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Explainable Deep Learning Model
for EMG-Based Finger Angle
Estimation Using Attention

Hyunin Lee , Dongwook Kim , and Yong-Lae Park , Member, IEEE

Abstract— Electromyography (EMG) is one of the most
common methods to detect muscle activities and intentions.
However, it has been difficult to estimate accurate hand
motions represented by the finger joint angles using EMG
signals. We propose an encoder-decoder network with an
attention mechanism, an explainable deep learning model
that estimates 14 finger joint angles from forearm EMG
signals. This study demonstrates that the model trained by
the single-finger motion data can be generalized to estimate
complex motions of random fingers. The color map result of
the after-training attention matrix shows that the proposed
attention algorithm enables the model to learn the nonlinear
relationship between the EMG signals and the finger joint
angles, which is explainable. The highly activated entries in
the color map of the attention matrix derived from model
training are consistent with the experimental observations
in which certain EMG sensors are highly activated when a
particular finger moves. In summary, this study proposes
an explainable deep learning model that estimates finger
joint angles based on EMG signals of the forearm using the
attention mechanism.

Index Terms— Surface electromyography (sEMG), finger
angle estimation, deep learning, attention, explainable AI.

I. INTRODUCTION

ROBOTIC prostheses that enable the disabled or patients
with injuries to move their limbs freely are an impor-

tant goal in biomedical engineering [1]–[3]. Most currently
available robotic prostheses are controlled using surface elec-
tromyography (sEMG) signals capable of detecting muscle
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activities and intentions [4]. Decoding EMG signals into finger
or arm motions is one of the essential elements in the develop-
ment of robotic prostheses, and there have been many studies
in this area [5]–[9]. It has been shown that EMG signals can
be used to classify hand gestures with an estimation accuracy
higher than 95% [10]–[12]. Ramien et al. proposed a method
of decoding EMG signals to classify individual and combined
finger motions using the Bayesian data fusion approach that
yielded an accuracy of 90% [13]. Recent advancement of
machine learning made possible to extract more complex
EMG features, allowing for successful classification of more
diverse hand gestures [14]–[16]. However, the current machine
learning models have a limitation in predicting hand gestures
that were not learned before. To address this issue, there have
been studies that predict finger joint angles directly from EMG
signals rather than classifying discrete hand gestures [17]–[21].
Afshar and Matusoka showed that the joint angles of the
index finger could be estimated from the EMG signals of
seven forearm muscles that contributed to flexion of the index
finger [17]. Shrirao et al. also tried to decode the EMG signals
of the forearm to predict index finger joint angles [18]. Further
studies on predicting angles of multiple fingers have been
conducted [19]–[21]. Smith et al. succeeded in predicting the
metacarpophalangeal (MCP) joint angles of the five fingers
using a simple artificial neural network [19]. Hioki et al.
decoded muscle signals using only four EMG sensors and
predicted proximal interphalangeal (PIP) joint angles of all
five fingers [20]. Ngeo et al. predicted 15 different finger joint
angles (three joint angles in each finger) using a Gaussian
process (GP) method from eight sEMG sensors [21].

However, these methods still have two major limitations.
First, the machine learning algorithms do not provide an
explainable artificial intelligence (AI) model, a mechanism to
understand and interpret the predictions made by learning,
making it difficult to trust the accuracy in general cases.
Although predictive modeling is motivated to improve the
model performance, a lack of explainability means that the
model is not sufficient to make qualitative evaluation for
the task for which it was intended. Furthermore, AI mod-
els without explainability in robotic systems cannot provide
insight into how the results will be utilized to improve
the users’ mobility [22], [23]. Second, most of the previ-
ous machine learning studies for the EMG signal analysis
presented the performances based on the discrete hand gestures
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that were already used for training the model, which are
not sufficient for relatively dexterous manipulation motions of
robotic prostheses. Therefore, it is necessary not only to build
a machine learning model that estimates finger joint angles in
addition to the hand gestures that the model has not learned
before, but also to build an explainable model.

In this study, we propose an explainable AI model that
estimates the angles of finger joints by decoding the EMG
signals using the attention mechanism [24]. In particular,
we show that the inner attention mechanism explains that
the proposed AI model learns the complex and nonlinear
relationship between the EMG signals and the finger joint
angles. This study has two major contributions that have not
been addressed before to the best of our knowledge:

• Models are trained with simple data sets of individual
finger movements but can predict more complex data sets
of random fingers with a relatively high accuracy.

• The after-trained attention matrix demonstrates that the
model can learn the relationship between the EMG sig-
nals and the finger joint angles, supporting the reason why
the proposed model yields a higher estimation accuracy
than the models in previous studies.

II. MATERIALS AND METHODS

A. Experimental Setup

Eight healthy participants (two females and six males,
aged 24.75 ± 1.75 years) who consented in advance to
the experimental protocol participated in the experiment.
The participants had no history of injuries or surgeries and
did not feel any abnormalities when moving their fingers,
hands, and wrists freely. The experiment was approved by
the Institutional Review Board of Seoul National University
(IRB No. 2106/004-019) and all the experiments were con-
ducted in accordance with the approved protocol. The par-
ticipants were asked to move their fingers without moving
their wrists. Their forearm EMG signals were recorded using
four wireless multi-channel EMG sensors (Trigno Avanti,
Delsys, USA), and the movements of the hands and the fingers
were recorded with a camera at 240 frames per second (fps)
at the same time as references of the finger joint angles. Each
participant was asked to perform two different tasks: moving
one finger at a time and moving multiple random fingers
simultaneously. In the first task (Task 1), each participant
flexed and extended all five fingers individually in the order
of thumb, index, middle, ring, and little fingers one by one,
which is called “th2pi” in this paper. During the experiments,
the participants were asked to maintain a constant speed (one
second for flexion and one second for extension). The “th2pi”
sequence takes 10 seconds and Task 1 consists of 20 sets of
“th2pi” sequences, taking a total of 200 seconds. In the second
task (Task 2), each participant was allowed to flex and extend
one or more fingers at the same finger flexion-extension speed
in Task 1. Each consists of five randomized flexion-extension
movements and takes 10 seconds. Task 2 also contains 20 sets
of random finger motions, taking 200 seconds. An additional
experiment was conducted in which the participants were

Fig. 1. Experiments composed of two tasks with Task 1 for training the
data and Task 2 for testing the data.

