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Predictive Simulations to Replicate Human Gait
Adaptations and Energetics With Exoskeletons

Anne D. Koelewijn and Jessica C. Selinger

Abstract— Robotic exoskeletons have the potential to
restore and enhance human mobility. However, optimally
controlling these devices, to work in concert with human
users, is challenging. Accurate model simulations of the
interaction between exoskeletons and users may expedite
the design process and improve control. Here, as a proof
of principle, we tested if we could use predictive simula-
tions to replicate human gait adaptations and changes in
energy expenditure from an experiment where participants
walked with exoskeletons.We recreated a past experimental
paradigm, where robotic exoskeletons were used to shift
people’s energetically optimal step frequency to frequen-
cies higher and lower than normally preferred. To match the
experimental controller, we modelled knee-worn exoskele-
tons that applied resistive torques, either proportional or
inversely proportional to step frequency—decreasing or
increasing the energy optimal step frequency, respectively.
We were able to replicate the experiment, finding higher and
lower optimal step frequenciesthan in natural walking under
each respective condition. Our simulated resistive torques
and objective landscapes resembled the measured experi-
mental resistive torque and energy landscapes. Individual
muscle energetics revealed distinct coordination strate-
gies consistent with each exoskeleton controller condition.
Increasing the accuracy of step frequency and energetic
predictions was best achieved by increasing the number of
virtual participants (varying whole-body anthropometrics),
rather than the number of muscle parameter sets (varying
muscle anthropometrics). In future, our approach can be
used to design controllers in advance of human testing,
to help identify reasonable solution spaces or tailor design
to individual users.
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I. INTRODUCTION

THIS decade has seen rapid progress in the development of
assistive devices designed to augment human locomotion.

As early as the 1960s the first robotic exoskeleton prototypes,
which are anthropometric in form and are designed to augment
the user’s movements, were developed [1], [2]. Since then,
advances in robotic hardware and software have allowed for
the development of more sophisticated, light weight, and
intelligent designs [1]–[3]. Exoskeletons are currently being
developed in commercial and academic settings for a wide
range of applications including: restoring bipedal locomotion
for persons with paraplegia or persons post-stroke; enhanc-
ing the locomotor capabilities of military and emergency
personal during load-carriage or complex terrain; reducing
fatigue in unimpaired and older individuals; and providing
robot-mediated physical therapy in a clinical setting [1]–[3].

Understanding how to optimally control exoskeletons dur-
ing gait, to work in concert with a complex human user,
is non-trivial. Given that humans tend to self-select gaits that
minimize metabolic energy expenditure [4]–[7], a common
high-level objective when designing and controlling exoskele-
tons is improved economy [3]. It may seem intuitive enough
that an exoskeleton that mimics biological torques during gait
should reduce the biological, or muscle generated, torque
required at a given joint and in term whole-body energy
expenditure. However, a number of complexities can disrupt
this, including muscles that cross multiple joints, elastic tissues
that store and return energy in different phases of the gait
cycle, complex interactions between the changing dynamics
of the body and the adaptive strategies of the user, and indi-
vidual user differences in both anatomy and neuromechanical
control [8], [9]. These factors perhaps explain why only in the
last decade the ‘metabolic cost barrier’ was broken. That is,
in 2013 Malcolm et al. used an exoskeleton, which applied
assistive plantarflexion torques, to reduce the energy expen-
diture of able-bodied walkers below natural walking [10]. To
achieve this, Malcolm et al. systematically varied the actuator
onset and found that the timing that resulted in the largest cost
savings was later than that predicted based on plantarflexor
muscle activation timing [10]. While this brute parameter
sweeping was effective, its practicality becomes limited for
powered exoskeletons, which have many tuneable parameters
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in each joint, given the walking time and effort required to
test each possible combination. To overcome this, ‘human-in-
the-loop’ optimization methods have recently been developed,
where a continuous measure of the user’s energy expenditure
is fed into a computer search algorithm that then iteratively
adjusts the device settings, in real-time, to minimize energy
expenditure [11], [12]. Using this approach, Zhang et al.
demonstrated the largest energy savings to date—reducing
the cost of walking by 24% ± 7% using a unilateral ankle
exoskeleton [12]. However, like fine tuning based on subjective
feedback or performance of full parameter sweeps, this method
still relies on human testing, often necessitating hours of
walking across multiple testing days.

Accurate and validated simulations of the interaction
between exoskeleton devices and humans during gait have the
potential to improve and expediate device design and control.
Simulations can reduce the need for physical-prototyping of
hardware, which can be costly and require substantial pro-
duction time [13]. Beyond hardware, various control schemes
and parameter settings for a particular device can be tested
in simulation, reducing injury risk and time requirements for
human experimental participants. Simulation even offers the
ability to model individual differences and abilities, potentially
helping to both extend findings and understand likely differ-
ences in clinical populations where the burden of experiential
testing can be greatest [14]. Moreover, simulations can offer
insight into measurements that can be difficult or impossible to
capture during human testing, such as complex muscle-tendon
interactions or individual muscle energy consumption. How-
ever, several limitations can hinder accurate simulation predic-
tions. While the anatomical detail of musculoskeletal models
is ever improving, human anatomy is complex and cannot
be fully characterized [15]. For example, modelling contact
between the human foot and the ground is notoriously difficult
and assumption laden [16], and muscle parameters are often
based on limited in-vitro experimental data [17]. We are also
far from understanding the motor adaptation and learning
processes that govern the human response to novel dynamics
imposed by assistive devices. Despite these limits, we see an
important role for simulation in the design and control of
exoskeletons—one that is used in compliment with experi-
mental testing to narrow the space of reasonable designs and
control parameters.

