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Touchless Head-Control (THC): Head Gesture
Recognition for Cursor and

Orientation Control
Wahyu Rahmaniar , Alfian Ma’arif , Member, IEEE, and Ting-Lan Lin , Member, IEEE

Abstract— The touchless techniques in human-computer
interaction (HCI) can effectively expand computer access
capabilities for disabled people. This paper presents Touch-
less Head-Control (THC), an assistive system method for
computer cursor control based on head pose captured with
an RGB camera. Our work aimed to replace the standard
cursor control using a device on the user’s head. The
convolutional neural networks with predicted fine-grained
feature maps and binned classification were applied to
estimate the head pose angles. The mouse pointer or cursor
is moved to actual locations on the screen based on head
movement (yaw and pitch) and the center position of the
face. Head tilt to the right or left (roll) to control the mouse
button. In addition, the proposed method can be used to
simulate the movement of the robot or joystick using the
head to control objects within three degrees of freedom
(DOF). Various participants were involved in the interaction
design evaluation, in which target selection accuracy, travel
time, and path efficiency were measured. This technology
allows people with limited motor skills to easily control
a PC cursor and 3D object orientation without the use of
additional equipment or sensors.

Index Terms— Assistive technology, head pose, human-
computer interaction, mouse control, orientation control.

I. INTRODUCTION

HUMAN-COMPUTER interaction (HCI) has advanced
recently, making computers more accessible to persons

with the restricted motor ability [1], [2]. Previous studies
have developed various devices to assist disabled people using
gestures and other non-contact techniques [3], [4]. Most HCI
activities involve user interaction without utilizing an assistant
or assistive device for persons with limited exercise skills,
such as spinal infringement and limb paralysis. HCI provides
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opportunities for disabled persons to produce computer work
by facilitating access to computers, such as cursor control.
An alternative computer mouse with a gyroscope as a motion
sensor has been developed for people with movement dis-
orders [5]. In addition, hands-free interaction with HCI can
help people with impairments integrate into the workforce,
such as through orientation controls that allow impaired people
to participate in daily activities [6]. A head-mounted inertial
interface was employed in [7], for patients with cerebral palsy.
However, these HCI studies use sensors and devices worn by
the user, making the system less flexible and costly.

Recently, a head motion-based interface for HCI control
applications has been proposed. Head motion was captured
using inertial measurement units (IMUs) [8] and vision-
based [9] for wheelchair control. The user can operate more
complicated systems with an interaction design that can man-
age more than one degree of freedom (DOF) [10], and the
user can operate more complex systems. A dedicated helmet
with a head-mount controller has been designed in place of a
joystick [11]. Head controllers in other studies have been used
to assist surgeons in controlling robots during surgery [12].
However, HCI control using the head still struggled to verify
the accuracy of the head pose for more accurate control.

This paper proposes a Touchless Head-Control (THC) that
uses head posture estimation and facial position to control
the cursor on a PC and 3D objects in three DOFs (x-, y-,
and z-axes). Our contribution is a new method to improve
the performance of head pose predictions using deep convo-
lutional neural networks (CNNs). We built an efficient CNN
architecture that requires less pre-processing without keypoints
and landmarks. The mouse cursor could be moved to a precise
target location by tracking the position of the head/face, which
moves up-down (nodding) and left-right (rotation). The mouse
buttons were controlled by bending the head left or right.
Furthermore, the interactive user interface can be used with
minimal response lag time. The proposed system is designed
to be simple and convenient for persons with disabilities to
use computers and operate objects.

II. RELATED WORKS

A. Mouse Head-Control

One of the most critical aspects of the HCI system is
the accuracy of head posture detection. Changes in lighting
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conditions, varying facial forms, and eye sizes create signifi-
cant issues that must be addressed in real-world applications
when employing computer vision for head tracking and eye
condition monitoring. A method in [13] captures a reference
point in the center of the user’s head using the camera. The
computer cursor coordinates are converted from the processed
image of the head position. Two cameras matched to the
glasses are used to analyze the position of the screen cursor
in [14]. The mouse cursor advances to the desired position,
determined by the user’s facial orientation. Head tilt and
electromyography (EMG) integration were used to move the
cursor control [1]. Computer vision speeds up target selection
with head tilt, while EMG improves mean free path efficiency
and target selection accuracy. On the other hand, ambient
conditions can affect the accuracy of head motion detection,
and the use of additional sensors reduces the flexibility of the
system. A head mouse control system for disabled people with
spinal cord injury was proposed in [15]. CNN identifies head
movements based on eye, mouth, and nose detection. However,
wide-angle head movements can cause these areas of the
face to be undetectable, resulting in impaired and inaccurate
cursor control. Moreover, this study does not demonstrate the
precision of the real-time application approach for flexible
cursor control.