Fig. 2. Locations of four EMG sensors and the three muscles on which
sensor are placed. All three muscles are involved with finger flexion.

asked to repeat Task 1 for 10 times and Task 2 once. A one-
minute break was provided between the tasks. A graphical
description of the experiment is shown in Fig. 1.

B. Data Collection

Four sEMG sensors were attached to different locations of
the skin of the forearm, identified as the locations of three
extrinsic muscles known to contribute to flexion of at least one
of the five fingers: the flexor digitorium supericiallis, the flexor
pollicis longus, and the flexor digitorium profundus. The flexor
pollicis longus muscle is mainly involved with thumb flexion
and the other two muscles are with flexion of the remaining
four fingers. The EMG signals were obtained at a frequency
of 1.26 kHz. The locations of the EMG sensors and the main
functions of the three muscles are shown in Fig. 2.

C. Data Processing

1) EMG Signal Processing: The raw EMG signals were
offset to make the mean value to zero, and the absolute
values of the modified signals were taken. To eliminate the
high frequency noise, the EMG signals were filtered with a
second-order Butterworth filter (cutoff frequency: 5 Hz) and
normalized to fit into the range between 0 and 1 [25]. Finally,
the EMG signals sampled at 1.26 kHz were downsampled
to 1 kHz. Downsampling and low-pass filtering are common
methods of preprocessing of EMG data [26], [27].
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Fig. 3. Examples of finger joint tracking of five different hand motions in Task 1 and Task 2 using a machine learning solution (MediaPipe Hand).
The MediaPipe calculates the finger joint position (x, y, z) from a 2D image.

2) Video Processing: The hand movements of the partici-
pants were recorded using a 240 fps mobile phone camera
(iPhone 7, Apple). The finger joint angles were esti-
mated using an open source framework (MediaPipe Hands,
Google Inc., USA) that can calculate the positions and the
motions of the fingers [28]. The angles of the three finger
joints (metacarpophalangeal (MCP), proximal interphalangeal
(PIP), distal interphalangeal (DIP)) were calculated based
on the joint positions (angles of thumb MCP (1-MCP),
thumb IP (1-IP), index MCP (2-MCP), index PIP (2-PIP),
index DIP (2-DIP), middle MCP (3-MCP), middle PIP
(3-PIP), middle DIP (3-DIP), ring MCP (4-MCP), ring
PIP (4-PIP), ring DIP (4-DIP), little MCP (5-MCP), little PIP
(5-PIP), and little DIP (5-DIP)). Then, the angles of each
finger were normalized in the range of 0-1. Normalization of
each joint angle was performed by subtracting the minimum
estimated joint angle from the corresponding joint angle and
dividing it by the difference between the maximum estimated
joint angle and the minimum estimated joint angle. Fig. 3
shows examples of applying the MediaPipe Hands library to
the recorded videos.

III. PROPOSED MODEL

The main consideration factor for a machine learning model
in this study is construction of an algorithm that effectively
extracts the characteristics of the EMG signals and the joint
angle data. The proposed model considers the following three
characteristics of the experiment.

1) The EMG signals are time series data (i.e., sequential
data).

2) The EMG signals from the four sensors are not
independent.

3) During Task 1, the EMG signals from a specific sensor
are strongly activated when the corresponding finger is
flexed or extended.

We constructed a machine learning algorithm to reflect the
above three features, which is explained in the followings.

A. Time Series Data

To take advantage of sequential data, a gate recurrent
unit (GRU) was used as a core unit. A GRU is one type

of a recurrent neural network (RNN) which is useful when
dealing with sequential data. A GRU is similar to a long
short-term memory (LSTM) with a forget gate but has fewer
parameters than an LSTM because it does not have an output
gate [29], [30].

B. Signal Dependency

The encoder-decoder network structure was employed to
utilize the dependency of the EMG signals. The encoder
consists of four GRUs, with each GRU receiving a single
element of the EMG signals (xt ∈ R

4) at time t with the
result of the previous GRU as an input value and delivering
the output vector and the hidden vector to the next GRU. The
hidden vector hi ∈ R

256 is calculated as

ht = tanh(W (hh)ht−1 + W (hx)xt ) (1)

where W (hh) ∈ R
256×256 and W (hx) ∈ R

4×256 are learnable
parameters.

The decoder is a stack of several GRUs where each of them
estimates an output yt ∈ R

14 at time t . The GRU receives the
hidden state of the previous GRU as an input and calculates
the output and the next hidden state. The hidden state ht and
the output yt are calculated as

ht = tanh(W (hh)ht−1) (2)

yt = softmax(W Sht ) (3)

where W (S) ∈ R
14×256 is a learnable parameter.

