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Joint-Channel-Connectivity-Based Feature
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Abstract— Stress is one of the contributing factors affect-
ing decision-making. Therefore, early stress recognition
is essential to improve clinicians’ decision-making perfor-
mance. Functional near-infrared spectroscopy (fNIRS) has
shown great potential in detecting stress. However, the
majority of previous studies only used fNIRS features at
the individual level for classificationwithout considering the
correlations among channels corresponding to the brain,
which may provide distinguishing features. Hence, this
study proposes a novel joint-channel-connectivity-based
feature selection and classification algorithm for fNIRS to
detect stress in decision-making.Specifically, this approach
integrates feature selection and classifier modeling into
a sparse model, where intra- and inter-channel regulariz-
ers are designed to explore potential correlations among
channels to obtain discriminating features. In this paper,
we simulated the decision-making of medical students
under stress through the Trier Social Stress Test and the
Balloon Analog Risk Task and recorded their cerebral hemo-
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dynamic alterations by fNIRS device. Experimental results
illustrated that our method with the accuracy of 0.961 is
superior to other machine learning methods. Additionally,
the stress correlation and connectivity of brain regions
calculated by feature selection have been confirmed in
previous studies, which validates the effectiveness of our
method and helps optimize the channel settings of fNIRS.
This work was the first attempt to utilize a sparse model
that simultaneously considers the sparsity of features and
the correlation of brain regions for stress detection and
obtained an admirable classification performance. Thus,
the proposed model might be a useful tool for medical
personnel to automatically detect stress in clinical decision-
making situations.

Index Terms— Functional near-infrared spectroscopy,
stress detection, decision-making, sparse model.

I. INTRODUCTION

STRESS is regarded as one of the major factors affecting
human decision-making. It is a response that an organ-

ism produces when stimulated by real or potential threats,
accompanied by the psychological experiences of tension and
anxiety [1]. Stress has been proved to weaken the goal-
oriented ability, increase the habitual behaviors, lead to a
more intuitive experience system, and enhance the existing
cognitive bias of individuals [2]. Therefore, stress may cause
unavoidable consequences in daily life and work, especially
in emergency situations. For instance, decision-makers in the
medical field, such as doctors, paramedics, and nurses, often
make decisions that affect patient morbidity and mortality [3].
Medical staff in high stress situations are more likely to
exhibit poor performance compared with people in low stress
situations [4], [5]. Fortunately, early cognitive aid for medical
staff can be used to reduce the influence of stress on their
decision performance. For example, Wetzel et al. [6] found
that resident trainee surgeons who participated in a “stress
management training” course can reduce the stress experienced
and improve non-technical skills, including decision-making,
in their simulated surgery. Hence, stress detection and manage-
ment at an early stage may help improve clinicians’ decision-
making performance.

Stress response is composed of many aspects, such as
physiology, psychology, and behavior; thus, stress can be
measured from these aspects. Medical questionnaires, such as
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the State-Trait Anxiety Inventory [7] and the Perceived Stress
Scale [8], generally utilized to assess stress level. Neverthe-
less, this approach lacks objectivity [9]. In the physiological
aspect, stress can activate the sympathetic adrenal medullary
system and the hypothalamus–pituitary–adrenocortical axis,
which triggers a series of cardiovascular reactions, including
increased heart rate (HR), blood pressure (BP), and bioelectric-
ity [10], and leads to the secretion of the cortisol [11]. Cortisol
can cross the blood–brain barrier, bind to receptors in the
central nervous system, affecting brain function and structure
[12]. Therefore, a large number of studies have detected stress
by measuring HR variability [6], BP [13], and saliva cortisol
levels [14]. However, these methods are influenced by circa-
dian rhythms and cardiovascular diseases [15], [16]. Moreover,
salivary cortisol levels is not practical to measure in real time
at work. By contrast, evaluating stress by brain signals through
electroencephalography (EEG), functional magnetic resonance
imaging (fMRI), and functional near-infrared spectroscopy
(fNIRS) yields objective and reliable results. fNIRS is a
relatively new imaging method in functional neuroimaging
research. This imaging modality uses infrared waves in the
frequency range of 650–900 nm and then employs the modi-
fied Lambert–Beer law to calculate the relative concentration
changes of two hemoglobin forms (oxygenated hemoglobin
[HbO] and deoxygenated hemoglobin [HbR]). fNIRS can non-
invasively detect changes in cerebral blood oxygen levels for a
long time; thus, it has a wide range of applications in advanced
cognition, developmental psychology, and mental illness in
natural situations [17]. fNIRS has better spatial resolution and
is less affected by noise than EEG [18] and is more portable
and cheaper with less restriction on patients’ movement than
fMRI, thus, fNIRS is more suitable for the measurement of
cerebral blood oxygen in natural situations [19].