Previous works have used computer vision or physiolog-
ical signals to detect head movements for cursor control.
Optical sensors have a limited resolution, expensive, and are
not suitable for long-term usage in sensor-based solutions.
Furthermore, these sensors only provide limited data to deal
with unanticipated circumstances in the field. Camera-based
solutions are less expensive and more adaptable to future
data modifications. Our goal is to create a cursor control
interface that uses accurate and reliable head movements with
a single camera. We proposed a method to estimate head pose
using CNN to achieve this goal accurately. Our algorithms are
designed to manage various field situations, such as changes in
light illumination and the user’s head position. The system is
more flexible and cost-effective because no additional sensors
or other devices are required. The proposed method is capable
of fast-performing mouse-like button clicks. System perfor-
mance was assessed by measuring target selection accuracy,
travel time, and path efficiency.

B. Orientation Head-Control

Several studies have been conducted on head posture detec-
tion or tracking head movements for robotics and control. Roll
(lateral flexion), pitch (flexion/extension), and yaw (rotation)
are three degrees of freedom (DOFs) that can be utilized as an
orientation controller for 3D objects using head movements.
A motion sensor was used in [16] to detect headgears in an
analytical approach. The classification of head movements is
based on comparing calculated values with defined criteria.
A single IMU is secured in a hairband control used by
an auxiliary robot in [17]. Incorporating three accelerome-
ters, three gyroscopes, and three magnetometer sensor data
in a nine-axis IMUs enables reliable motion measurement.

Sensor orientation is determined as output by integrated sensor
fusion. However, long-term sensor usage is ineffective regard-
ing user flexibility and comfort. In addition, the cost of the
device hinders its development from adapting to changes in
the field.

A video-based approach to estimating head pose has been
used for orientation control. A method in [18] uses a depth
sensor camera to recognize head gestures. The system uses
depth data obtained from sensors to detect facial feature points
and represent human head movements. Depth cameras only
provide accurate distance information for facial areas at close
range. In addition, the acquired depth data is affected by the
objects around the user’s face, which reduces the accuracy of
the information. A previous study in [12] proposed a system
that allows surgeons to control the endoscopic camera without
an assistant. The camera can be controlled by head movement
allowing the surgeon to operate the instrument by hand. The
system is based on a flexible endoscope which gives the
surgeon more freedom to operate the instrument than a rigid
endoscope. However, prolonged sensor use on the surgeon’s
head can be offensive to the user. Sensor performance is also
affected by head movement issues. Nevertheless, these studies
show that head motion control has proven to be a cutting-
edge technological breakthrough in various fields. However,
multiple sensors remain the primary option due to accurate
head pose detection limitations. This paper combines the CNN
head pose estimation with the Kalman filter to perform a
precise head movement control. ‘

III. PROPOSED METHOD

This section describes the proposed method for THC,
as shown in Fig. 1. First, face detection using CNN was
applied to obtain an accurate face area as an input image for
the next stage. Then, the pixels in the eye area were examined
to determine whether the face was moving or stationary. If the
detected face was defined as moving, the head poses angle,
such as yaw, pitch, and roll, are calculated. Facial movement
is determined to avoid unwanted cursor movements due to
changes in lighting or head pose estimation errors. As face
detection and head pose calculations are performed on each
frame, sometimes the face bounding box changes its pixel
slightly, or the head pose changes suddenly. This situation can
cause the cursor to move according to unexpected changes,
disturbing the user’s comfort. The estimated head pose and
facial area control cursor movement and orientation simulation
at the x and y coordinates. The trajectory obtained from the
control was smoothed with a Kalman filter.

A. Face Detection

YOLOv4-based object detection framework [19] was
used to detect faces. The WIDER-Face dataset used to
train this architecture contains 32,203 images and identifies
393,703 faces with large scale, pose, and occlusion hetero-
geneity. The input image was divided into a grid of cells
with the YOLOv4 model. Each of these grids was in charge
of describing a different object. The confidence score was
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Fig. 1. Touchless head-control framework.

calculated with the bounding box for each grid cell. This
approach separates the data into grids and uses the grid to
identify object features. The observed features with high reli-
ability in the surrounding cells were combined in one place to
achieve model performance. The detected faces were cropped
around the bounding box to lower computational costs. Since
the facial area was the primary input for determining head
pose, accurate face detection was required. Low face detection
accuracy indicated that the model was unsure of the sort of
item being spotted. It could be mistaken for a false positive,
which reduces system performance. As a result, the correct
margins on the face bounding box could improve the accuracy
of calculating the angle of the head pose. Based on the head
pose estimation in [20], YOLOv4 could detect face bounding
boxes more precisely than other methods, such as Haar-
cascade and SSD-MobileNetV2. YOLOv4 could still detect
facial areas precisely for various difficult positions even though
the face is covered. Determining the exact area of the face
affects the accurate calculation of the angle of the head pose.