C. Sensor-Finger Relations

A encoder-decoder network without attention but with a
GRU does not fully reflect the above three features. One of the
useful experimental observations is that certain EMG sensors
respond significantly more than the other sensors when flexing
or extending a specific finger. An attention mechanism was
used to implement this observation to the model. The main
role of the attention mechanism is to induce the model to learn
the process of referring to specific EMG sensor (E MGi , i ∈
{1, 2, 3, 4}) inputs when predicting the related finger joint
angles (θi , i ∈ {1, 2, . . . , 14}), as described in Fig. 4.
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The sub-figures show the activated rectified EMG signals from
the four EMG sensors, respectively, when executing three sets
of Task 1.

The final model is a single encoder connected to five differ-
ent decoders with five different attention matrices, respectively.
The five different decoders predict the joint angles of the
five fingers (two joints for the thumb and three joints for
the index, the middle, the ring, and the little fingers) in
parallel. Each of the five attention matrices is applied to
the corresponding decoder and does not share the learning
weights with the others. The EMG signals at time t , X (t)
(i.e., [E MG1(t), E MG2(t), E MG3(t), E MG4(t)]), are
divided into four one-hot vectors, X1(t), X2(t), X3(t),
and X4(t),

X (t) =

⎡
⎢⎢⎣

E MG1(t)
E MG2(t)
E MG3(t)
E MG4(t)

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

X1(t)
X2(t)
X3(t)
X4(t)

⎤
⎥⎥⎦ ,

and each Xi (t), i ∈ {1, 2, 3, 4} is one-hot vector that has
E MG j (t), j ∈ {1, 2, 3, 4} as a non-zero entries where

X1(t) =

⎡
⎢⎢⎣

E MG1(t)
0
0
0

⎤
⎥⎥⎦, X2(t) =

⎡
⎢⎢⎣

0
E MG2(t)

0
0

⎤
⎥⎥⎦,

X3(t) =

⎡
⎢⎢⎣

0
0

E MG3(t)
0

⎤
⎥⎥⎦, X4(t) =

⎡
⎢⎢⎣

0
0
0

E MG4(t)

⎤
⎥⎥⎦.

X1(t), X2(t), X3(t), and X4(t) are fed into the encoder
sequentially in a given order. Since the EMG signals are
generated from the neural system (the cortex and the spinal
cord), the order of the four one-hot vectors can be determined
by the arrival time of the electrical impulses to the four
sensors, which is the same as the proximal-to-distal order
of the sensor positions. However, this sequence is not nec-
essary and would not hinder the learning process because the
depth of the encoder is not too deep to raise the vanishing
problem of the input vectors. Fig. 5 overviews the final
model.

Fig. 5 shows the inner structure of the shared encoder
(Fig. 5-(a)) and the thumb decoder (Fig. 5-(b)). The shared
encoder is composed of four encoder cells that are GRUs,
as shown in Fig. 5-(a). The i th GRU takes Xi (t) ∈ R

4 and
hi−1

en (t) ∈ R
256 as inputs where Xi (t) is i th the rectified

one-hot vector EMG signal and hi−1
en (t) is the hidden vector

from the (i − 1)th GRU. Then it yields oi
en(t) ∈ R

256 and
hi

en(t) as outputs. The 1st GRU takes the hidden vector
h0

en(t) which is a zero vector and X1(t) as an input. As the
i th GRU’s input is the same (i − 1)th GRU’s output, the
hi

en(t) contains the previous input information X1(t), .., Xi (t).
Oen(1) contains only the information of E MG1(t), Oen(2)
contains the information of E MG1(t) and E MG2(t), Oen(3)
contains E MG1(t), E MG2(t), and E MG3(t), and so on.
The final outputs of the shared encoder are h4

en(t) and Oen(t) ∈
R

256×4 where h4
en(t) contains all the input information in

Fig. 4. EMG activation data from Task 1 by showing specific activation
of a specific sensor with flexion and extension of a specific finger.
(a) Sensor 1, (b) sensor 2, (c) sensor 3, and (d) sensor 4. The dotted
box shows the well-marked EMG activation of specific finger movements
than compared to the other fingers.

a compressed 256-sized vector and Oen(t) is a matrix that
concatenates Oi

en(t), i ∈ {1, 2, 3, 4} in a column direction.
The thumb decoder is composed of two decoder cells,

as shown in Fig. 5-(b). The i th decoder cell takes three inputs,
oi−1

de ∈ R
14, hi−1

de ∈ R
256, Oen ∈ R

256×4 where the oi−1
de is the

estimation vector of the finger joint angle from the (i − 1)th

decoder cell, hi−1
de is the hidden vector from the (i − 1)th

decoder cell, and Oen is the encoder output. In the case of
the thumb decoder, oi

de, i ∈ {1, 2} is one-hot vector. θi (t) is
non-zero entries at the i th index of the vector oi

de.
The decoder cells are all identical for the five different

decoders. oi−1
de passes a linear layer (flinear1, 14 × 256) with

a forget dropout (p = 0.1). This vector (c1) concatenates
with hi−1

de . Then the concatenated vector c2 ∈ R
512 passes a

linear layer (flinear2, 512×4) and a softmax layer. This outcome
becomes the attention matrix (R4×1).

The key, the value, and the query of the attention mechanism
can be defined as the following:

• key: Oen = [Oen1; Oen2; Oen3; Oen4]
• query: c2 = flinear2([flinear1(o

i−1
de ); hi−1

de ])
• value = key

The dot product was used to define the attention score
(also known as the Luong attention [31]). The attention score,
Attscore ∈ R is defined as

Attscore(c2, Oeni ) = cT
2 Oeni , (4)
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Fig. 5. Overall structure of the proposed network: (a) Encoder-decoder model with an attention matrix. (b) The entire model.

and the attention value Attout ∈ R
4×1 as

Attout = softmax([cT
2 Oen1, cT

2 Oen2, cT
2 Oen3, cT

2 Oen4]).
(5)

The attention matrix is calculated by multiplying the key
and the query. The matrix multiplication is the crux of the
attention mechanism. It means which output Oi

en the decoder
cell focuses on when predicting the finger joint angle, oi

de.