The conventional methodology for fNIRS analysis is uni-
variate statistical analysis, which investigates the difference
in hemodynamic alterations among different populations by
using a single feature of fNIRS signals, such as HbO changes
[20]–[23]. For example, Tang et al. [22] graded different
types of mental stress using the mean HbO value mea-
sured by fNIRS during the Montreal Imaging Stress Task,
whereas Zhang et al. [23] used the same task to reveal the
context-dependent response patterns of women to psychosocial
stress during dynamic social interactions. Differences between
people in stress and nonstress states can be exploited by
these methods. However, these methods ignore the underlying
hemodynamic features, which may affect the low detection
accuracy of stress. Besides, these methods cannot provide
a general model to recognize whether a new subject is in
stress or not. Thus, multivariate machine learning techniques,
which show great promise in disease modeling and therapeutic
discovery in psychiatry, have been used as a complement
to traditional methods [24]. In previous studies [25]–[27],
support vector machine (SVM), linear discriminant analysis
(LDA), and decision trees have been applied on fNIRS data
to identify specific mental and cognitive tasks for diagnosis
or treatment. In the majority of these studies, the statistical
characteristics of active channel signals corresponding to the

brain region in each trial, such as average, peak, slope,
and kurtosis values, can be used as classification features.
For instance, Woo et al. [25] used LDA to distinguish the
difference in fNIRS signals under different stress states with a
classification result reaching 76.67%, whereas Park et al. [26]
used SVM to deal with the same problem and achieved
87% classification accuracy. These results are promising, but
exploration by machine learning still has some limitations. For
example, the abovementioned methods require feature selec-
tion in advance to solve the problem of feature redundancy.
Moreover, few studies have considered the relationship among
the characteristics of channels corresponding to brain regions.
According to previous studies [28]–[30], the human brain is a
complex dynamic interactive system. Many brain regions are
interconnected in structure and function, and work together
to ensure effective information processing and interaction.
For this reason, considering the associated brain information
may be conducive to the identification of specific cognitive
states.

In this paper, we propose a novel joint-channel-connectivity-
based feature selection and classification (JCCB-FSC) algo-
rithm for detecting stress in the decision-making process.
Notably, the main contributions of this work are three-fold.
First, Trier Social Stress Test (TSST) [31] and Balloon
Analog Risk Task (BART) [32] are designed as experimental
paradigms to simulate the decision-making of medical staff
under different stress conditions. Different from the experi-
mental paradigms used in previous studies [22], [23], [25],
the proposed paradigms are more in line with the actual
state of medical staff’s decision-making situation. Second,
a sparse model widely used in many studies [33], [34], was
applied to simultaneously implement classification and feature
selection. Specifically, we devised two regularization terms
(intra- and inter-channel regularizers) for the sparse model to
explore the potential associations that induce discriminative
representations in brain feature space. On the one hand,
feature representation is more compact and distinguishable
by the intra-channel regularizer. On the other hand, potential
correlations among brain regions can be explored by the inter-
channel regularizer. Finally, the experimental results show
that our proposed method can make accurate predictions
and find brain regions highly associated with stress, which
helps optimize the channel settings of fNIRS. The proposed
method is the first foray into incorporating a sparse model
that considers the sparsity of features and the correlation of
brain regions simultaneously for stress detection via fNIRS
and obtained a great performance. Overall, the proposed model
might be used as a potential computer-aided classification
tool to perform automatic stress detection for medical staff
in the clinical decision-making situation, which may help
relieve stress and avoid decision-making errors in time through
customized stress training and cognitive aids.

The rest of this article is organized as follows.
Section 2 describes the experimental paradigms used in
this study and introduces our proposed method in detail.
Section 3 presents the experimental results. Sections 4 and
5 provide discussions and conclusion, respectively.
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Fig. 1. Flowchart of the proposed framework for stress detection in decision-making. (a) shows the data acquisition process of participants in
different groups (stress/control). (b) includes the process of data preprocessing, data augmentation, and feature extraction. (c) displays the modeling
of the proposed method for stress detection, and brain analysis.

II. MATERIALS AND METHOD

The proposed method consists of three parts, which are
illustrated in Fig. 1. In the first part (Fig. 1 (a)), TSST and
BART were designed as experimental paradigms to collect the
cerebral hemodynamic signals of participants through fNIRS
device. In the second part (Fig. 1 (b)), the obtained fNIRS
signals were preprocessed and clipped for data augmentation,
and then features were extracted from these signals. In the
third part (Fig. 1 (c)), the extracted features were further
selected by using JCCB-FSC for stress detection, as well as
the stress-associated brain regions and the connections of the
detected brain regions.