Inverse dynamic simulations applied to musculoskeletal
modelling have been used to investigate exoskeleton design
and control. In this class of simulations, joint kinematics and
total joint torques are assumed to be unchanged from natural
walking—they are constrained to match experimental data of
walking without an exoskeleton [18]–[20]. Muscle generated
joint torques can change as torques from the device are added,
but total joint torques are fixed, as are joint angles. Van den
Bogert (2003) used this approach to solve for the optimal
geometric configuration of a lower-limb passive exotendon
system that provided the greatest reduction in muscle gen-
erated joint torques [18]. However, an experimental study
of this concept showed that while muscle generated joint
torques decreased, joint angles changed and metabolic cost
of walking was not reduced [21]. Similarly, another group

has comprehensively investigated various actuated assistive
device designs to reduce the metabolic cost of loaded walking
and running [19], [20], but expected cost savings were not
reproduced in accompanying human experiments [22]. The
current discrepancies between inverse dynamic simulations
and real-world human device testing may be because this
approach constrains total joint torques and kinematics, fail-
ing to account for altered limb dynamics and the adaptive
strategies of the user.

Forward dynamic simulations allow joint kinematics and
muscle generated joint torques to change and may therefore
overcome some of the limitations of inverse dynamic sim-
ulations when investigating exoskeletons. Furthermore, this
approach allows for simulations of movements for which no
experimental data is available, so-called predictive simulations.
In this class of simulations, a high-level trajectory optimization
problem is solved, where a periodic gait cycle is found that
minimizes some objective function (or goal) [23]–[26]. The
objective function often contains a number of weighted terms,
such as maximizing smoothness, minimizing torques, and min-
imizing an energy term, be it muscular effort [23], metabolic
energy [24] or both [25]. While these simulations can in
principle be solved without requiring any experimental data,
musculoskeletal model inaccuracies currently prevent many
of these simulations from producing realistic gait without
the use of reference data or expert input. Some researchers
include a tracking term that weights kinematics and kinetics
that are similar to references gait profiles [26], while others
have expertly hand-tuned the objective function to produce a
similar result [25]. Importantly though, these approaches do
not fully constrain kinematics and kinetics, allowing adaptive
strategies to emerge in response to the exoskeleton.

Methods to quickly and accurately solve predictive simula-
tions of musculoskeletal models have only been developed in
the last ten years [23], meaning their application to exoskeleton
design and control has not been fully realized. Predictive
simulations have been used to study other aspects of gait
including, crouch gait in cerebral palsy [27], joint contact
forces in running [28], shoe design on running efficiency [13],
and loading asymmetry in prostheses [26]. A few groups
have used predictive simulations to investigate the optimal
stiffness of passive ankle exoskeletons [14], [29]. However,
these groups greatly simplified the musculoskeletal models,
either limiting actuation to hip torques alone [29] or by not
modeling tendon behavior [14]. Both these studies demonstrate
that optimal gait kinematics and kinetics are likely to deviate
from natural walking patterns in the presence of an assistive
aid. However, accompanying experimental studies were not
performed to validate these model predictions.

An existing limitation of predictive simulations is that they
are often generated for a single set of musculoskeletal model
parameters, limiting generalizability [14], [23]–[26], [29], and
these parameters are often based on limited experimental
data [17]. Recently, different approaches have been used to
try to improve the generalizability of predictive simulations.
Milller et al. (2013) produced simulations for four differ-
ent participants, representing younger and older males and
females [28]. Dorschky et al. (2019) pioneered the use of a set
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of ‘virtual participants’, where height and weight are randomly
drawn from a reference set of participant data and, for each
virtual participant, various sets of muscle parameters are
randomly drawn from distributions that capture the variation
expected in the population [13]. However, solving a large
number of trajectory optimization problems is computationally
costly and time consuming, and it is currently unclear how
many virtual participants are required to make generalizable
conclusions.

Our purpose in this study was to test if we can use predictive
simulations and a virtual participant design to replicate human
gait adaptations and changes in energy expenditure from an
experiment where participants walked with an exoskeleton.
Specifically, we used the predictive simulations to re-create a
past experimental paradigm [4], [30], where robotic exoskele-
tons were used to shift people’s energetically optimal step
frequency to frequencies higher and lower than normally
preferred. In the human experiments, participants adapted
their step frequency to converge on the new energetic optima
within minutes and in response to relatively small savings in
cost [4]. To match the controller in this real-world experiment,
we modeled a knee-worn exoskeleton that applied resistive
torques that were either proportional or inversely proportional
to step frequency—decreasing or increasing the energy optimal
step frequency, respectively. We then performed predictive
simulations of human walking with the device for a set
of virtual participants, which we created to have similar
anthropometric variables to our experimental participants.
We compared our predictions to the experimental data to test
if we could: i. replicate the exoskeleton torque applied at the
knee joint during gait, ii. produce objective landscapes with
optima at high and low step frequencies, and iii. solve for
optimal gaits through adaptations in step frequency. We also
examined individual muscle energetics to offer insight into
distinct coordination strategies adopted in response to the
exoskeleton and investigated the sensitivity of our results to
the sample size of virtual participants used.

