI control and had a mean of 22.8%
across all subjects compared to 11.8% for the open loop condition.

LQI cost function (15) were set to

Q =
[

0.005I6 06

0
T
6 100

]
, R = 1 (17)

where I6 is the 6 × 6 identity matrix and 06 is a 6 × 1 zero
vector. The controller was started at t = 0 seconds. For each
subject, the parameters for the LQI controller were dervied
from the mean ARX parameters over all ten trials. The RMS
gamma power setpoint was adjusted in order to keep the stim-
ulation amplitudes under 9 mA, which, as discussed above,
is within the safety limits for intracranial SEEG electrodes.
Figure 8 shows the mean and standard deviation of RMS
gamma power over 100 independent trials for two subjects.
Figure 9 shows the normalized RMS gamma power increase
for closed-loop and open loop-conditions for the 15 subjects
who exhibited open-loop gamma power increases. The mean
open-loop RMS gamma power increase for these subjects
was 10.5%, as determined directly from iEEG, whereas for
the closed loop LQI control simulations, the mean RMS
gamma power increase was 20.8%. Figure 10 shows the
simulated closed-loop RMS gamma power for each subject
versus the desired setpoint. The normalized error was around

Fig. 10. Simulated closed-loop RMS gamma power versus desired RMS
gamma power setpoint.

−3% averaged over all subjects and was likely the result of
stimulation being limited to 9 mA while the controller needed
additional current to reach the setpoint.

IV. DISCUSSION

We created an LQI servo-control system developed from
open-loop human brain stimulation data targeting the pos-
terior cingulate cortex [8] with measured responses in the
hippocampus. The larger goal of such a system is to improve
memory performance in humans. The use of the PCC as a
target region for neuromodulation rests in part on the ability to
see predictable effects on RMS gamma power in the presence
of stimulation, as suggested in Figure 7, as well as established
anatomical connectivity in humans [36]. Certainly, it remains
to be shown that a strategy targeting hippocampal gamma
oscillations can improve memory performance across a large
number of subjects. We intend to investigate the specific fea-
tures of such as a system in subsequent experimentation. One
option would be to identify narrow gamma frequency ranges
that most strongly predict encoding success for an individual
recording location, and then to model the impact of different
stimulation frequencies on this signal. Such an approach would
require varying the stimulation parameters used in system
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identification, as discussed below, but may represent a more
efficient method for parameter identification as compared to
the grid search approach used in existing closed loop systems
for memory modulation [12]. We also note that we elected
to focus on modulation of gamma rather than theta oscilla-
tory activity. In rodents, restoration of pharmacologically or
anatomically reduced theta activity is capable of restoring
memory function [37]. However, human theta oscillations
exhibit a greater diversity across a broad 2–10 Hz frequency
range, and not all subjects exhibit persistent theta frequency
power increases that predict successful encoding [9], [38],
[39]. Targeting memory-relevant theta activity remains an
active area of investigation; adjustment of PCC–applied stim-
ulation parameters may be an effective approach given strong
functional connectivity between the PCC and hippocampus
during episodic memory processing [36], [40].

We based our system identification parameters on brain
stimulation data across 17 participants. In previous work,
we established the safety of stimulation of the posterior
cingulate cortex applied for a relatively long period of time
(over 20 seconds), a distinct feature of our underlying data [8].
Moreover, focusing on hippocampal response to PCC stimu-
lation permits relatively artifact-free recordings for modeling.
Also, these underlying data are collected while individuals are
engaged in memory behavior, which is a distinct advantage
compared to approaches in which stimulation parameters are
selected when the patients are at rest, or when stimulation is
applied for a limited number of memory items [41]. However,
our modeling suggests we can achieve reliable control of RMS
gamma power at physiologically safe stimulus currents in in
15 of 17 subjects although some subjects only experienced
modest increases in RMS gamma power with stimulation.
The increase in mean RMS gamma power under closed loop
control ultimately depends on the increase in mean RMS
gamma power achievable under open-loop stimulation. This
can be seen in Figure 11. The goal of the LQI controller is to
arrive at some desired setpoint, as quickly as possible while
minimizing the energy delivered to the patient. Open loop
stimulation would require extensive trial and error to reach
a desired gamma power setpoint. The closed loop approach
makes it possible to reach a setpoint with considerably less
effort. However our controller design cannot inherently gener-
ate higher gamma power than that which would be available
via open loop stimulation.

In our proposed system, we decided to use an ARX model to
characterize the effect of brain stimulation on neural activity.
A linear model will not replicate the quadratically nonlinear
nature of RMS gamma power, i.e., the model output can
sometimes be negative, and the distribution of our model
will be symmetric rather than skewed as would be expected
from a quadratically nonlinear model. On the other hand,
as detailed by Yang and others, linear models offer several
advantages for design of a controlled system [18]. A significant
disadvantage over nonlinear models is their complexity and
computational burden, which hinders the ability to design
powerful real-time closed-loop controllers. Using a linear
ARX model, we are able to implement a robust state-space
based neuromodulator while eliminating the need for a state

Fig. 11. Percent RMS gamma power increases (Δγ�, see Supple-
mentary Material) for open-loop vs closed-loop stimulation. The dashed
line has a slope of one. Larger open loop RMS gamma power increases
predict larger increases under closed-loop stimulation.

estimator. These state-space based linear models have been
successfully applied to complex dynamical brain systems for
underlying surface EEG [42], magnetoencephalography [43],
and local field potential data [44].