A. Participants
The participants included 24 healthy college students

(6 males, 18 females; age 19-24) who major in medicine
and speak Chinese as their mother tongue. Participants with a
history of head injury or neurological disorders were excluded.
In this study, participants were randomly divided into a stress
group (2 male, 10 female) and a control group (4 males,
8 females). Stress was induced by TSST on participants in
the stress group. Specifically, we used the Short State Anxiety
Inventory (SSAI) [35] and HR recorded by E4 wristband to
assist in determining whether the participants are in stress or
not. The SSAI and HR of the participants were measured
at different time points, including baseline, after TSST/rest
(BART beginning), and after BART. Then, the stress-induced
effects were determined by repeated-measures analysis of
variance (ANOVA). This study was approved by the ethics
committee of Southern Medical University. After the study
details were fully disclosed, all participants signed the written
informed consent. All participants received a certain amount
of remuneration in the end of the experiment.

Fig. 2. Experimental process of BART. Twenty trials were conducted, and
each trial involved three processes, namely, decision-making, feedback,
and rest. In the feedback, (a) and (b) show the negative result and positive
results, respectively.

B. Stimuli and Procedure
At the beginning of the study, all participants filled out

the SSAI and were informed that they might be asked to
participate in a mock interview. However, only participants
in the stress group received a detailed description of TSST
after completing the questionnaires. They were told that they
needed to undergo a job interview without preparation time
and their performance was recorded by video. The video was
then evaluated by interviewers in the department. Thereafter,
the participants would fill out the SSAI again. The nonstress
condition group did not receive such instructions but also filled
out the form for the second time.

Subsequently, the participants were subjected to a BART
experiment. Fig. 2 displays the experimental process of BART.
In BART, participants inflate 20 computer-simulated balloons
by pressing buttons. A certain amount of money can be
earned by each pump. However, the risk of balloon explosion
increases as the number of pumps increases. If the balloon
explodes, the money earned so far will be lost. Given that
decision-making in daily life includes the potential for reward
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TABLE I
DISTRIBUTION OF BRAIN REGIONS CORRESPONDING TO EACH CHANNEL

Fig. 3. SSAT scores and HR of subjects in baseline, after TSST (stress
group) or rest (control group), and after BART. ∗ indicates that there is
significance between the two groups (p < 0.05).

and loss [36], this task is an ecologically effective paradigm to
simulate adventures under experimental conditions, which can
be transferred to risky behavior in real life [37]. At the end
of the experiment, participants filled out the SSAI again, and
the interviewers answered the questions that the participants
wanted to know during the experiment. We recorded the hemo-
dynamic responses of the participants with a continuous wave
system (NIRScout) throughout the experiment. To test the
effectiveness of stress induction, repeated measures ANOVA
was performed on the SSAI and HR. The results showed that
the main effect of time (p = 0.003) and the main effect of
stress ( p = 0.026) in SSAI, and the main effect of time ×
stress ( p = 0.04) in HR were significant. In addition, as shown
in Fig. 3, the SSAI score and HR of the stress group after
the end of TSST were significantly higher than that of the
control group (p = 0.006; p = 0.036) whereas there was no
significant difference at baseline ( p = 0.814; p = 0.596) and
the end of BART (p = 0.179; p = 0.565).

The NIRScout (NIRx, USA) system with two wavelengths
(785 and 830 nm) was used to record cortical hemodynamic
changes in the prefrontal cortex area, which is highly corre-
lated with stress [12]. Fig. 4 shows the source and detector
array of the fNIRS device and the channel configuration
registered to the template of the Brodmann area [38]. The
sensor consists of eight dual-wavelength laser diodes and seven
detectors to form 20 channels, and the distance between each
transmitter and receiver was set to 3 cm at a sampling rate of
7.8125 Hz. The distribution of brain regions corresponding to
each channel is listed in Table I.

C. Data Preprocessing and Feature Extraction
The optical intensity time–response curves were pre-

processed using nirsLab software provided by NIRScout,
where the noise and motion artifacts were eliminated by
advanced standard procedures. Channels with a coefficient

of variation higher than 7.5% were pruned. A third order
band-pass filter with a bandwidth of 0.01–0.2 Hz was designed
to reduce noise contamination of the signal. Subsequently, the
modified Beer–Lambert law was utilized to convert optical
density into HbO and HbR concentrations.