II. METHODS

A. Musculoskeletal Model

We used a sagittal plane nine-degree of freedom
musculoskeletal model of the lower limb [26]. The model
consists of seven segments (a trunk, two upper legs, two lower
legs, and two feet) connected via revolute joints. The degrees
of freedom are the position and orientation of the trunk,
flexion-extension of each hip, flexion-extension of each knee,
and dorsiflexion-plantarflexion of each ankle. The model is
actuated by eight muscles in each leg, including: iliopsoas,
gluteals, rectus femoris, hamstrings, vastus, gastrocnemius,
soleus, and tibialis anterior. The muscles are modeled
as three element Hill-type muscles with a series elastic
element, a parallel elastic element, and a contractile element
with activation dynamics, force-length, and force-velocity
properties. Section II-D describes how model parameters
were defined. We calculated individual muscle metabolic
rate using the model by Margaria [31]. Ground contact was
modelled with a penetration-based model [26]. The multibody

dynamics and ground contact model were derived using
Autolev (OnLine Dynamics, Inc., Sunnyvale, CA, USA),
combined with muscle dynamics coded in C, and compiled
as a MEX-function [23], [26].

B. Exoskeleton Model

We then added ideal, massless, exoskeletons to our sim-
ulations by applying torques at the knee joints that resisted
both knee flexion and extension, and thereby added an ener-
getic penalty. We applied two different exoskeleton controller
conditions: penalize-high, where higher step frequencies were
penalized such that the optimal step frequency was lower than
natural, and penalize-low, where lower step frequencies were
penalized such that the optimal step frequency was higher
than natural. We designed these controllers to replicate our
real-world exoskeleton controllers [4].

To accomplish this, we made the applied torque (Mexo)
proportional to step frequency (s) throughout the stride and
proportional to knee angular velocity (q̇knee) within the stride.
To ensure that the exoskeleton torque was penalizing, we deter-
mined its absolute value and multiplied this by the opposite
sign of the knee angular acceleration (q̈knee). The absolute
peak torque was limited to 12 Nm. This yields the following
equation:
Mexo(t) = −sgn(q̈knee(t))

× max

(∣∣∣∣cT cq q̇knee(t)
1

0.25 snat
[s − s0]

∣∣∣∣, 12

)
(1)

where t is time, cT = 3.36 × 10−2 Nm/A is the motor’s
torque constant and cq = 60 C/rad is a constant that represents
the relationship between motor current (A) and knee angular
velocity (rad/s). We set this value by comparing simulated and
experimental resistive torque throughout the stride (Fig. 1AB)
during simulations with nominal muscle parameters. Only this
parameter was tuned in this way and no comparisons were
made with the cost landscapes or level of step frequency
adaptations. The zero-torque step frequency (s0) is set to
−15% of the natural step frequency (snat ) in the penalize-high
condition and +15% of the natural step frequency in the
penalize-low condition. The slope was equal to 1/(0.25 snat )
to model the linear relationship between applied torque and
step frequency. In the penalize-high condition, zero torque is
applied at −15% and the maximum at +10% of the natural
optimal step frequency, while in the penalize-low condition,
zero torque is applied at +15% and the maximum at −10%.
To allow the optimization to be solved with a gradient-based
algorithm, we converted Equation 1 to a twice-differentiable
function, as explained in the Supporting Document.

C. Trajectory Optimization Problems

We generated muscle-driven simulations of walking at
1.3 m/s by solving trajectory optimization problems. The
objective was to minimize: i) a weighted sum of muscular
effort, which was calculated as the cubed muscle stimulation
[32], [33]; ii) a tracking error, which was calculated as
the difference between predicted and literature joint angles
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and ground reaction forces during normal walking [34];
and iii) a regularization term [24], [32]. The weighting ratio
between effort and tracking error was 1000:1, a factor one
hundred times higher than previous work with the same
model [26]. We chose this high ratio to allow simulations to
deviate from tracked data as much as possible, and therefore
adapt step frequency, while still maintaining realistic gaits.
Without the tracking term, the simulations displayed toe-
walking. We included a small regularization term to minimize
the derivatives of the states and controls, which enhances
convergence of the optimization without affecting simulation
accuracy [24], [32]. We assumed symmetry and simulated
only half a gait cycle. This yields the following optimization
problem:

Minimize J = 1000Jef f ort + Jtracking + 1

1000
Jreg (2)

Subject to ẋ(t) = f (x(t), u(t)) ∀ 0 ≤ t ≤ T (3)

x

(
T

2

)
= xsym(0) + v

T

2
xhor (4)

where T is the duration of the gait cycle, and the objectives
Je f f ort , Jtracking , and Jreg are fully described in the Support-
ing Document. Equation 3 describes the dynamics, which are
dependent on the state x = [q q̇ lce a]T , with contractile
element length lce and muscle activation a, and the input
(muscle stimulation, u). Equation 4 denotes the periodicity
constraint, the subscript sym denotes the mirror of the state,
meaning that the joint angles and angular velocities were
switched between the left and right leg, and the subscript hor
indicates the states which should translate horizontally.