B. Eyes Detection

An approach that utilizes a cascade of regressors was used to
locate the eyes landmark [21]. The regressor generated predic-
tions based on variables like pixel intensity values generated
from the index relative to the current shape estimation as the
cascade keypoint. As the cascade advances, this adds some
geometric invariance to the process, making it more assured
that the exact semantic location on the face has been indexed.
The initial shape can be an averaged shape of the training data,
centered and scaled using the bounding box output of a generic
face detector. Each regressor was learned using the gradient
boosting tree method. The residuals, which correspond to the
gradient of the squared error loss function assessed for each
training sample, were computed in the innermost loop. At each
node, the thresholding of the difference in intensity values
between two pixels is employed to determine the decision.
The closer pair of pixels were selected. Exponential prior
was applied to the distance between the pixels in the split.
Ocular landmarks number 27 (center of the eye), 36 (left edge
of the left eye), and 45 (right edge of the right eye) were
identified, and their center points were tracked to quantify
facial movement, as shown in Fig. 2.

C. Head Pose Estimation

The input images are first employed in the backbone net-
work based on ResNet-101. A bottleneck block with a layer

Fig. 2. Selected points (green dots) for eyes detection.

extension was used in this backbone. With an additional
block, the 101-layers construction enhances precision. The
face presented in the input image is converted to grayscale
with a size of 64 × 64 pixels. For feature map classification,
fine-grained structures were mapped to obtain a representative
feature set. The network was trained on 300W-LP [22],
a synthetically extended dataset, as well as a re-annotated
in-the-wild 2D landmark dataset. The poses in the dataset
were precisely labeled according to head rotation to generate
head pose annotations. The proposed head pose estimation
used RGB images rather than depth information for individual
color frames to obtain pixel-level intensities. This head pose
detection is based on the method in [20] by simplifying the
backbone and feature maps.

A set of training face images is given as X = {xi } where
i = 1, 2, . . . , n, yi is the pose vector for each image xi ,
n is the total number of training images, andxi contains 3D
vectors corresponding to the Euler angles, i.e., yaw, pitch, roll.
The function f desired is used to find a predicted head pose
ŷ = f {x} that as closely as feasible fits the expected head pose
y for a given image x . The features were processed through
2048 × 1 fully-connected layers (FC-layers) that transferred
the result from the feature maps selection to a single contin-
uous shape, as shown in Fig. 3. Each orientation angle was
classified using a softmax classifier and cross-entropy loss.
Between the ground-truth label and the predicted value of
the softmax output, a mean squared error (MSE) regression
loss was applied. The final training objective weights for each
angle are calculated by adding the two losses (cross-entropy
and MSE). As a result, the training process could learn more
precise position angles.

The classification was divided into several scales to ensure
accurate predictions at different classification scales. Then,
the classification was refined to improve the accuracy of
the regression. Each FC-layer represented a distinct classifi-
cation scale and measured cross-entropy loss independently.
The smoothest classification result was utilized in regression
integration to calculate expectations and losses. Then, the
Euler angles output was regressed with a 3 × 1 matrix and
normalized to the range of [−1, 1].
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Fig. 3. Head pose estimation architecture.

Tilting the head to the side or wearing a face-covering
makes facial features detection more challenging. A fine-
grained attention module was applied to solve this problem,
attempting to classify each pixel in the feature map. The
obtained losses were calculated in several stages and were
added up. The fine-grained attention module subsequently
classified important face features into different intensity levels.
All feature maps were flattened into a 2D matrix that contains
all pixels from all feature maps at all stages. Then, the size of
feature maps was reduced using average pooling. Convolution
was used to transform the combined feature maps at each
stage with one stride. The fine-grained structure mapping was
incorporated with the attention maps.

Three parallelograms (2, 18, and 66) were used to bin the
output angles, then processed by softmax layers to generate bin
probabilities for each angle. Each Euler angle had a combined
loss and used the previous convolution layer. A total loss
consisted of regression loss and multiple classification loss.
Each loss includes classification and regression of binned
poses for yaw, pitch, and roll separately. Cross-entropy loss
function and MSE were used to estimate the error. Since each
Euler angle has one cross-entropy loss, the three propagated
signals were sent back to the initial stage of the network to
improve model training. MSE loss was applied to the estimated
output of each angle. Each Euler angle covered a pose range
of [−90◦, 90◦], dividing the prediction class into 181. The
image would be rejected if the observed angle was out of
these ranges. Over the training samples i = 1, 2, . . . , n, the
regression loss weights were diverse to make the predicted
angle yi near the expected angle possible. Then, the mean
absolute error (MAE) was minimized by the MSE loss, which
can be calculated as follows

M SE = 1

n

n∑
i=1

(yi − ŷi )
2 (1)

The loss function used to optimize the fine-grained attention
maps was cross-entropy. The weighted sum of the intensity
map can be used to calculate the final loss function as
follows

Loss = αM SE(y, ŷ)+
N∑

i=1

C E(yi , ŷi ) (2)

where α is the weight balancing of the MSE loss set to 2 and
CE is the cross-entropy loss functions set to N = 5.