As shown in Fig. 2, each participant underwent 20 trials,
and each trial was partitioned into three phases: the decision-
making phase (0–10 s, the participants decided whether to
inflate the balloon or not), the feedback phase (10–13 s,
the participants accepted the result of their decision), and
the rest phase (13–28 s, the hemodynamic response returned
to baseline). For data augmentation, we divided the data
recorded by fNIRS of each participant into 20 independent
samples in accordance with trial duration. In each sample,
we extracted six statistical features (e.g., average, peak, slope,
kurtosis, maximum, and minimum) of two biomarkers (i.e.,
HbO and HbR) from each channel. Specifically, the statis-
tical features [37], which capture the descriptive informa-
tion of the signals, were applied to detect stress. Due to
the inter-individual variability of signal features, we adopted
Z-score normalization to normalize the feature values extracted
from each subject to the same scale. In this study, TSST
was used as the factor for stress. We labeled the stress and
nonstress samples in accordance with whether the participants
underwent TSST or not. Although the SSAI scores and HR
in the stress group were reduced after BART, previous studies
showed that the stress effect induced by TSST would last for
a period of time. Specifically, the cortisol level, a specific
response to stress, will reach its peak in a period of time
(10–30 min) after TSST ends, whereas the subjective scores
of stress and HR reach their peak at the end of TSST and
then drop to around their baseline after 10 minutes, which
are consistent with our measurements (e.g., SSAI and HR).
To some extent, stress still exists in BART which lasted
10-15 minutes. Note that we only used the first 18 trials of
each participant’s data in consideration of the subside effect of
stress. Finally, we obtained a dataset with a sample size of 432
(i.e., 24 subjects and 18 trials in each subject: 24 ×18 = 432)
and 240 extracted features in each sample (i.e., 20 channels
and 6 features of HbO and HbR signals in each channel,
respectively: 20 × 6 × 2 = 240).

D. JCCB-FSC

Herein, bold capital letters can be used to denote matrices,
and bold lowercase letters can be assigned to vectors. In par-
ticular, we arranged the fNIRS feature vectors in a matrix X ∈
Rq×n and their respective label (the task version performed by
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Fig. 4. Optode placement and channel configuration of fNIRS device. (a) shows the source and detector array of fNIRS device, and (b) shows
channel distribution registered to the brain.

participants, stress or nonstress) in y ∈ Rn , where q and n are
the feature dimension and number of samples, respectively.
In addition, �X�2

2 = �
i
�

j x2
i j and �X�1 = �

i
�

j

��xi j
��

represent l2 and l1 norms of X, respectively, where xi j

denotes the elements in the i -th row and j -th column of the
matrix X.

1) Sparse Feature Selection Model: Feature selection refers
to the process of selecting a subset of distinguishing fea-
tures from the original features to best construct a model
for classification or regression. Among the feature selection
methods, sparse feature selection [39] with simplicity and
superior performance has attracted widespread attention in
recent years.

Sparse feature selection in this study aims to minimize the
following goals to obtain a representation of the samples using
the best weight vector w ∈ Rq :

min
w

���y − wT X
���2

2
+ λ �w�1 (1)

This weight vector is constrained by l1 norm to obtain
a compact set of discriminative features. However, the data
distribution must be assumed in advance during the process of
linear regression; in many cases, the assumed distribution is
inaccurate. Moreover, the associated information among brain
regions is discarded in (1).

2) Object Function: In order to build a more flexible and
robust model, we propose a joint-channel-connectivity-based
feature selection and classification algorithm. The object func-
tion is expressed as follows:

min
w

n�
i=1

(−yi wT xi + ln(1 + ewT xi )) + λ1 �w�1

+ λ2 �w�2,1 + λ3wT Lw. (2)

To solve the limitation of a simple linear model, we used
a logistic function y = 1

1+e−wT X
to connect the true label y

of the classification task with the predicted value of the
linear regression model, and then estimated w through the
maximum likelihood method. Given that fNIRS data were
collected by multiple channels, some potential group structure
information of channels were ignored by (1). To address this
issue, we added a l21 norm denoted by (3) to make the

feature representation more compact by considering the group
information of channels. In (3), 20 groups (channels) were
included, and each group has a weight vector corresponding
to the 12 features of each channel. Therefore, the l21 norm
enforces group-wise sparsity, which indicates that features at
the group level will be selected or unselected simultaneously.

�W�2,1 =
�

i
�wi�2 =

�
i

��
j
w2

i j (3)

Furthermore, taking association information among brain
regions into consideration, we introduced a connection-based
penalty item [33], which is formulated as follows:

P(w) = wT Lw (4)

where L is the Laplacian matrix of the connection matrix of
fNIRS features. The Laplacian matrix is defined as L = D−C,
where C is the connection matrix of fNIRS features, and D is
the degree matrix of matrix C. Each element of C ∈ Rq×q is
calculated by (5).

Ckl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

n�
i=1

(xik − xk)(xil − xl)�
n�

i=1
(xik − xk)

n�
i=1

(xil −xl)

⎤
⎥⎥⎥⎥⎦

2

, k �= l

0 , k1 = l

k, l =1, 2, . . . , q

(5)

In conclusion, feature sparsity at the individual level and
group level, and the potential information of brain connectivity
are incorporated into the proposed method. Therefore, features
that play an important role in the classification task can be
detected by (2).