We created walking simulations for three conditions: nat-
ural, where no added knee torques were applied by the
exoskeleton, as well as penalize-high and penalize-low, where
each respective exoskeleton controller applied torques to the
knees. We added the applied exoskeleton torques to the torques
generated by the muscle forces. For each condition, we first
optimized step frequency to investigate if we could predict the
energy optimal gait adaptation. This optimal step frequency is
the step frequency where the full objective (Equation 2) is
minimized. Next, we created simulations at a range of fixed
step frequencies (−15% to +15% of the natural optimal step
frequency, at increments of 1%) to generate the landscapes
for all three conditions (natural, penalize-high and penalize-
low). We created a full objective landscape, which is the
full objective function evaluated for the range of fixed step
frequencies, an effort term landscape, which is the effort
term of the objective function alone evaluated for the range
of fixed step frequencies, and the metabolic rate landscape,
which is a sum of the individual muscle metabolic rates (to
estimate whole-body metabolic rate) for the range of fixed step
frequencies. The step frequency was fixed by constraining the
duration of the gait cycle (T = T f ixed ).

To create all simulations, we solved trajectory optimization
problems with direct collocation and a backward Euler dis-
cretization. We used 40 nodes per half gait cycle. We coded the
problems in MATLAB R2018a (Mathworks, NA, USA) and
used IPOPT [35] to solve the resulting large-scale constrained
optimization problem. We first created a simulation of standing

by constraining the derivatives of the degrees of freedom to be
equal to zero: ẋ = f (x, u) = 0 while minimizing muscular
effort, as described in [32]. We repeated this problem with
50 different random initial guesses and used the solution with
the lowest objective. Then, we used standing as an initial
guess to find walking simulations with free, or optimal, step
frequencies in the natural, penalize-high, and penalize-low
conditions. Next, to create the landscapes, for each condition
we first solve for a simulation where the step frequency is
equal to the optimal step frequency in the natural condition.
To find these simulations for each condition, we use the
previously solved walking simulations with free, or optimal,
step frequencies for the same condition as an initial guess.
Next, for each condition, we used the simulation with step
frequency fixed to the natural optimum as an initial guess for
simulations fixed at +1% and −1% of the natural optimum.
For each condition, we then used these solved simulations as
initial guesses to find the simulations fixed at +2% and −2%
of the natural optimum, and we repeated this process until we
reached +15% and −15% of the natural optimum, the full
range of step frequencies for the landscapes [4].

D. Virtual Participant Study

To simulate natural variation between individuals, we cre-
ated a set of 50 virtual participants. We generated anthropo-
metric parameters for each virtual participant by drawing from
distributions of mass and body-mass index (BMI). We set these
distributions to be the same as those measured for our exper-
imental participants: 65.3 ± 9.8 kg (mean ± SD) for mass
and 23.3 ± 2.3 kg/m2 (mean ± SD) for BMI [4]. We used
mass and BMI, instead of mass and height, since mass and
height are dependent variables. Within each virtual participant
we also produce variation in muscle parameters to account
for uncertainty by generating 10 different sets of muscle
parameters (see Supporting Document for additional details).
In total, this yields 48,000 simulations (1 simulation at a free,
or optimal, step frequency + 31 simulations at various fixed
step frequencies for the energy landscape × 3 conditions =
96 simulations; 96 simulations × 10 muscle parameter varia-
tions × 50 virtual participants = 48,000).

E. Analysis

We first identified and removed all simulations of vir-
tual participant and muscle parameter set combinations that
produced at least one unrealistic simulation. We identified
simulations as unrealistic when the difference in metabolic
rate between at least one simulation with fixed step frequency
and free step frequency in the same condition was larger
than 2 W/kg. We further verified these outliers by visual
inspection of the gait cycle, to confirm that the gait was
unrealistic and likely the result of a local minimum. For all
simulated outcome measures, we then averaged across the
remaining muscle parameter variations within each virtual par-
ticipant. We then calculated the mean and standard deviation
of the outcome measures across all 50 virtual participants.
We compared the average height and body mass of our virtual
and experimental participants to ensure they were similar.
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To investigate the quality of predictions from our simulations,
we compared the simulation results to the experimental results
of Selinger et al. (2015) [4]. We determined the coefficient
of determination (R2), between simulation predictions and
experimental data, for the across-stride average and within-
stride torque profiles in the penalize-high and penalize-low
conditions, as well as for the objective, effort, and energy
landscapes in all three conditions. To compare the optimal,
or freely chosen, step frequencies and the accompanying full
objective, effort term, or metabolic rate values between the
experimental and simulated data, we calculated the percent
changes from the natural condition to the penalize-high and
penalize-low conditions. We then compared the means and
standard deviations of theses percent changes between the
experimental and simulated data using two-tailed t-tests with
a significance level of 0.05.