Multiplication of Attout and Oen gives c3, i.e.,

c3 = Oen · Attout . (6)

Then the vector c3 ∈ R
256 concatenates with the vector

c1 ∈ R
256 and passes a linear layer (flinear3, 512 × 256) and a

rectified linear activation unit (ReLU) layer [32]. The output
vector c4 can be represented as

c4 = ReLU (flinear3 ([c3; c1])) . (7)
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The c4 and the previous hidden vector hi−1
de are fed into

the GRU, which yields an output c5 ∈ R
256 and a hidden

vector hi
de ∈ R

256. Then, the vector c5 passes the linear layer
(flinear4, 256 × 14) and yields oi

de ∈ R
14.

c5, hi
de = GRU(c4, hi−1

de ), (8)

oi
de = flinear4(c5). (9)

The training loss is defined as the root-mean-squared
error (RMSE) between the estimation angles at time t
(oi

de ∈ R
14) and reference angles at time t (y(t) ∈ R

14) where
i ∈ {1, 2, . . . , 14}.

RMSE (%) =
�	14

i=1{θi (t) − yi (t))}2

14
× 100 (10)

The L2 regularization term with a weight decaying
ιreg = 0.00001. Since the i th entry of oi

de is θi (t), the loss
function is expressed as

loss =
�	14

i=1(θi (t) − yi (t))2

14
+ ιreg ∗



wi ∈W

�wi�2 . (11)

where W is the learnable weight.

IV. RESULT

A. Data Preparation

The EMG data from the four sensors (X) and their cor-
responding 14 finger joint angles (Y ) were preprocessed to
make the input data (X, Y ) to train the model. The train and
the test data sets are different. When training the model, the
data set (Xtrain, Ytrain) is only composed of the EMG signals
and the finger joint angles obtained from Task 1. When testing
the model, the data set (Xtest , Ytest ) is composed of the EMG
signals and the finger joint angles obtained from Task 2. The
ranges of the angles in the train data and from the test data
are the same.

B. Model Training

To evaluate the performance of the proposed model, a com-
parison study was conducted. In this study, we checked
the effectiveness of the attention mechanism and the RNN
module. Three different neural network models were trained
and their best results were compared. The three models are
a simple neural network, the proposed model without the
attention mechanism, and the proposed model with the atten-
tion mechanism. The three models have nearly five million
learnable parameters to have the same model complexity,
and each model was trained in the same hyperparameter
space. The simple neural network is a multilayer percep-
tron (MLP) with five hidden layers. To check the perfor-
mance of the RNN that is the deep learning module for
time series data, we additionally defined the simple neural
network and used it for the comparison study. The size of
the hidden layer was fixed to 256 for all three networks. The
hyperparameters were teacher-forcing ratios and learning rates.
The teacher forcing ratio (γt f r ) was searched over γt f r =
{0.5, 0.7, 0.9}, and the learning ratio (γlr ) was searched over

Fig. 6. Error plots in estimating joint angles in Task 2 for three different
models. “*” shows differences of more than 5%.

TABLE I
ERRORS IN ESTIMATING ANGLES OF 14 FINGER JOINTS

USING THREE DIFFERENT MODELS (TASK 2)

γlr = {0.0001, 0.0003, 0.0005, 0.0007}. The code was imple-
mented with an automated deep learning processor, Pytorch
1.8. Minibatch stochastic gradient descent with a size of 1024
was used for optimizing the loss function. The Adam optimizer
was used for the optimization process (β1 = 0.9, β2 = 0.999
and � = 10−8) [33].

The test accuracy of the three different models for estimat-
ing 14 finger joint angles are shown in Fig. 6 and Table I. The
error was defined as an RMSE between the estimation yi(t)
and the reference θi (t) values.

The test error of the encoder-decoder network without atten-
tion and that with attention are lower than that of the simple
neural network except for 1-MCP. Especially, 2-MCP, 3-PIP,
and 3-DIP showed relatively large differences in the test errors
between the simple network and the network without attention
and also between the simple network and the network with
attention. Also, the test errors of the network with attention
for the thumb angles (1-MCP, 1-IP), the index finger angles
(2-MCP, 2-PIP), the ring finger angles (4-MCP, 4-DIP), the
little finger angles (5-MCP, 5-PIP, 5-DIP) are lower than that
of the network without attention. However, the test errors of
the attention model for the middle finger (3-PIP, 3-DIP) are
higher than those of the model without attention.

V. DISCUSSION

A. Comparison of Prediction Accuracy of Three
Different Models

The encoder-decoder networks showed more accurate
and stable estimation than the simple neural network



LEE et al.: EXPLAINABLE DEEP LEARNING MODEL FOR EMG-BASED FINGER ANGLE ESTIMATION USING ATTENTION 1883

Fig. 7. Estimation results of 14 joint angles (Task 2: random finger flexion and extension). x-axis is time and y-axis is the normalized 14 finger angle
between 0 and 1. The black lines are the references obtained from the experiment, the red lines are the estimations using a simple neural network,
and the green lines are the estimations of the proposed model.