3) Optimization Algorithm: The minimum of the loss func-
tion should be obtained to effectively solve the problem of
formula (2). The loss function can be defined as:

L(w) =
n�

i=1

(−yi wT xi + ln(1 + ewT xi )) + λ1 �w�1

+ λ2 �w�2,1 + λ3wT Lw. (6)
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To find the minimum of (6), the gradient descent method
was applied to update the variables. Specifically, we calculated
the derivative of the loss function with respect to w as follows:

∂L(w)

∂w
= −

n�
i=1

xi (yi − ewT xi

1 + ewT xi
)

+ λ1D1w + λ2D2w + 2λ3Lw. (7)

In (7), D1 ∈ Rq×q is a diagonal matrix, in which the
i -th diagonal element is1/

��wm,i
��

2, where m represents the
corresponding channel. D2 ∈ Rq×q is also a diagonal matrix,
of which i -th diagonal element is 1/ �wi�2. The iteration
formula of w is

wk+1 = wk+1 − α
∂L(wk)

∂wk
(8)

where α represents the search step in the gradient direction.
When L(wk+1) −L(w) < 10−5, the iteration will be stopped,
and the final optimized weight w will be obtained.

III. EXPERIMENT RESULTS

In this section, we compared the performance of stress
and control groups in BART and then quantified the per-
formance of our algorithm by detecting stress in decision-
making. For stress detection, we first adjusted parameters of
the model, and then we verified the role of each regularizer
in JCCB-FSC. Subsequently, we compared our approach with
various machine learning methods such as k-nearest neighbor
(KNN), LDA, SVM, and random forest (RF). In particular, two
feature selection techniques based on mutual information (MI)
and Relief-F [40], [41] were applied before the four compari-
son methods, respectively. All methods, including the compar-
ison methods and ours, used the same strategy for parameter
tuning and model training. Finally, the effectiveness of feature
selection would be validated. A nested 10-fold cross-validation
strategy was applied for the evaluation of the proposed method.
Specifically, for the external loop, we divided the dataset
into 10 similarly sized subsets through hierarchical sampling.
In each run, samples in a subset were selected successively as
the test set, while the remaining subsets were combined as the
training set for model training and parameter tuning. The final
results were obtained from the mean results of each run. For
the inner loop, the training set was further divided into training
and validation parts. The proposed method with different
parameter values can be trained in the training part, and
the parameters with optimized mean results in the validation
part were selected to obtain the optimized model for testing.
Similarly, the comparison methods used the same strategy
to obtain the optimal feature subset and the optimal model
in the training set, and further evaluated the performance
of the model in the test set. Given that each participant
has 18 trials, we split different subsets in accordance with
participants to prevent overestimating different methods. For
example, 22 subjects were in the training set and two subjects
were in the test set, so the sample sizes of the training and
test sets were 396 (22 × 18 = 396) and 36 (2 × 18 = 36),
respectively. Accuracy was used as measurements during the
process. The code of JCCB-FSC is available at the code
sharing site (https://github.com/Meiyan88/JCCB-FSC).

A. Results From Behavioral Measure

According to previous studies [42], [43], we computed the
mean and standard deviation of BART behavioral data (i.e.,
the total number of “wins” and “losses”, average adjusted
inflations per “win” and “lose” balloons, and total earnings).
Additionally, tests of normality (Kolmogorov-Smirnov tests)
were conducted on BART behavioral data. The differences
between the two groups were assessed using one-way ANOVA
on normally distributed behavioral data and independent sam-
ples Mann–Whitney U test for non-normal data. Total and
group-specific (stress/control group) BART descriptive data
are presented in Table II. All behavioral data were normally
distributed except the average adjusted inflation “win” balloon,
for which stress differences were calculated in their corre-
sponding way, as noted in Table II. There were no statistically
significant stress differences in the number of “win” or “lose”
balloons (p = 0.10). However, compared with the stress group,
the control group did perform significantly more balloon
inflations which led to a win (U = 34.0; z = −2.18; p =
0.03). Although there was no significant stress difference in
the number of total earnings (p = 0.44), the statistical results
also showed that the control group made more money than
the stress group (control group: 86.79 ± 32.33; stress group:
73.58 ± 60.95).

B. Parameters Selection

In the JCCB-FSC model, three parameters, namely, λ1, λ2,
and λ3, were designed to control the trade-off between the
sparsity of feature selection and the degree of connectivity
contribution of brain regions, which would be optimized
within the internal loop in the training set. To evaluate the
effects of λ1, λ2, and λ3 on the performance of JCCB-FSC,
we tuned the optimal parameters through grid search from
the following finite set: [10−5, 10−4, 10−3, 10−2, 10−1, 100,
101]. Fig. 5 shows the accuracy result of different parameter
sets, where we found that the best λ1, λ2, and λ3 falls in
the range of [10−4, 10−3], [10−2, 10−1], and [10−4, 10−2],
respectively. Then, final results of test set were obtained by
using the optimal parameters.