We also investigated the changes in simulated metabolic
rate for individual muscles across the three conditions. For
all three conditions, we generated and compared individual
muscle metabolic rate landscapes, which were the individual
muscle metabolic rates computed for the range of fixed step
frequencies. For simulations with an optimal, or freely chosen
step frequency, we also determined the percent change in
individual muscle metabolic rate between the natural and the
penalize-high and the penalize-low conditions, during both
stance and swing phase. To split individual muscle metabolic
rates throughout the stride into stance and swing, we used
the vertical ground reaction force to determine when the foot
was in contact with the ground. To calculate the relative
contribution of stance and swing to metabolic rate, we divided
by the full duration of the gait cycle, such that the sum of both
was equal to the total metabolic rate.

Finally, we investigated how different virtual participant and
muscle parameter set sample sizes affected our simulation out-
comes. We detail our approach in the Supporting Document.

III. RESULTS

Of the 500 combinations of virtual participants and muscle
parameter sets (50 × 10), we removed 6 that produced
unrealistic simulations. Our remaining virtual participants had
anthropometrics similar to the experimental participants. Vir-
tual and experimental participants had an average height of
1.64 ± 0.16 m (mean ± SD) and 1.67 ± 0.10 m, respectively,
while average body masses were of 63.9 ± 10 kg and
65.3 ± 9.8 kg, respectively. The mean time required to solve
all 96 gait simulations for one virtual participant with one
muscle parameter set was 57 ± 30 minutes, ranging between
35 and 705 minutes. The simulations were solved on a Fujitsu
Celsius M740 workstation with a Xeon E5-16xx processor
with an Ubuntu 18.04.5 LTS operating system.

A. Comparison of Experimental and Simulated Outcome
Measures

Our simulated exoskeleton torques within the stride and
averaged across the stride, resembled that from human exper-
iments (Fig. 1). The coefficients of determination between
the simulated and experimental within-stride torques ranged

between 0.33 and 0.49. For both the penalize-high and
penalize-low controllers, our simulated within-stride torques
better matched experimental when angular velocities were
greater, during late stance and swing (>50% of gait cycle,
Fig. 1AB). During early stance within-stride estimates were
poorer, though still exhibited two moderate peaks. Although
within-stride differences existed in the torque profiles, the
average simulated torques across strides were very consis-
tent with those applied in human experiments (Fig. 1C).
The coefficients of determination between the simulated and
experimental across-stride torques were 0.97 and 0.98 for
the penalize-high and penalize-low conditions, respectively.
The penalize-low and penalize-high conditions exhibited the
desired relationships with step frequency: being negatively
and positively sloped, respectively, and delivering the same
magnitude torque at the 0% step frequency.

The torques applied by our simulated exoskeleton con-
trollers produced full objective, effort term, and metabolic
rate landscapes similar in shape to human experimental
energy landscapes (Fig. 2), though differences existed in the
non-normalized natural optimal step frequencies and metabolic
rates. In all landscapes, the simulated penalize-low controller
produced a negatively sloped gradient about the initial pre-
ferred step frequency (0%) and shifted the optimal gaits to
higher step frequencies, as was the case in the experimental
energy landscapes. The simulated penalize-high controller pro-
duced a positively sloped gradient about the initial preferred
step frequency (0%) and shifted the simulated energy optimal
gaits to lower step frequencies, once again in a manner
consistent with the experimental landscapes. However, in the
full objective landscape the optimal step frequency occurred
at 2.24 Hz, which is higher than the step frequency of the
tracked data and the experimental optima, which were both
1.8 Hz [4], [34]. The effort term and metabolic rate landscapes
in the natural condition had optimal step frequencies that were
both lower than that for the full objective landscape (2.14 Hz
and 2.16 Hz, respectively), but were still high. Moreover, the
simulated energy landscapes predicted metabolic rates that
were notably higher than the experimental metabolic rates
(+0.5 to 1.5 W/kg), as well as smaller relative changes
in metabolic rate under the penalize-high and penalize-low
conditions. Overall, the coefficients of determination, between
the simulated and experimental landscapes, ranged between
0.62 and 0.98 and coefficients tended to be higher for the
penalize-high and penalize-low conditions than the natural
condition.

Like our human participants, our virtual participants
responded to the new landscapes, adapting toward the energy
optimal step frequencies (Fig. 2). Under the penalize-high
and penalize-low conditions virtual participants adapted their
preferred step frequency by −5.7% ± 1.5% and 8.1% ± 3.1%,
respectively (these step frequencies are those that minimize
the full objective). These adaptation magnitudes were both
indistinguishable from those displayed by experimental partic-
ipants in each respective condition (−5.7% ± 3.9%, p = 0.79;
−6.9% ± 4.3%, p = 0.16). In the penalize-high condition, vir-
tual participants’ full objective magnitude at the new preferred
step frequency was 1.9% ± 1.7% lower than the full objective
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Fig. 1. Comparison of simulated (dashed) and experimental (solid) within-stride and across-stride torques. Resistive torques throughout the
gait cycle for the penalize-high condition (A) and penalize-low condition (B) at −10%, 0% and +10% of natural step frequency. This resistive torque
is applied in the direction opposite to the knee angular velocity. Therefore, inflection points close to zero occur when torques switch from resisting
flexion to resisting extension, or vice versa. C. Average torques across the stride for the penalize-high (blue) and penalize-low (red) conditions. The
shading represents one standard error. Note that our simulated controller applies torques based on gait characteristics (Equation 1) that are free to
vary in the predictive simulations (applied torques are not defined inputs and therefore not expected to be identical to experimental).