D. Kalman Filter

The obtained head pose angles (yaw, pitch, and roll) and
face bounding box were used to calculate the trajectory on
the x-axis Tx , y-axis Ty , and the path angle τ . The trajectory
was corrected using the Kalman filter to provide a new set
of transformations for each head movement. The Kalman
filter has two main components: prediction and measurement
correction.

At the prediction step, the Kalman gain can be calculated by
dividing the error covariance ε by the process noise covariance
β as follows

K (t) = ε(t)

ε(t)+ β
(3)

where s(t) = [
Tx(t), Ty(t), τ (t)

]
is the trajectory at the

prediction step and the initial state denoted by s(0) = [0, 0, 0].
The updated error covariance can be determined by ε(t) =
ε(t − 1) + β where ε(0) = [1, 1, 1] is the initial error
covariance.

At the measurement step, the Kalman gain can be com-
puted by

K̂ (t) = ε̂(t)

ε̂(t)+ β̂
(4)

where β̂ is measurement noise covariance. The error covari-
ance is adjusted by ε̂(t) = (1 − K (t)) ε(t). The trajectory is
compensated by the accumulated measurement δ(t) as follows

ŝ(t) = s(t)+ K̂ (t) (δ(t)− s(t)) (5)

The new state from the obtained trajectory can be defined
as ŝ(t) =

[
T̂x(t), T̂y(t), τ̂ (t)

]
. The new trajectory can be

obtained through the difference between the current state with
the accumulation of the measurement as follows[

T̄x (t) , T̄y (t) , τ̄ (t)
]

= [
Tx (t) , Ty (t) , τ (t)

] [
σx(t), σy(t), στ (t)

]
(6)

where σx (t) = T̂x (t) − δx (t), σy (t) = T̂y (t) − δy (t), and
στ (t) = τ̂ (t) − δτ (t). The trajectory gained from each head
movement can be accumulated by

δ(t) =
t∑

n=1

[(
T̄x (n)+ Tx(t)

)
,
(
T̄y(n)+ Ty(t)

)
, (τ̄ (n)+ τ (t))

]

= [
δx(t), δy(t), δτ (t)

]
(7)
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Fig. 4. Experimental design for THC.

Fig. 5. Cursor control user interface design.

IV. EXPERIMENTAL DESIGN

Face detection and head pose estimation were trained on an
Intel Core-i7 processor and an RTX2060 GPU with 16 GB
of RAM. The experimental programming software includes
Python and Visual Basic Net for User Interface (UI), tested
on the CPU. The objectives used for this experiment were
cursor and orientation control, which includes the trajectory
of continuous head movements to achieve a specific task.
Participants conducted the experiment in front of the camera
without additional tools or sensors, as shown in Fig. 4. The
task accuracy, path efficiency, and completion time during the
targeting task were recorded for method performance analysis.
We asked the participants to do the task well under the given
instructions. The head must be moved in the proper DOF to
produce the desired range of head movements. The controls
were designed to be as efficient as possible, allowing the user
to make the possible minor movement utilizing only the skull
and neck muscles while avoiding straining the neck muscles.
During the experiment, participants were requested to maintain
a fixed body position from the neck.

A. Mouse Head-Control

1) Procedure: Fig. 5 shows the UI to demonstrate the cursor
control performance. The cursor can be moved vertically by

moving the head up/down (extension/flexion) and horizontally
by moving the head to the left/right (rotation). The left/right
mouse click function was performed by bending left/right
(lateral bending). Participants were instructed to move the cur-
sor from box 1 to box 8, then click left or right according to the
command in each box. The UI has a size of 1023 × 726 pixels,
with each box having a size of 100 × 100. The distance
between boxes is 162 and 128 pixels on the x- and y-axes.
If the left or right-click is successful, the box on the UI will be
green or red, respectively. Participants could reposition their
heads to their regular positions and bend to make mouse clicks
more efficient. Participants were requested to move the cursor
pointer path displayed in the UI as efficiently as possible.
Participants were asked to perform several experiments with
variations in the distance with the camera and the initial head-
base position. Experiments were also carried out under several
different ambient lighting conditions to prove the reliability of
our method. The laptop’s brightness was selected according to
the level of comfort in the room.