C. Ablation Experiments

To verify the effect of each regular term, we removed
one regular term at a time to observe the changes in the
performance of the entire model. Table III shows that the
accuracy of stress detection during decision-making slightly
decreased when one of the regular terms was removed. In par-
ticular, when the connectivity-based penalty was removed, the
accuracy of JCCB-FSC decreased more obviously, indicating
the importance of considering connectivity of brain regions.

D. Comparison With Other Methods

To evaluate the proposed method, we compared the per-
formance of the JCCB-FSC model with four competitive
machine learning techniques, (i.e., KNN, LDA, SVM, and RF).
Table IV displays the classification performance. We found
that the proposed method attained the highest classification
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TABLE II
BART BEHAVIORAL DATA

Fig. 5. ACC results of different parameter settings.

TABLE III
STRESS DETECTION ACC OF JCCB-FSC IN ABLATION EXPERIMENTS

accuracy (0.961 ± 0.044) among all methods. This finding
showed that considering the associated information of brain
regions and making the feature representation more compact
may be more conducive to identifying specific cognitive
states. Between the two feature selection methods applied
to our dataset, the feature subset selected by the Relief-F
algorithm was more suitable for KNN and LDA, whereas
the feature subset selected by the MI-based algorithm was
more suitable for SVM and RF. Moreover, a paired-sample
t-test was applied to further explore the difference among
these results. The results showed that the proposed method
was significantly different ( p < 0.05) from other methods,
except for RF with feature selection based on MI. A potential
reason for the performance of RF is that RF is an ensemble
machine learning method with a structure of optimal subset
partition. The diversity of base learners of RF comes not only
from sample disturbances but also from attribute disturbances,
which leads to the generalization performance of the ensemble
being further improved by the increase in differences between
individual learners [44], [45].

E. Feature Selection

In this section, we first investigated whether statistically
significant differences exist in hemodynamic activity during
decision-making under different stress states, and compared
the statistical results with our method in feature selection.
Subsequently, the connectivity of brain regions was explored.

As shown in Figs. 6(a) and (b), a paired-sample t-test
showed a significant difference between stress state and non-
stress state ( p < 0.05). Compared with the hemodynamic
response during decision-making in nonstress state, HbO
changes under stress were significantly higher in channels 4,
11, 13, and 18, whereas HbR changes were in suppression
in channels 3, 4, 9, 10, and 17. In this study, we not only
detected stress in decision-making but also selected features
related to stress. Fig. 6(c) displays the weight amplitude of
features, where the brighter the color is, the more important the
feature is. Additionally, we sorted out the mean weight of each
channel, and then found that the higher feature weights were
concentrated in the channels 3, 4, 7, 13, 14, 17, 18, 19, and 20.
These results were roughly similar to the findings of paired-
sample t-test which could be used to prove the effectiveness of
feature selection of our method. Furthermore, we used features
of the selected channels for classification, and also achieved
a good accuracy of 0.953 ± 0.037, which illustrated the
possibility of using fewer fNIRS channel settings to achieve
good pressure prediction results.

According to the previous studies [28]–[30], different parts
of the brain work together to ensure effective information
processing and interaction. Therefore, in the process of detect-
ing stress, we took into account the potential correlations
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TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT METHODS. RELIEF-F AND MI-BASED FEATURE SELECTION METHODS WERE ONLY APPLIED

TO THE COMPARISON METHODS. THE HIGHEST VALUES AMONG THE RESULTS FROM THE FIRST AND THIRD ROWS ARE

SHOWN IN BOLD. p-VALUES OF PAIR-SAMPLES t-TEST COMPARING THE DIFFERENT METHODS WITH THE

PROPOSED METHOD ARE LISTED IN THE SECOND AND FOURTH ROWS

Fig. 6. Results of group differences in hemodynamic activity and feature selection. (a) and (b) show the t-test results of HbR and HbO (p < 0.05),
respectively. The blue area indicates lower activation in the stress group during decision-making and the red area indicates higher activation. (c)
shows the weight amplitude of features calculated using the proposed method.