magnitude at the initial preferred step frequency under the
penalize-high control function (Fig. 2A). For the effort term
the equivalent reduction was 3.6% ± 2.4% (Fig. 2B), while for
the simulated metabolic rate the reduction was 2.5% ± 0.91%
(Fig. 2C). These reductions are smaller than the 8.1% ± 7.0%
reductions in metabolic rate seen in the experiment under the
penalize-high condition (p = 5.77 ×10−13, p = 8.65 ×10−11,
p = 1.87 × 10−8, respectively) (Fig. 2C, [4]). In the penalize-
low condition, virtual participants’ full objective magnitude
at the new preferred step frequency was 2.2% ± 2.1% lower
than the full objective magnitude at the initial preferred step
frequency under the penalize-low control function (Fig. 2A).
For the effort term the equivalent reduction was 2.5% ±
2.5% (Fig. 2B), while for the simulated metabolic rate the
reduction was 1.4% ± 1.0% (Fig. 2C). These reductions are
again smaller than the 4.0% ± 3.8% reductions in metabolic
rate seen in the experiment under the penalize-low condition
(p = 3.7 × 10−9, p = 1.86 × 10−8, p = 1.42 × 10−11,
respectively) (Fig. 2C, [4]). Similar to the experiment, the
simulation predicts that the changes in effort and metabolic
rate in the penalize-low condition are roughly double those
changes in the penalize-high condition, but this was not
observed for the full objective.

B. Effects on Individual Muscle Metabolic Rate

Individual muscle changes in metabolic rate, across the
energy landscapes, offer insight how the exoskeleton con-
trollers produce changes in whole-body metabolic rate. Across
the full landscape (−15% to +15% change in step frequency)
the range of metabolic rates (difference between the minimum
and maximum rate across penalize-high, penalize-low, and
natural) are similar, about 0.3 W/kg, for all muscles except
for the vastus, where the range is 0.6 W/kg (Fig. 3). This
indicates that the vastus has the largest influence on the

whole-body energy landscape, while all other muscles have
a similar, but lower, influence. We also found that individual
muscle changes in metabolic rate across the energy landscape
differed between muscles that cross the knee and those that
do not. Under natural conditions, muscles that cross the knee
(hamstrings, rectus femoris, vastus, and gastrocnemius) tend
to display an optimum (minimum metabolic rate) within the
range of step frequencies in the landscape, while those muscles
that do not cross the knee (iliopsoas, gluteals, soleus, and
tibialis anterior) tend to have a consistently increasing or
decreasing slope across the landscape. Although the steep-
ness of these slopes is altered by the exoskeleton controller
conditions, the direction remains unchanged (i.e iliopsoas
has a positively sloped gradient for natural, penalize-high
and penalize-low conditions). Conversely, for muscles that
cross the knee, the two exoskeleton controllers create slopes
of opposite direction—creating a positively sloped gradient
under the penalize-high condition (decreasing the optimal
step frequency) and a negatively sloped gradient under the
penalize-low condition (increasing the optimal step frequency).
For these muscles, the penalize-high condition tends to create
steeper slopes than the penalize-low condition, the effect of
which is evident in the whole-body metabolic rate landscapes.

An examination of simulated metabolic rate at the individual
muscle level during the stance and swing phase reveals dis-
tinct coordination strategies consistent with each exoskeleton
controller condition (Fig. 4). Our simulated optimal gaits
show changes in muscle metabolic rate not only for mus-
cles spanning the knee, but also muscles crossing the hip
or ankle. In the penalize-high condition, muscle metabolic
rate decreased across more swing muscles, but showed large
increases for muscles crossing the ankle during stance (i.e.
iliopsoas, swing: −9%; tibialis anterior, stance: +15%). This
is consistent with an adaptation toward lower step frequencies,
requiring more work during push off at the ankle to lengthen
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Fig. 2. Comparison of simulated full objective, effort term, and metabolic rate landscapes with experimental metabolic rate landscapes.
Experimental metabolic rate landscapes as well as simulated full objective (A), effort term (B), and metabolic rate (C) landscapes for the natural
(grey), penalize-high (blue), and penalize-low (red) conditions. In all plots, solid lines are simulated data, while dashed lines are experimental data [4].
Squares indicate optimal gaits, that minimize the full objective, for each simulated condition, with error bars representing one standard error, while
the circles indicate experimental optimal gaits for each condition. In C, shading represents one standard error.

steps and relatively less work to swing the limb. In the
penalize-low condition, the opposite was the case; muscle
metabolic rate increased across nearly all muscles during
swing, but showed decreases for many muscles during stance,
particularly the tibialis anterior that crosses the ankle (i.e.
gluteals, swing: +35%; tibialis anterior, stance: −21%). This
is consistent with an adaptation toward higher step frequencies,
requiring more work at the hip during swing and relatively less
work during a shorter stance phase.

C. Virtual Participant Study

We found that both simulated step frequency adaptations
and metabolic rate were primarily affected by the number of
virtual participants, although increasing the number of muscle
parameters sets had an effect at larger virtual participant
numbers (see Supporting Document, Fig. S1).