2) Algorithm: Participants can move the cursor by tilting
their heads toward the desired cursor movement. The midpoint(
�x ,�y

)
between the three detected ocular landmarks is

calculated to determine whether the head is moving or not.
Cursor coordinates (x , y) are calculated based on the center
position

(
fx , fy

)
of the detected face with the Euler angles

of the head pose [ψ, θ, φ], as described in Algorithm 1.
At the commencement of the system, step 1 is completed for
calibration. The midpoint in the bounding box of the user’s
face is examined for a few seconds before being saved as the
face’s initial location. In the next step, the center coordinates
of the detected ocular landmarks are compared with their
initial position to determine the state of the face as moving
or stationary. Nodding movements (extension and flexion)
are associated with moving the cursor up and down, and
the rotating movement is associated with moving the cursor
left and right. The bending movement is more efficiently
used to perform the mouse click function than detecting the
blink of an eye. This combination of gestures allows 180◦
of movement in a two-dimensional display surface. A head
pose and facial movement combination are used to obtain the
appropriate cursor position in the UI. Participants can observe
the face detection and head pose calculations performed on
the image generated by the camera and the calculation results
to determine the cursor’s location, which is depicted with a
black line on the UI.

3) Performance Metrics: Target selection accuracy, travel
time between targets, and path efficiency were averaged
against each measurement result for each participant. Travel
time was the time (seconds) the user took to navigate and
select each box in sequence. The target accuracy was deter-
mined by the number of times the participants made an error
in the experiment while choosing the specified box. The initial
accuracy value was 10, which would be reduced by the number
of times the participant failed to select the following box.
After reaching a box, the participant had to perform a right
or left click command according to the instructions on each
box. If the participant did not pass the boxes in sequence or
move the cursor before executing the click command, accuracy
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Algorithm 1 Touchless Head-Control
Input: - Euler angles: Yaw ψ , Pitch θ , Roll φ

- Ocular landmarks center location
(
�x ,�y

)
- Face center location

(
fx , fy

)
Output: Trajectory (x , y)

Step 1: n = 0

f̄x = update ( fx)

f̄ y = update ( f y)

if
∣∣ f̄x − fx

∣∣ < 5 and
∣∣ f̄ y − fy

∣∣ < 5

n = n + 1

if n > 30

Cursor control is ready

fx0 = fx

fy0 = fy

cx = 360

cy = 100

Step 2: �̄x = update (�x)

�̄y = update (�y)

if
∣∣�̄x −�x

∣∣ < 5 and
∣∣�̄y −�y

∣∣ < 5

Face is move

Calculate ψ , θ , φ

Cursor control:

x = cx + (ψ × 6)+ ((
f̄x − fx0

) × 5
)

y = cy + (θ × 6)+ ((
f̄ y − fy0

) × 5
)

if φ ≤ −10

Left click

if φ > 10

Right click

Orientation control:

x = (
ψ + (

f̄x − fx0
)) × 2

y = (
θ + (

f̄ y − fy0
)) × 2

if φ ≤ −20

Open gripper

if φ > 20

Close gripper

points would be deducted by 1. The path efficiency was
calculated as the straightness and length measurement of the
path between targets. The origin (xi , yi ) was determined as
the efficient coordinate obtained from the results of several
experiments. When selecting the current target, the coordinates
corresponding to the cursor location were defined as (x j , y j ).
The angle of every 50 points of the cursor coordinates is
calculated by

τ j = tan−1
(

y j

x j

)
(8)

Thus, the path accuracy can be calculated as follows

Path_accuracy = 100% −
(

abs|τi − τ j |
τ j

× 100%

)
(9)

Fig. 6. Orientation control user interface design.

The mean (M) and standard deviation (SD) testing measure-
ments were analyzed for each outcome, i.e., target selection
accuracy, travel time, and path efficiency, to assess the impact
of various lighting conditions and the distance between par-
ticipant and camera head-base position.

B. Orientation Head-Control

1) Procedure: The head’s orientation was determined by
flexion/extension in the sagittal plane, lateral flexion in the
coronal plane, and axial rotation in the cross-section. Partici-
pants were asked to move the red box on the orientation con-
trol UI, as shown in Fig. 6, to simulate the robot’s movement.
In this case, it acted like a robotic arm. Participants were
instructed to move the box sequentially from points 1 to 7.
From point 1, participants could perform pitch or flexion
movements to reach point 2. Then, they could move their
head slightly to the left or rotate their heads to reach point 3.
At point 3, the robot was simulated to be at the stopping point
to pick up goods at point 4. When it reached point 4, the robot
was simulated to make the gripper open (bend to the right)
and close (bend to the left). The robot was then simulated
back to point 3 (in this case, the fifth position), moving to
point 6 on the right. Then the gripper movement was simulated
to place objects at point 7. Each participant was asked to
perform movements sequentially while paying attention to the
movement path of the box in the UI. In the targeting task, the
participants were asked to achieve the desired orientation in
the shortest possible time.