(Fig. 6 and Table I), implying that it is more appropriate to
use a GRU, a general basic unit for sequential data processing,
for the analysis of EMG data than a method of simple
stacking of hidden layers in simple neural networks (Fig. 7).
This result also suggests that the GRU-based encoder-decoder
model is suitable for complex classification or prediction
tasks, by interpreting complex human biosignals, such as EEG
or EMG.

This study also shows the ability of generalization of
the proposed model. Few studies have implemented machine
learning models to estimate finger joint angles when the
train data and the test data are completely different. Previous
studies on predicting finger joint angles performed both model
training and testing within the same motion data of individual
fingers [18]–[21]. However, all these studies that use machine
learning to find the optimal relationship ( f ) between the EMG
signals (X) and the finger joint angles (Y ) show a strong
nonlinearity, indicating that the linear combination of the
muscle signals ( f (x1 + x2)) for the joint angles is not the
same as the linear combination of f (x1) and f (x2) [34], [35].
In other words,

f (x1 + x2) �= f (x1) + f (x2) (12)

holds where x1, x2 ∈ X and f (x1), f (x2) ∈ Y .
This means that the linear combination of the EMG data

and the joint angle data collected during Task 1 cannot fully
represent the data from both Task 1 and Task 2. Therefore, the
performance of the proposed model validated by the different
data sets indicates the higher accuracy in generalization than
the previous model.

TABLE II
PEARSON’S CORRELATION COEFFICIENTS

OF 14 FINGER JOINT ANGLES

In addition, we calculated the Pearson correlation coeffi-
cients between the predicted angles from the proposed model
and the estimated angles to quantify the performance of contin-
uous prediction, and the 14 coefficients are shown in Table II.
We also conducted a one-way analysis of variance (ANOVA)
test between the three different models to check the dif-
ferences. The 14 p-values from the ANOVA test are less
than 0.05, and we can conclude that there are significant
differences in the mean values of the predicted angles from
the three different models.

B. Explainable Model by Attention

One of the significant implications of this study is interpre-
tation of after-trained attention matrices (Attout). The result
of the attention matrices and our interpretation provide a
reason on the high estimation accuracy of the encoder-decoder
network with attention than that without attention.

Fig. 8 is the color-map of after-trained attention matrix
(Attout) composed of a basic attention matrix (Attp

out where
p = {1, 2, . . . , 14}) stacked in the column direction. Attp

out is
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Fig. 8. Attention matrix result when moving individual finger (Task 1). This explains why the proposed network yields higher accuracy than previously
proposed all machine learning method.

an attention matrix, one of the outcomes of a decoder cell that
estimates θp . The width of Attp

out depends on the experiment
time. For example, if the subject performed only thumb flexion
and extension (the total experiment time is two seconds, and
the data are resampled at 10 Hz for visualization), we obtain
two attention matrices, Att1

out ∈ R
4×20 and Att2

out ∈ R
4×20.

The x-axis of Attpout is time (10−1 s = 1/ fresample s) and
y-axis is the encoder output values (Oeni (t), i ∈ {1, 2, 3, 4})
referenced by the decoder cells to predict the joint angle θp.
For fixed time t0 ( j = t0), each Attpout(i, j = t0) for i ∈
{1, 2, 3, 4} indicates the contribution of Oeni (t) when pre-
dicting the angle θp . These values are normalized, i.e.,	4

i=1 Attp
out(i, j = t0) = 1. Fig. 8 is the after-trained atten-

tion matrix (Attout) for evaluation data (one set of Task 1).
Attout consists of a total of 14 Attpout ∈ R

4×100 where
p ∈ {1, 2, .., 14}.

The following explains the white areas in the atten-
tion matrix and how they are related to the experimental
observation.

1) Att1out and Att2out: They usually show attentions (bright
color) on Oen4(t), but for thumb flexion and extension, Att2

out
shows active referencing to Oen2(t) during the time at 0.4 s
∼ 1.05 s and at 1.55 s ∼ 1.75 s, which is the compressed
information on E MG1(t) and E MG2(t). This matches the
experimental observation that E MG2(t) highly activates when
flexing and extending the thumb (Fig. 4).

2) Att3out, Att4out, and Att5out: For flexion and extension of
index finger, Att3

out, Att4
out, and Att5

out show attentions on
Oen4(t) and specially on Oen1(t) that is the compressed
information of E MG1(t). This matches the experimental
observation that E MG1(t) highly activates when flexing and
extending the index finger. The relatively bright color of
Att4

out(1, t) (2.3 s ∼ 2.55 s), and Att5
out(1, t) (2.3 s ∼ 2.6 s)

also matchs the experimental result that E MG1(t) is more
activated with the index finger than with the middle or the
ring finger.

3) Att9out, Att10
out, and Att11

out: For flexion and extension of the
ring finger, the attention matrix (Att11

out) shows a different
attention pattern of a bright color on Oen3(t) that is the com-
pressed information of E MG1(t), E MG2(t), and E MG3(t)
for flexion and extension of the middle, the ring, and
the little fingers. Att11

out(4, t) activates during flexion and
extension of the index (2.3 s ∼ 2.55 s), the middle
(2.3 s ∼ 2.55 s), the ring (2.1 s ∼ 2.6 s) fingers. A relatively
bright color and a longer time for Att11

out(4, t) of the ring
finger also matches the experimental result of the highly
activated E MG3(t) during flexion and extension of the ring
finger.