IV. DISCUSSION

We used predictive simulations and a virtual participant
design to test if we could replicate human gait adaptations
and changes in energy expenditure from an experiment where
participants walked with a knee-worn exoskeleton. We were
able to generate predictive simulations that well-matched
experimental results [4]. While simulated within-stride torques
tended to differ from experimental, particularly during stance,
our simulated torques averaged across the stride were very
similar to experimental. This resulted in full objective, effort
term, and metabolic rate landscapes with optima shifted to
lower step frequencies under the penalize-high controller
condition and higher step frequencies under the penalize-low
controller condition, as desired. Our simulated optimal gaits,
under each condition, displayed step frequency adaptations
consistent with these shifts in optima and indistinguishable
from our past experimental results. Simulated individual mus-
cle metabolic rates provided insight, beyond that available
from experimental data, into what drives whole-body changes
metabolic rate and the new optima. In particular, the slope
of the individual muscle energy landscapes change direction
under the differing controllers only for muscles that cross
the knee. Furthermore, individual muscle stance and swing

costs at the optimal gaits reveal distinct coordination strategies
consistent with adaptations under each exoskeleton controller
condition. Finally, our virtual participant study showed that
increasing the number of virtual participants improved sim-
ulated outcomes much more than increasing the number of
muscle parameter sets.

Although the experimental data were available to us
prior to producing the simulations, we used it sparingly in
order to demonstrate that our approach could be used a priori
to predict human gait adaptations and changes in energy
expenditure in response to an exoskeleton. We defined and
set the values of the terms in the optimization objective
function without comparison to the experimental data. Only
the tracking weight (Equation 2, Jtracking ) was tuned by
comparison to the tracking data (which was not from our
experiment), in order to avoid unrealistic gaits. The virtual
participant anthropometric parameters in our simulations were
drawn from distributions based on experimental participant
measurements. However, in future these distributions could
easily be set based on the expected test populations. Finally,
the formulation of the simulated controller (Equation 1) was
defined using the experimental control algorithm. Only a single
parameter, cq , a constant which represents the relationship
between motor current and knee angular velocity, was tuned
by comparison to the experimental resistive torque throughout
the stride (Fig. 1AB) during simulations with nominal muscle
parameters. No tuning or comparisons were made with the
cost landscapes or level of step frequency adaptations (Fig. 2).
Our approach therefore only requires a good representation
of the applied exoskeleton torque throughout the stride and
an understanding of the expected test population, both of
which are often prescribed or well characterized prior to an
experiment. In future our simulation approach could be used
to both predict a human response to a pre-defined exoskeleton
controller or to iteratively test a range of controllers in order
to identify one that generates a desired human adaptation (i.e.
desired spatiotemporal change to gait, or greatest reduction in
metabolic cost).

Our use of predictive simulations is not without its lim-
itations. While trends in metabolic rate and step frequency
adaptations were similar between simulation and experiment,
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Fig. 3. Simulated individual muscle contributions to energy land-
scapes. Simulated muscle metabolic rate across step frequency for the
penalize-high (blue), penalize-low (red) and natural (grey) conditions.
In all plots, solid lines show the average metabolic rate, across 50 virtual
participants, while the faded fills show one standard error. All muscle
y-axes span the same magnitude range (0.3 W/kg), accept the vastus,
which spans 0.6 W/kg.

magnitudes differed. Across all landscapes, our model pre-
dicted metabolic rate was often 0.5-1.5 W/kg higher than
that measured experimentally. This is not unexpected. Various
metabolic models often produce reliable and reproducible
relative changes in metabolic rate, but magnitudes can vary
widely between models [36], [37]. In particular, the commonly
used Margaria metabolic model we implemented [31] has been
shown to produce estimates that tend to be higher than other
models [36]. Furthermore, energy dissipation related to the
backward Euler formulation can partly explain the increased
energy expenditure in simulation. To investigate this, we varied
the number of nodes between 20 and 500 and found that
simulated metabolic rate decreased with increasing nodes,
up to a plateau at roughly 200-300 nodes. At the plateau
metabolic rate was decreased, by about 0.5 W/kg, bringing
it closer to the experimental metabolic rate, yet still elevated
(in some conditions by up to 1 W/kg). While increasing the
number of nodes improves the absolute energy expenditure

estimate, it comes with great computational cost. We also
found that the step frequency that minimized the full objective
under the natural condition was higher than that observed
experimentally (2.24 Hz vs. 1.8 Hz, respectively). Interest-
ingly, the step frequencies that minimized effort (2.14 Hz)
and metabolic rate (2.16 Hz) alone were more closely aligned
with the experimental, indicating that the tracking term in the
full objective favored higher step frequencies, even though
the step frequency of the tracked data (1.8 Hz) matched the
experimental step frequency. A possible explanation is that our
2D musculoskeletal model does not allow for pelvic rotation,
which might result in a smaller optimal step length, and
thereby an increase in step frequency. Although removing the
tracking term entirely would cause gait simulations to become
more inaccurate [24], we set the weight of the tracking term
to be as small as possible to minimize this effect. We also
explored removing the hip angle from the tracked variables
(which we expect to be most correlated with step frequency)
and including a term to minimize metabolic rate instead of
effort in the objective using the model described in [24].
However, in both cases we found that the step frequency that
minimized the full objective remained higher than the step
frequency that minimized the effort or metabolic rate term.