2) Algorithm: Participants could move the box by tilting
their heads toward the desired movement. Nodding movements
(extension and flexion) were associated with a simulation of
a robotic arm moving up and down. In contrast, rotating
movements were associated with a simulation of a robotic
arm moving left and right. For gripper simulation, a bending
movement was used to open and close. A combination of
head poses and facial movements was used to replicate robotic
motions accurately, as explained in Algorithm 1. On the user
interface, participants could observe the path of movement.

3) Performance Metrics: Similar to the mouse head-control,
the value of each measurement result for each participant was
averaged against the results of the target selection accuracy,
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travel time between targets, and path efficiency measure-
ments. Travel time was the time (seconds) the user took
to navigate each box to predetermined points in sequence.
The initial accuracy value was 10, which would be reduced
by the number of times the participant failed to select the
following box. Path accuracy compared the straightness of
the path taken by the participant (x j , y j ) with the pre-
determined efficient path (xi , yi ), which can be calculated
in Eq. 8 and 9.

V. RESULTS

The experiment was conducted using an RGB camera with
a resolution of 640 × 480 on an Intel Core-i7 CPU for
performance testing. Our method in real applications achieves
a computation time of around 11 frames per second (fps). The
head pose estimation was performed on benchmark datasets
with an average prediction error of 5.09◦, 4.35◦, and 3.32◦ for
the AFLW2000, AFLW, and BIWI datasets.

The participant’s position varied between 50cm and 100cm
from the camera. The experiment evaluated the cursor and
orientation control using head movements. Lateral bend was
selected as right/left mouse click and gripper open/close for
orientation control. Participants were 10 healthy adults, con-
sisting of 4 women and 6 men. Participants were requested
to remain still for a few seconds after the software had
started until the word “Ready” appeared on the image. At this
time, the head position was being calibrated. Participants were
instructed to slowly move their heads up, down, left, and
right to see if the software properly tracked head movement.
As lighting and head-base conditions changed, participants
were asked to calibrate at the start of each experiment. The
distance between the user and the camera used in this experi-
ment is 50 cm, 75 cm, and 100 cm. Lighting variations were
carried out in bright, half-bright, and dark conditions. Bright
conditions using 2 lamps in the room. Half-bright conditions,
only use 1 lamp in the room, and in dark conditions, only use
laptop lights. The head-base position variation is performed
in the upright position of the user’s head with the camera and
head tilted to the side (approximately 45 degrees).

A. Mouse Head-Control Results

1) Control Performance: The experimental results showed
that the participants could move the cursor well and smoothly.
All participants could complete the given task correctly with-
out any problems quickly. The participants’ average move-
ment trajectories were excellent and almost identical to the
predetermined efficient path, as shown in Fig. 7. Successive
boxes on the cursor control UI had varying distances and
click function commands. Participants had to perform flexion
and rotating movements to the right to move the cursor to
box 2 from box 1. For the first trial, the average participant
would experience confusion in moving the cursor to the right
and left and looking for the correct box position. After the
second experiment, participants were more flexible in moving
the cursor. Table I summarizes the average time required by
participants to move the cursor to each box in sequence. The

Fig. 7. Path result of the proposed cursor control.

TABLE I
AVERAGE TIME FOR CURSOR CONTROL (SECOND)

easiest way was to move the cursor from box 3 to box 4
because it only went down slightly to the right. The average
time traveled was also the fastest. The second fastest travel
time was cursor movement from box 4 to box 5. The most
difficult trajectory with the longest travel time was to move
the cursor from box 5 to box 6. Moving the cursor to a higher
position was more difficult than to a lower one, depending
on how well the participant could control the cursor. The
time required by participants to perform the right or left click
function on the mouse was similar; this indicated that these
two functions could work quite balanced. Overall, THC made
it easy to control the cursor using head movement effectively
with an efficient path, as shown in Fig. 8.

Participants were asked to rate from 1 to 5 (the fifth
was the highest) of the eight questions on the questionnaire.
Table III shows the mean and SD of the scores for each ques-
tion. Participants were delighted with the feedback from the
mouse/cursor movement shown on the UI with the black line.
According to the questionnaire results, it was considered easier
to move the cursor horizontally than vertically. In addition, the
questionnaire also showed that THC could move the cursor
with precision. THC was quite reliable as a physical mouse
replacement and made it possible to help disabled people.
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Fig. 8. Result of the proposed cursor control.