4) Att6out, Att7out, and Att8out: On the other hand, for flexion
and extension of the middle finger, Att6out, Att7

out, and Att8
out

show different patterns especially on Oen1(t). In Fig. 4,
E MG1 slightly activates with the middle finger.
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5) Attout: The above interpretations represent that the atten-
tion matrix after training learns the relationship between
the EMG signals and the finger joint angles. This means
that the attention mechanism induces the encoder-decoder
network to refer to experimental observations for estimating
the finger joint angles with a higher accuracy. Therefore,
the attention mechanism contributes to the high estimation
accuracy by providing the model with the opportunity to
learn the relationship between the finger joint angles and the
corresponding muscle signals. This is consistent with a pre-
vious study that has reported on the definition of explainable
AI (XAI) in the medical field [36]. Although prior research has
shown a high estimation accuracy in decoding the biosignals
(EEG and EMG) using machine learning, they were not able
to effectively explain why their learning algorithms yielded
the results [37]–[40].

C. Challenges of Real Time Control of Prosthesis

The availability of real time control of an upper-limb robotic
prosthesis in a clinical setting is a challenge due to the complex
activation of multiple muscles and multiple DOFs of the upper
arm movements. The performance of robotic prosthesis with
machine learning is related to the time complexity of the
device, which is composed of algorithmic complexity, compu-
tational time, and hardware costs [41]. The algorithmic (time)
complexity of our model is composed of the complexity of
the attention mechanism, O(nd), and the complexity of GRU,
O(nd2), where n is the number of the EMG sensors and d is
the hidden size of the attention matrix and the GRU [24], [42].
According to prior research, the time complexities of machine
learning models that control a robot arm using EMG signals,
such as a convolutional neural network (CNN) or a multilayer
perceptron (MLP) are O(knd2) and O(n), respectively, where
n is the number of the sensors, d is the hidden size, and k is
the kernel size [43], [44]. We think the time complexity of the
proposed model will not be a problem if we select proper n, d
and robot hardware. However, the real-time control strategy is
still limited due to the tradeoff between the complexity of the
mechanical configuration and the complexity of the control
systems [45]–[48].

D. Future Work

One of the immediate areas of future work will be imple-
mentation of transfer learning [49] or incremental learning [50]
for training models using the joint angle data and the forearm
EMG data collected at specific arm positions and for predicting
the finger joint angles using the EMG signals from different
arm postures. Another important area of future work will
be experimental validation of the proposed approach using
physical systems, including robotic hands [51]–[53] and wear-
able robots [54]–[57] that require seamless interfaces between
the user intentions and actuation. In addition, it would be
beneficial to check the practicality of the proposed AI model in
real-world applications, such as clinical rehabilitation, where
the ability of real-time control is critical. In this way, we can
also verify the long-term effect of the proposed method.

VI. CONCLUSION

This study proposed a new machine learning model for
estimating finger joint angles based on using raw EMG signals.
The proposed model has a structure of a shared encoder
- five parallel decoders with a basic unit of GRU, and an
attention mechanism is applied to construct an explainable
machine learning model. The encoder consists of four GRU
cells, and the decoder consists of two or three decoder cells
with the same number of cells as that of estimation angles,
and each of the five decoders has an attention matrix. We first
predicted complex data (Task 2 - random finger movements)
using the model learned with only simple data (Task 1 -
individual finger movements), which demonstrated the ability
of generalization of the proposed model. In addition, the
attention mechanism applied in this study provides the reason
why the proposed model allows for accurate and stable estima-
tion compared to two other models: a simple neural network
and an encoder-decoder network without attention. The color
map results of the attention matrix after training proved that
the learning was proceeded by reflecting the physiological
relationship between the forearm EMG signals and the finger
angles during model training.

ACKNOWLEDGMENT

The authors thank the research participants for their ded-
ication that made this study possible and Yuna Yoo for
discussions about the experimental protocol and the results.

REFERENCES

[1] G. S. Dhillon and K. W. Horch, “Direct neural sensory feedback and
control of a prosthetic arm,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 13, no. 4, pp. 468–472, Dec. 2005.

[2] G. N. Saridis and T. P. Gootee, “EMG pattern analysis and classification
for a prosthetic arm,” IEEE Trans. Biomed. Eng., vol. BME-29, no. 6,
pp. 403–412, Jun. 1982.

[3] I. Vujaklija, D. Farina, and O. Aszmann, “New developments in pros-
thetic arm systems,” Orthopedic Res. Rev., vol. 8, p. 31, Mar. 2016.

[4] N. A. Alibeji, V. Molazadeh, F. Moore-Clingenpeel, and N. Sharma,
“A muscle synergy-inspired control design to coordinate functional
electrical stimulation and a powered exoskeleton: Artificial generation of
synergies to reduce input dimensionality,” IEEE Control Syst., vol. 38,
no. 6, pp. 35–60, Dec. 2018.

[5] D. R. Merrill, J. Lockhart, P. R. Troyk, R. F. Weir, and D. L. Hankin,
“Development of an implantable myoelectric sensor for advanced pros-
thesis control,” Artif. Organs, vol. 35, no. 3, pp. 249–252, Mar. 2011.

[6] T. Tamei and T. Shibata, “Fast reinforcement learning for three-
dimensional kinetic human–robot cooperation with an EMG-to-
activation model,” Adv. Robot., vol. 25, no. 5, pp. 563–580, 2011.

[7] N. A. Alibeji, N. A. Kirsch, and N. Sharma, “A muscle synergy-inspired
adaptive control scheme for a hybrid walking neuroprosthesis,” Frontiers
Bioeng. Biotechnol., vol. 3, p. 203, Dec. 2015.

[8] H. Rehbaum, N. Jiang, L. Paredes, S. Amsuess, B. Graimann, and
D. Farina, “Real time simultaneous and proportional control of multiple
degrees of freedom from surface EMG: Preliminary results on subjects
with limb deficiency,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc., Aug. 2012, pp. 1346–1349.