among channels. To verify the effectiveness of our method,
we calculated the Pearson’s correlation of weights obtained
by the proposed method. It is worth noting that we calculated
the average weight of 10-fold cross-validation as the functional
connectivity (FC) value to obtain a robust result. Moreover, the
FC matrixes of the stress and control groups were calculated,
and the difference in connectivity strength between the stress
and control groups was explored by t-test. The results are
shown in Fig. 7. Figs. 7(a), (b), and (c) represent the total,
stress, and control groups, respectively. In the figures, the
yellow area indicates a more active node, which shows that it
has a higher relevance or synchronization level, and the green
area indicates a lower degree of relevance between channels.
Figs. 7(b) and (c) show that the yellow area for the stress
group is larger than that for the control group. In Fig. 7(d),
the blue area shows the obvious difference in the FC matrixes
of the two groups (stress and control groups, p < 0.05),
whereas the red boxes are the areas of significant correlation
in Fig 7(a) (p < 0.05). Some overlap between the blue area
and red boxes in Fig. 7(d) was found: Ch1–Ch11, Ch3–Ch8,
Ch5–Ch15, Ch8–Ch11, and Ch13–Ch18. Moreover, we uti-
lized the BrainNet Viewer toolkit [46] for visualization of the
overlap areas. From Fig. 7(e), most of the connections were
concentrated in the orbitofrontal area, ventrolateral prefrontal

cortex, and mid-dorsolateral prefrontal cortex. These findings
were consistent with those of previous studies on decision-
making under stress [47]–[49], which also demonstrated that
brain connectivity can provide useful information for detecting
stress in decision-making.

IV. DISCUSSIONS

A. Effect of Regularizers

In this article, we conducted an ablation experiment to
verify the role of each regular term on the proposed method.
Table III shows that the performance of JCCB-FSC was
attenuated to a certain extent each time a regular term was
eliminated. Specifically, the accuracy of JCCB-FSC decreased
more significantly when the connectivity-based penalty was
removed. These results indicated that group information of
channels and correlations among channels play an important
role in analyzing cerebral hemodynamic alterations of the
brain when performing specific cognitive tasks, and they
should be considered when analyzing fNIRS data.

B. Comparison With Previous Studies
We compared JCCB-FSC with four other commonly used

machine learning methods for fNIRS data analysis. Table IV
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Fig. 7. Results of functional connectivity patterns. (a) shows the FC matrix calculated by the average weight of 12 features (e.g., average, peak,
slope, kurtosis, maximum, and minimum of HbO and HbR). (b) and (c) show the FC matrixes of the stress and control groups, respectively.
(d) presents the difference in connectivity strength between the two groups by t-test (p < 0.05), where the blue area indicates a significant difference
between the groups, and the red boxes are the areas of significant correlation in Fig 7(a) (p < 0.05). (e) presents the brain connectivity pattern of
overlap between the blue area and red boxes in (d), where the point colors of red, green, and blue symbolize the mid-dorsolateral prefrontal cortex,
orbitofrontal area, and ventrolateral dorsolateral prefrontal cortex, respectively.

shows that JCCB-FSC achieved the highest accuracy (0.961 ±
0.044) among the comparison methods. The results of paired-
sample t-test also proved that the performance of JCCB-FSC
was better than most of the comparison methods, except for
RF with feature selection based on MI. For stress detection
in decision-making, the reason why our method demonstrated
better performance was that it considered the sparsity of fNIRS
features and potential associated information of channels in
analyzing fNIRS data. Moreover, the proposed method was
a combination of feature selection and classification, whereas
the comparison methods required additional feature selection
strategies. These results indicated that JCCB-FSC is more
flexible in detecting stress in the decision-making process.

To further verify the robustness of the proposed method,
the proposed method was performed separately on two pub-
licly available datasets. One of the available datasets [50]
were collected from 10 healthy subjects and 18 stroke
patients by using a portable NIRSIT device (OBELAB,
Korea), which had been preprocessed and can be available
at https://data.mendeley.com/datasets/6mbzffznr6/. Another
dataset were collected from 21 healthy adults by using a CW7
NIRS system (TechEn Inc. MA, USA), which were raw data
recording the cerebral hemodynamic alterations of subjects
during observed versus executed motor tasks. The dataset can
be available at https://www.nitrc.org/projects/li20mirror/, and
the fNIRS data were preprocessed using Homer2 software

[51], and more details on the data analysis of this dataset can
be found in [52]. Briefly, data pretreatment, data augmentation,
feature extraction, and feature selection were conducted on
both publicly available datasets, and then the JCCB-FSC
model and four comparison methods were applied to both
datasets. Table V shows the classification results of the above
datasets. The classification accuracy of the proposed method
reached 0.940 ± 0.039 in the first public dataset and 0.724 ±
0.054 in the second dataset. The difference in classification
performance between the two datasets might be caused by the
differences in experimental paradigm and task specification
standards [53]–[55]. However, for both publicly available
datasets, our approach achieved the highest classification
accuracy in comparison with the four other methods. The
improvements in JCCB-FSC may be from the intra- and inter-
channel regularization terms that take full advantage of the
potential associated information of channels. These results also
proved the applicability of our method to different datasets.