TABLE II
CURSOR CONTROL PERFORMANCE

TABLE III
CURSOR CONTROL QUESTIONNAIRE

Table II summarizes the average performance metrics
(Mean and SD) for light, distance, and head-base variations.
The analysis results showed that the average accuracy of the
target selection score in the THC system was (M = 8.17,
SD = 0.5). Target selection score was the highest when the
acquisition task was completed in different lighting conditions
(M = 8.48, SD = 0.54), while the head-base position varia-
tion showed the lowest accuracy (M = 7.95, SD = 0.49).
The average path efficiency showed excellent results with
varying lighting conditions (M = 86.27%, SD = 11.23).

Fig. 9. Camera mouse path result.

On average, the travel time in the experiment was considered
fast (M = 3.47 sec, SD = 1.07). The proposed model
showed no significant difference in the head pose estima-
tion accuracy with variations in-room lighting and head-base
position.

2) Comparison With Camera Mouse: Camera Mouse is free
software that allows persons with limited motor movements
to utilize a computer [23]. The software’s cursor movement
and selection settings are set to default settings. The radius
is set to “normal” with the idle time of 1 second, and the
horizontal and vertical sensitivity is set to “medium”. The
software automatically selects features in the user’s eye to
track. A green box appears around the selected feature so
that the user can observe the cursor movement based on its
position. The visual tracking algorithm evaluates the feature’s
shift to determine the current cursor position as the user moves
his head. The cursor’s coordinates on the computer screen
are directly mapped according to the location of the feature
being tracked. The sensitivity and smoothness of the software
setting affect the coordinates’ position and the trajectory of
the cursor. Cursor sensitivity affects how eye movement is
translated into cursor movement. Slight eye movement is
converted into many cursor movements when the sensitivity
is high. THC used artificial intelligence, making the system
not require manual settings like Camera Mouse. Experimental
results showed that cursor control could still be carried out
accurately and smoothly under various challenging conditions,
as shown in Fig. 9.

Fig. 10 compares the performance results of the THC
method with a camera mouse with variations in lighting
conditions, distance from the camera, and head-base posi-
tion. Task performance was assessed using target selection
scores, travel time between targets, and path accuracy. Because
the Camera Mouse relied solely on the user’s eye feature,
its performance was degraded when conducted in a dark
room. The Camera Mouse also did not perform effectively
at long distances because the user’s eye features were not
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Fig. 10. Performance comparison results of THC and Camera Mouse.
(A) Target selection score, (B) Travel time, and (C) path accuracy.

clearly identified. In THC performance results, the system’s
accuracy was not affected by darkroom lighting conditions
and significant distance from the camera. In certain positions,
users had difficulty controlling the cursor and had to be
in an upright head position to improve performance. Thus,
cursor control with Camera Mouse was not good enough when
the head-base position was quite difficult. Camera Mouse
allowed users to move the cursor freely with just a slight
head movement. However, the cursor movement was unstable.
Moving the cursor horizontally was considered more difficult
than vertically. Thus, the cursor would move rather far in the
horizontal position when a little movement was made, causing
the path to be inefficient. In addition, performing the mouse
clicking function was not easy.

Fig. 11. Result of the proposed cursor control with various box sizes.

The average travel time using THC (M = 3.47 sec) was
statistically faster than the Camera Mouse (M = 4.09 sec).
Different lighting conditions had no significant effect on travel
time. Similarly, the difference in distance and head-base posi-
tion did not affect the target selection score. Cursor controls
were recorded at a 1920 × 1080 screen resolution, but system
performance tests were adapted to the UI design. Using THC,
participants selected all targets with an average path accuracy
of 86.27%, 18% better than Camera Mouse. Participants
completed the experiment using the Camera Mouse with a
mean path accuracy of 73.03%.

3) Control Performance on Various Box Sizes: Fig. 11 shows
a UI design with several different box sizes. The average
travel time result is not much different from the control cursor
performed on the UI with the same box size (M = 3.57 sec).
However, cursor control is a bit of an issue in some positions.
Since it is more difficult to move the cursor up than down,
there is a slight difficulty when the cursor is moved from box 5
to box 6. Box 6 (50 × 50) is smaller than the other boxes,
making it slightly difficult to navigate. However, cursor control
can still be done well. In addition, from box 6 to box 7, due
to their different sizes, it is also more challenging to move the
cursor compared to a UI that has the same box size. Overall,
slight UI issues with different box sizes did not affect cursor
control performance.

B. Orientation Head-Control Results

The experimental results showed that all participants could
move the box to simulate the robot arm movement with
head movements. All participants were able to complete the
assigned task correctly without any problems. Some partici-
pants could not control the gripper properly for complex tasks
because the head did not move in the correct orientation. In the
subsequent trial, all participants could be more flexible and fast
in controlling the boxes on the UI according to the order of
points. The participants’ average movement path results were
excellent, as shown in Fig. 12. Sequential points in UI had
different distances. Table IV summarizes the time required by
participants to move the red box on the UI from point 1 to 7
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Fig. 12. Path result of the proposed orientation control.