[9] S. Muceli and D. Farina, “Simultaneous and proportional estimation
of hand kinematics from EMG during mirrored movements at multiple
degrees-of-freedom,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20,
no. 3, pp. 371–378, May 2012.

[10] J. Kim, S. Mastnik, and E. André, “EMG-based hand gesture recognition
for realtime biosignal interfacing,” in Proc. 13th Int. Conf. Intell. User
Interface (IUI), 2008, pp. 30–39.

[11] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang, “A framework
for hand gesture recognition based on accelerometer and EMG sensors,”
IEEE Trans. Syst., Man, Cybern., A, Syst. Humans, vol. 41, no. 6,
pp. 1064–1076, Nov. 2011.



1886 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

[12] E. Rahimian, S. Zabihi, S. F. Atashzar, A. Asif, and A. Mohammadi,
“Surface EMG-based hand gesture recognition via hybrid and dilated
deep neural network architectures for neurorobotic prostheses,” J. Med.
Robot. Res., vol. 5, no. 2, 2020, Art. no. 2041001.

[13] R. N. Khushaba, S. Kodagoda, M. Takruri, and G. Dissanayake, “Toward
improved control of prosthetic fingers using surface electromyo-
gram (EMG) signals,” Expert Syst. Appl., vol. 39, pp. 10731–10738,
Sep. 2012.

[14] Y. Huang, K. B. Englehart, B. Hudgins, and A. D. C. Chan, “A Gaussian
mixture model based classification scheme for myoelectric control of
powered upper limb prostheses,” IEEE Trans. Biomed. Eng., vol. 52,
no. 11, pp. 1801–1811, Nov. 2005.

[15] J.-U. Chu, I. Moon, Y.-J. Lee, S.-K. Kim, and M.-S. Mun, “A supervised
feature-projection-based real-time EMG pattern recognition for multi-
function myoelectric hand control,” IEEE/ASME Trans. Mechatronics,
vol. 12, no. 3, pp. 282–290, Jun. 2007.

[16] E. Rahimian, S. Zabihi, A. Asif, D. Farina, S. F. Atashzar, and
A. Mohammadi, “FS-HGR: Few-shot learning for hand gesture recog-
nition via electromyography,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 29, pp. 1004–1015, 2021.

[17] P. Afshar and Y. Matsuoka, “Neural-based control of a robotic hand:
Evidence for distinct muscle strategies,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), vol. 5, Apr. 2004, pp. 4633–4638.

[18] N. A. Shrirao, N. P. Reddy, and D. R. Kosuri, “Neural network
committees for finger joint angle estimation from surface EMG signals,”
Biomed. Eng. OnLine, vol. 8, no. 1, pp. 1–11, Dec. 2009.

[19] R. J. Smith, F. Tenore, D. Huberdeau, R. Etienne-Cummings, and
N. V. Thakor, “Continuous decoding of finger position from sur-
face EMG signals for the control of powered prostheses,” in Proc.
30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2008,
pp. 197–200.

[20] M. Hioki and H. Kawasaki, “Estimation of finger joint angles
from sEMG using a recurrent neural network with time-delayed
input vectors,” in Proc. IEEE Int. Conf. Rehabil. Robot., Jun. 2009,
pp. 289–294.

[21] J. G. Ngeo, T. Tamei, and T. Shibata, “Continuous and simultaneous
estimation of finger kinematics using inputs from an EMG-to-muscle
activation model,” J. Neuroeng. Rehabil., vol. 11, no. 1, pp. 1–14,
Dec. 2014.

[22] J. Wiens et al., “Do no harm: A roadmap for responsible machine
learning for health care,” Nature Med., vol. 25, no. 9, pp. 1337–1340,
Sep. 2019.

[23] E. Halilaj, A. Rajagopal, M. Fiterau, J. L. Hicks, T. J. Hastie, and
S. L. Delp, “Machine learning in human movement biomechanics: Best
practices, common pitfalls, and new opportunities,” J. Biomech., vol. 81,
pp. 1–11, Nov. 2018.

[24] A. Vaswani et al., “Attention is all you need,” in Proc. NeurIPS, 2017,
pp. 5998–6008.

[25] P. Konrad, “The ABC of EMG: A practical introduction to kinesiological
electromyography,” Ver. 1.4, Noraxon Scottsdale, AZ, USA, 2006,
pp. 5–30.

[26] J. B. Stephansen et al., “Neural network analysis of sleep stages enables
efficient diagnosis of narcolepsy,” Nature Commun., vol. 9, no. 1,
pp. 1–15, Dec. 2018.

[27] T. Lajnef et al., “Learning machines and sleeping brains: Auto-
matic sleep stage classification using decision-tree multi-class sup-
port vector machines,” J. Neurosci. Methods, vol. 250, pp. 94–105,
Jul. 2015.

[28] C. Lugaresi et al., “MediaPipe: A framework for building perception
pipelines,” 2019, arXiv:1906.08172.

[29] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” 2014, arXiv:1406.1078.

[30] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Comput., vol. 12, no. 10,
pp. 2451–2471, Oct. 2000.

[31] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015, arXiv:1508.04025.

[32] A. Fred Agarap, “Deep learning using rectified linear units (ReLU),”
2018, arXiv:1803.08375.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[34] S. K. Dwivedi, J. Ngeo, and T. Shibata, “Extraction of nonlinear
synergies for proportional and simultaneous estimation of finger kine-
matics,” IEEE Trans. Biomed. Eng., vol. 67, no. 9, pp. 2646–2658,
Sep. 2020.