Improving the generalizability of our system will require
that we establish its capabilities across a range of frequencies
and that we understand how modulation of gamma power
(for example) impacts other frequency ranges. Predictions
of impact on non-gamma oscillations can be achieved with
additional empirical data possibly combined with an improved
plant model. More generally, regarding the goal of improving
memory, the relative merits of a control system built on
complex, multivariate brain signals versus a single (well-
established) biomarker such as hippocampal gamma power
remain a clear target of subsequent empirical investigation.

V. CONCLUSION

The ability to achieve closed loop control of hippocampal
gamma band power would impact the emerging field of
neuromodulation to restore memory function. Our modeling
data suggests that using the posterior cingulate cortex as a
target for stimulation may be a propitious strategy. Our system
identification schema utilizes previously obtained open-loop
data to create a linear system model that describes the
input-output relationship between stimulation to the PCC and
neural activity in the hippocampus. Using an LQI servo con-
troller designed based on our model, we were able to achieve
control of hippocampal RMS gamma power, our biomarker for
memory, in all patients on physiologically realistic time scales
and at safe levels. We believe this strategy offers a promising
approach for the neuromodulation of memory.

VI. SUPPLEMENTARY MATERIAL

A. Uniqueness of ARX Parameter Estimates for Least
Squares Prediction Method

As stated in Section II-F, the parameter estimates are unique
as long as the columns of the matrix C in (10), repeated here
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for convenience,

C=

⎡
⎢⎢⎢⎢⎢⎣

x(p) · · · x(1) u DC us(p + 1)
x(p + 1) · · · x(2) u DC us(p + 2)

...
. . .

...
...

...
x(N − 1) · · · x(N − p) u DC us(N − p)

⎤
⎥⎥⎥⎥⎥⎦ (18)

are linearly independent. This is a consequence of a
well-known result on the solution of least squares systems
of equations, which states that if the columns of a rectangular
matrix C (having more rows than columns) are linearly inde-
pendent, then the matrix CT C is invertible (non-singular) and
the least squares system of equations (9) will have a unique
solution [29], [30]. It can be shown that the first p columns
of C are linearly independent as long as the system function
for the ARX model, given by

1

A(z)
= 1

1 + ∑p
k=1 akz−1

(19)

is stable (roots of A(z) are inside the unit circle) [28].
Moreover, almost surely, the two right-most columns of C are
linearly independent of the left-most p columns owing to the
fact that one of the inputs to the model is the white noise signal
w(t), which will make x(t) random, making it highly unlikely
that these left-most p columns will be linearly dependent with
the two deterministic exogenous input columns. Note that we
refer to linear independence in the context of linear algebra
(see for example [29]). It remains to show the extent to which
the right two columns of C are linearly independent. For finite
N , this is clearly the case since if us(t) is a step function as
defined in (3), there are no non-trivial linear combinations of
these two columns that will produce a zero vector.

B. Consistency of ARX Parameter Estimates for Least
Squares Prediction Method

A parameter estimate is said to be consistent if the esti-
mated parameters approach, almost surely, the actual values
as the number of data points N used to form the estimate
approaches infinity [28]. The consistency of the least-squares
prediction method for estimating ARX parameters is examined
in Section 7.1 of the textbook System Identification by by
Söderström and Stoica (Prentice Hall, 1989), for the general
ARX model [45]

x(t) = −
p∑

k=1

akx(t − k) +
q∑

m=1

bmus(t − m) + w(t) (20)

The parameter estimates are consistent provided several con-
ditions are met:

1) The matrix 1
N CT C is non-singular as N → ∞.

2) The input signal w(t) is white noise.
3) The exogenous input us(t) is persistently exciting of at

least order q .

The latter condition insures that the matrix 1
N CT C will be

non-singular as the number of data points N approaches
infinity. The order of persistence of excitation is related to
the rank of the autocorrelation matrix of a signal [45]. For the
case of a step function, it is shown in Example 5.3 of [45]

that step functions are persistently exciting of order 1. Since
in our model, q = 1, the parameter estimates we obtain are
consistent. The Söderström and Stoica text doesn’t consider
the DC exogenous input u DC that we use, in addition to the
step function us(t). We now show that the matrix 1

N CT C is
non-singular only when q = 1 and that for q > 1, it becomes
singular as N → ∞. Since we have already looked at the
linear independence of the two right-most columns of C from
the left-most p columns, we need only consider the linear
independence of the two right-most columns of C as N → ∞.
Define

C2=

⎡
⎢⎢⎢⎢⎢⎣

u DC us(p + 1)
u DC us(p + 2)

...
...

u DC us(N − p)

⎤
⎥⎥⎥⎥⎥⎦ (21)

Some straight-forward calculations show that with us(t) (step
function) and u DC (constant) as defined in Section II-E

lim
N→∞

1

N
CT

2 C2 =
[

1 1
1 2

]
(22)

which is non-singular as required for consistency. We note that
if q = 2, if us(t) is a step function, the parameter estimates
will no longer be consistent. In this case we have

C3=

⎡
⎢⎢⎢⎢⎢⎣

u DC us(p + 1) us(p)
u DC us(p + 2) us(p + 1)

...
...