C. Feature Selection
In addition to detecting stress in decision-making, we are

still interested in the features and channels of fNIRS related to
stress. Based on (6), three regular terms constrain the feature
representation. When the calculated feature weight is higher,
the corresponding feature is more important, and vice versa.
Fig. 6(c) shows the feature weight amplitude map obtained
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TABLE V
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON TWO PUBLICLY AVAILABLE DATASETS. RELIEF-F AND MI-BASED FEATURE SELECTION

METHODS WERE ONLY APPLIED TO THE COMPARISON METHODS. THE HIGHEST VALUES AMONG THE RESULTS FROM THE FIRST AND THIRD

ROWS ARE SHOWN IN BOLD. p-VALUES OF PAIRED-SAMPLE t-TESTS COMPARING THE DIFFERENT METHODS WITH THE PROPOSED

METHOD ARE LISTED IN THE SECOND, FOURTH, SIXTHE, AND EIGHTH ROWS

by the model. The brighter the color, the important the
weight of the feature, and the more relevant the hemodynamic
response under pressure. Besides, we also sorted the average
feature weights of the 20 channels on the collected fNIRS
data, and the top nine channels were selected to compare
with the paired sample t-test results of the hemodynamic
response (Figs. 6 (a) and (b)). The comparison results showed
that channels selected by the above two methods had a large
overlap, which shows the effectiveness of JCCB-FSC feature
selection. Most of these selected channels were concentrated
in the dorsolateral prefrontal cortex and frontopolar area
which are essential for developing an appropriate response
to environmental changes [56]. These brain regions contain
a large number of receptors for stress hormones (e.g., cor-
tisol). By causing the release of cortisol, stress alters the
neural activities of these brain regions, further affecting behav-
iors [57], [58]. Furthermore, we explored the brain connectiv-
ity in decision-making under stress. Specifically, the average
weight of 10-fold cross-validation was used to calculate the
contribution index of FC (Fig. 7(a)), and Fig. 7(e) displays
the brain connectivity pattern of the overlap of significant
connection (p < 0.05) between the condition difference and
the total significant correlations. Some brain regions, including
the dorsolateral prefrontal cortex and frontopolar area, have
strong connectivity. As described in [57], BA9, BA10, and
BA11 in Table I constitute the prefrontal cortex associated
with working memory, emotions, and perform cognitive func-
tions together, which are related to stress in decision-making.
In summary, the feature selection achieved by our method has
certain significance for optimizing channel settings of fNIRS
and providing a direction for exploring brain connectivity
under stress.

D. Limitations and Future Work

In this research, we found that JCCB-FSC showed a great
improvement over other machine learning methods, but several
issues still need to be resolved in future work. First, factors
such as the subject’s gender or personality characteristics
may interact with stress in decision-making [59], which is
likely to have an influence on our research findings. Since
these factors were not considered during the recruitment of

volunteers, future studies should address these factors as
potential exclusion factors or control factors. Second, the
datasets used in previous studies of fNIRS are generally
relatively small [60], [61]. In this paper, the dataset size
is 432, which are repeatedly measured by 24 medical stu-
dents. Although the proposed method achieved promising
classification results on three different datasets, including the
private stress dataset and two public available datasets, with a
nested 10-fold cross-validation method, the small sample size
may still limit the performance of machine learning methods.
Therefore, more data should be collected for future work to
alleviate this problem. Third, the proposed method mainly
focused on statistical features and potential spatial information
of fNIRS signals. Multidimensional information (e.g., tem-
poral, frequency, and spatial connectivity information) could
be utilized to detect stress, which will be our future work.
Additionally, the experimental paradigm of decision-making
used in this study is a computer-mediated interaction. In the
future, interaction in real social situations will be considered,
which has more ecological effects [62]. What’s more, other
clinical scenarios (e.g., doctor-patient communication) under
stress condition should be further examined to determine
whether the JCCB-FSC model is universal in different tasks.

V. CONCLUSION

In this paper, we proposed a novel JCCB-FSC method
to detect stress in decision-making. In particular, we used
TSST and BART experimental paradigms to simulate the
decision-making process of medical students under stress. Dif-
ferent from previous research that focused on simply grading
stress in no specific situation, we aimed to detect stress in the
decision-making process, and provide clues for stress detection
in the decision-making situation of medical staff in the future.
In the proposed JCCB-FSC method, regularized regression
analysis was used to detect the stress state and select features
from the hemodynamic response highly related to stress during
decision-making. Different from traditional methods without
considering the group structure information of channels and
the potential associated information among brain regions,
JCCB-FSC considered the potential information of channels
and imposed intra- and inter-channel constraints on fNIRS
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data to better discover the potential information, and achieved
an acceptable stress detection. Overall, the JCCB-FSC would
be more flexible in detecting the pressure state and features
related to stress in the decision-making process. These findings
may guide future efforts to continuously monitor cognitive
activity in real life to help improve stress management,
thereby reducing the risk of adverse health consequences and
decision-making performance caused by stress.
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