[35] J. Ngeo, T. Tamei, K. Ikeda, and T. Shibata, “Modeling dynamic high-
DOF finger postures from surface EMG using nonlinear synergies in
latent space representation,” in Proc. 37th Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. (EMBC), Aug. 2015, pp. 2095–2098.

[36] E. Tjoa and C. Guan, “A survey on explainable artificial intelligence
(XAI): Toward medical XAI,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 11, pp. 4793–4813, Nov. 2021.

[37] U. Cote-Allard et al., “Deep learning for electromyographic hand gesture
signal classification using transfer learning,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 27, no. 4, pp. 760–771, Apr. 2019.

[38] S. Chambon, M. N. Galtier, P. J. Arnal, G. Wainrib, and A. Gramfort,
“A deep learning architecture for temporal sleep stage classification
using multivariate and multimodal time series,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 26, no. 4, pp. 758–769, Apr. 2018.

[39] P. Wang, A. Jiang, X. Liu, J. Shang, and L. Zhang, “LSTM-based EEG
classification in motor imagery tasks,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 26, no. 11, pp. 2086–2095, Nov. 2018.

[40] D. Zhang, L. Yao, K. Chen, S. Wang, P. D. Haghighi, and C. Sullivan,
“A graph-based hierarchical attention model for movement intention
detection from EEG signals,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 27, no. 11, pp. 2247–2253, Nov. 2019.

[41] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and
S. Leonhardt, “A survey on robotic devices for upper limb rehabili-
tation,” J. Neuroeng. Rehabil., vol. 11, no. 1, pp. 1–29, Dec. 2014.

[42] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2014, arXiv:1409.0473.

[43] B. Guo, Y. Ma, J. Yang, Z. Wang, and X. Zhang, “Lw-CNN-based
myoelectric signal recognition and real-time control of robotic arm
for upper-limb rehabilitation,” Comput. Intell. Neurosci., vol. 2020,
pp. 1–12, Dec. 2020.

[44] N. Parajuli et al., “Real-time EMG based pattern recognition control for
hand prostheses: A review on existing methods, challenges and future
implementation,” Sensors, vol. 19, no. 20, p. 4596, Oct. 2019.

[45] Y. Jiang et al., “Shoulder muscle activation pattern recognition based on
sEMG and machine learning algorithms,” Comput. Methods Programs
Biomed., vol. 197, Dec. 2020, Art. no. 105721.

[46] M. Cracchiolo et al., “Decoding of grasping tasks from intraneural
recordings in trans-radial amputee,” J. Neural Eng., vol. 17, no. 2,
Apr. 2020, Art. no. 026034.

[47] S. Wendelken et al., “Restoration of motor control and proprioceptive
and cutaneous sensation in humans with prior upper-limb amputation via
multiple Utah slanted electrode arrays (USEAs) implanted in residual
peripheral arm nerves,” J. Neuroeng. Rehabil., vol. 14, no. 1, pp. 1–17,
Dec. 2017.

[48] V. Mendez, F. Iberite, S. Shokur, and S. Micera, “Current solutions and
future trends for robotic prosthetic hands,” Annu. Rev. Control, Robot.,
Auto. Syst., vol. 4, no. 1, pp. 595–627, May 2021.

[49] D. W. Kim, J. Kwon, B. Jeon, and Y.-L. Park, “Adaptive calibration
of soft sensors using optimal transportation transfer learning for mass
production and long-term usage,” Adv. Intell. Syst., vol. 2, no. 6, 2020,
Art. no. 1900178.

[50] F. Schiel, A. Hagengruber, J. Vogel, and R. Triebel, “Incremental
learning of EMG-based control commands using Gaussian processes,”
in Proc. Conf. Rob. Learn., 2020, pp. 1137–1146.

[51] R. Mutlu, G. Alici, M. het Panhuis, and G. M. Spinks, “3D printed
flexure hinges for soft monolithic prosthetic fingers,” Soft Robot., vol. 3,
no. 3, pp. 120–133, Sep. 2016.

[52] S. J. Yoon, M. Choi, B. Jeong, and Y.-L. Park, “Elongatable gripper
fingers with integrated stretchable tactile sensors for underactuated
grasping and dexterous manipulation,” IEEE Trans. Robot., early access,
Feb. 7, 2022, doi: 10.1109/TRO.2022.3144949.

[53] L. Jiang, K. Low, J. Costa, R. J. Black, and Y.-L. Park, “Fiber optically
sensorized multi-fingered robotic hand,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Sep. 2015, pp. 1763–1768.

[54] T. Proietti et al., “Sensing and control of a multi-joint soft wearable
robot for upper-limb assistance and rehabilitation,” IEEE Robot. Autom.
Lett., vol. 6, no. 2, pp. 2381–2388, Apr. 2021.

[55] Y.-L. Park et al., “Design and control of a bio-inspired soft wearable
robotic device for ankle–foot rehabilitation,” Bioinspiration Biomimetics,
vol. 9, no. 1, 2014, Art. no. 016007.

[56] J. Kwon, J.-H. Park, S. Ku, Y. Jeong, N.-J. Paik, and Y.-L. Park,
“A soft wearable robotic ankle-foot-orthosis for post-stroke patients,”
IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2547–2552, Jul. 2019.

[57] T. H. Hong, S. H. Park, J. H. Park, N. J. Paik, and Y.-L. Park, “Design
of pneumatic origami muscle actuators (POMAs) for a soft robotic hand
orthosis for grasping assistance,” in Proc. 3rd IEEE Int. Conf. Soft Robot.
(RoboSoft), May/Jul. 2020, pp. 627–632.

http://dx.doi.org/10.1109/TRO.2022.3144949


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