...
u DC us(N − p) us(N − p − 1)

⎤
⎥⎥⎥⎥⎥⎦ (23)

which leads to

lim
N→∞

1

N
CT

3 C3 =
⎡
⎣ 1 1 1

1 2 2
1 2 2

⎤
⎦ (24)

which is singular. Similar results are obtained for q > 2.
Hence, a limitation of using a step function for us(t) during
system identification is that the ARX model cannot have
q > 1 in (20), and still yield consistent estimates of the ARX
parameters. This result is a consequence of step functions
being persistently exciting of order 1. Rigorous proofs of
these assertions are found in Complements C5.1, C6.1, and
C6.2 of [45].

C. Assessment of Model Quality Metrics

As described in Section III-B, 15 of the 17 subjects expe-
rienced RMS gamma power increases with stimulation, with
14 of these being significant at the p = 0.05 level. The ARX
model parameters for our instantaneous RMS gamma power
data were estimated using the Matlab function “arx”, which
uses the linear least squares prediction solution to estimate
the ARX parameters as described in Section II-F. The “arx”
function returns a number of model quality metrics, including
the mean squared prediction error (ε∗

pred ) and the goodness of
fit (FitPerc) given by (11) and (12), respectively. In order to
assess these quality metrics we conducted a simulation where
we identified the ARX paramters of an ARX random process
with known parameters. For the ARX model to be identified,
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Fig. 12. Model quality metrics for identifying the ARX parameters for
two different signals: an ARX process of order 6, xARX(t), and a moving
average (MA) process of order 29, xMA(t) having similar spectral features.

we chose the parameters: a1 = 5.6758, a2 = −13.6152,
a3 = 17.6747, a4 = −13.0990,a5 = 5.2554,a6 = −0.8917,
bDC = 3.4689×10−4, bs = 8.7828×10−5. These parameters,
which were obtained from one of our subjects, were then
used to generate a state-space model (see Section II-G).
The state-space model was driven by a zero-mean Gaussian
white noise sequence having a variance of 3.7197 × 10−7 as
well as the exogenous inputs us(t) (see (3)) and u DC(t) =
1, t = −2, . . . , 2. The output of the state-space model,
xAR X (t), was then input to the “arx” function along with the
known exogenous inputs. The identified parameters denoted
by âk, k = 1, . . . , 6, b̂DC, b̂s where compared with the actual
parameters of the ARX model using the normalized squared
estimation error, ∑6

k=1

(
âk − ak

)2∑6
k=1 a2

k

(25)

which was found to be 3.3972×10−6, while the corresponding
error for the b parameters was 0.0209. The mean squared
prediction error was given by ε∗

pred = 3.8933 × 10−7 while
the fit percentage (FitPerc) was 99.9943%. This was over a
single run, but multiple runs yielded similar results. The fit per-
centage depends on the normalized mean squared prediction
error. A small prediction error leads to a fit percentage close
to 100 % (see Section II-F).

Next we investigated the effects of under or overestimating
the model order for the known ARX model. For model
orders ranging from p = 1, . . . , 12, we computed ε∗

pred ,
and FitPerc. To further evaluate these model quality metrics,
we then computed the ARX model of a high-order moving
average (MA) process given by

xM A(t) =
29∑

k=0

bkw(t − k	t ) + bDCu DC(t) + bsus(t) (26)

where w(t) is the same zero-mean Gaussian process used
to produce xAR X (t). The bk coefficients corresponded to a
lowpass FIR filter (using the windowing method with a cutoff
frequency of 1.25 Hz). These coefficients were scaled and the
cutoff frequency was chosen so that the averaged periodogram
of xM A(t) closely matched that of x AR X (t). The bDC and bs

coefficients were chosen to yield the same DC values over
the no-stim and stim intervals as xAR X (t). The results of both
experiments are shown in Fig. 12. For the ARX process, the
mean squared prediction error drops rapidly with increasing
model order, and then levels off at the correct model order.
Similarly the fit percentage rises rapidly as the model order
is increased and then levels off at nearly 100% after the
correct model order of p = 6. For the MA process the quality
metrics deteriorated considerably compared to those for the
ARX process, with no appreciable improvement in either of
the quality metrics beyond an ARX model order of p = 3.
These findings suggest that our approach to estimating ARX
model parameters is accurate when the model being identified
indeed corresponds to an ARX model, however attempting to
identify ARX parameters of a signal that does not correspond
to an ARX model (such as an MA model) will have a negative
impact on model quality metrics.
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