Simulated individual muscle energetics can offer insight
into full-body energetics and the resulting gait adaptations.
First, individual muscle energy landscapes revealed that the
slope of the energetic gradient changed direction under the
two controller conditions only for muscles that cross the knee.
This indicates that the optimal step-frequencies in the penalize-
high and penalize-low conditions are largely driven by the
energetics of these knee-crossing muscles. These muscles
favor a change in step frequency towards a lower resistive
torque, while the hip- and ankle-crossing muscles favor a
higher or low step frequency independent of the controller
condition. However, this is not to say that muscles crossing
the hip or ankle do not adapt activity and display changes
in metabolic rate. While their slope direction remains largely
unchanged, their slope steepness, magnitude and timing of
expenditure during gait phases do change under the controller
conditions. This indicates that exoskeleton torques are not
simply counteracted or offset, but rather the predictive simula-
tions solve for complex and adaptive lower limb coordination
strategies. In particular, we observed changes in individual
muscle energetics consistent with: i) an adaptation toward
higher step frequencies, requiring more work at the hip during
swing and relatively less work during a shorter stance phase
and ii) an adaptation toward lower step frequencies, requiring
more work during push off at the ankle to lengthen steps and
relatively less work to swing the limb [38]. Finally, individual
muscle metabolic rates may explain why we find a steeper
whole-body energetic gradient in the penalize-high condition
compared to the penalize-low condition, in both simulation and
experiment. It is muscles that cross the knee that drive these
steeper slopes; the individual muscle energetic gradients are
steeper under the penalize-high than penalize-low condition.
This appears to be because under the penalize-high condition,
the highest resistive torques are applied during high step
frequencies, when knee angular velocity is relatively higher.
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Fig. 4. Effects of exoskeleton on simulated individual muscle metabolic rate. Average muscle metabolic rate, during stance (left, standing
leg) and swing phase (right, swinging leg), in W/kg for the natural condition (A), and relative to natural for the penalize-high (B) and penalize-low
(C) conditions for simulations with free step frequency.

Conversely, under the penalize-low condition, the highest
resistive torques are applied during low step frequencies,
when knee angular velocity is relatively lower. High resistive
torques applied to muscles moving at higher velocities in turn
produce greater muscle work and therefore greater changes
in metabolic rate. This leads to a higher cost at +10% step
frequency under the penalize-high condition than at −10%
step frequency under the penalize-low condition. Another
possible contributor is that exoskeleton resistive torques are
proportional to knee angular velocity. This occurs in the
physical exoskeleton because we used the motor as a generator,
where rotational motion induces a voltage in the motor’s
windings and in turn a current that generates a magnetic field
that resists the motion of the knee [39], [40]. At low veloc-
ities, current and therefore resistance, cannot be generated.
Our simulated controller replicated these effects. Therefore,
in both simulation and experiment, lower torques are applied
at −10% in the penalize-low condition than at +10% in
the penalize-high condition. Although validating individual
muscle energetic predictions is not possible, future studies that
leverage experimental motion capture and electromyography
could allow for additional comparisons to assess these metrics.

Our virtual participant study revealed that adding virtual
participants tends to improve simulation outcomes more so
than adding muscle parameters. However, at larger numbers
of virtual participants, additional muscle parameter sets can
meaningfully improve accuracy. When starting with one
virtual participant and one muscle parameter set, a 50%
reduction in outcome measure RMS error (for example
from 4% to 2%) can be achieved by adding roughly 5-10
virtual participants. It is not possible to consistently achieve
this same reduction by adding additional muscle parameter
sets alone. For most predictive simulation studies, using
one muscle parameter set per virtual participant appears

to create sufficient variation in the dataset, without adding
unnecessary computational cost. However, accuracy can
still be improved with a larger muscle parameter set size,
especially when the number of virtual participants is large.
For example, if 50 virtual participants are included, a 50%
reduction in outcome measure RMS error (for example from
0.3% to 0.15%) can be achieved by adding roughly 1-5
muscle parameter sets. Therefore, in studies where expected
differences in outcome measures are on the order of 1% or
less, for example when detecting metabolic rate differences
between running shoe designs [13], using a larger number of
muscle parameter sets could meaningfully improve accuracy.

Our predictive simulation approach has a number of fun-
damental and applied uses. Fundamentally, it can be used
to further investigate aspects of human optimization that
are inherently difficult to test experimentally. For example,
we can systematically alter the weighting of objectives to
predict and potentially understand the effect on gait adaptation.
We can also implement physiologically realistic optimization
algorithms, such as reinforcement learning, to understand how
humans may adapt and learn gaits over time. In a more applied
sense, our approach can be used to explore strategies for
improved exoskeleton design and control. While here we used
experimental results to validate our predictive simulations,
in future we can do the opposite, designing and iterating
controllers in advance of human testing to help identify
reasonable solution spaces. Our ability to simulate diverse
participant pools may also allow us to tailor controller design
based on individual users’ abilities or disabilities.
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