TABLE IV
AVERAGE TIME FOR ORIENTATION CONTROL (SECOND)

sequentially, including opening and closing the gripper. The
experimental results showed that participants could control
well and quickly. The farthest vertical position was between
points 1 and 2, and the farthest horizontal position was
between points 5 and 6.

The time required by participants to complete a prede-
termined control task was measured. The travel time based
on different exposures (M = 4.47 sec, SD = 1.93) was
significantly higher than the travel time with variations in
distance (M = 5.01 sec, SD = 1.99) and head-base position
(M = 6.02 sec, SD = 2.45), as summarized in Table V. SD in
travel time increased with the complexity of the control task.
Male participants tended to complete control tasks faster than
female subjects. Target selection scores were highest when
task acquisition tasks were completed in different lighting
conditions (M = 8.62, SD = 0.58), whereas head-base position
variation showed the lowest accuracy (M = 8.38, SD = 0.65).
Compared to variations in distance and head-base, the average
path efficiency showed excellent results with variations in
lighting conditions (M = 85.33%, SD = 8.30).

Participants were asked to rate from 1 to 5 (the fifth was
the highest) on eleven questionnaire questions. Table VI shows
the mean and SD scores for each question. Participants were
delighted with the feedback from the orientation movement

TABLE V
ORIENTATION CONTROL PERFORMANCE

TABLE VI
ORIENTATION CONTROL QUESTIONNAIRE

path displayed on the UI. According to the questionnaire
results, it was easier to move the cursor horizontally than
vertically. Furthermore, the questionnaire showed that THC
could be used for precise orientation control. The robotic arm
simulation was reliable enough to illustrate the advantages
of control using only head movements captured by a single
camera without the aid of any other devices or sensors. Thus,
THC proved that the proposed system could help disabled
people.

VI. DISCUSSION

The simulation results of the proposed cursor control
method were then compared with the Camera Mouse in terms
of performance metrics of target selection accuracy, travel
time, and path efficiency. Changes in room lighting conditions,
the distance between participants and the camera, and the
head-base position were also considered to suit daily computer
use. THC performance results showed efficient path cursor
movement and accurate target selection. However, users with
Camera Mouse experienced decreased performance when the
room conditions were dark and when the participant’s position
was a bit far from the camera. This constraint occurred due to
the drift effect and method dependence on high face contrast
for track functionality.
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Meanwhile, the results showed no significant difference in
control performance when THC was used in different lighting
conditions. In both systems, the travel time increased with
the complexity of the task. THC had better control over the
efficiency of the cursor path even though the cursor movement
speed was increased. These results indicated that movement
speed and target selection accuracy were essential factors to
consider when assessing the performance of access methods.
Due to the light reflection on the glasses, the automatic
feature selection using Camera Mouse could not be selected
accurately in participants wearing glasses. As a result, for these
participants, the feature was manually picked. In addition,
the Camera Mouse had to be placed directly in front of the
user for optimal tracking performance. Different computer
orientations would change the direction of the camera towards
the user.

One of the aims of this application is to mimic a regular
computer mouse for basic computer use. So that disabled
people that have restricted movements can still operate freely
on computers. Overall, the difference in performance between
the two computer cursor control systems indicates that users’
skills and preferences influence effectiveness. The mechanism
in THC was made as effective as possible to provide a more
reliable access option for those with difficulty keeping their
head still. The over-sensitive cursor control on the Camera
Mouse made it difficult for individuals with single muscle
activation to maintain the cursor steady. As a result, the
computer screen had many unintentional cursor movements or
selections. This problem could be overcome using the Kalman
filter on THC to control cursor movement better.

Head movements can also control the direction or orienta-
tion of 3D objects or robots. The experimental results showed
that all participants could use the UI and a simulation of
the movement of the robotic arm and gripper. Controls were
adapted to the task at hand so that THC could be used in
the relevant setting. THC was not limited to two-dimensional
application controls like most interfaces with traditional head
controls. THC allowed robot control at three DOF on the x-,
y-, and z-axes. Instead of predefined execution operations, this
technology enabled the user to direct the actual movement of
the robot. The camera sensor module was integrated into the
computer, allowing a quick and simple setup. Calibration was
performed in just a few seconds to identify the neutral head
position. The controls never made any unwanted movements
during the experiment, demonstrating the system’s robustness.
Various gestures could be easily accommodated through the
UI design. Individual limitations in motion constraints were
not considered in the current analysis method. In the future,
THC could be equipped with a combination of IMUs and other
input modalities, such as eye trackers or voice recognition sys-
tems. Combining input modalities enables greater application
functionality and opens new applications with a head gesture-
based touchless method.

We have demonstrated the ability of the proposed method,
THC,1,2 to control the cursor and object orientation using head

1https://youtu.be/zRdCA2ZnrOo
2https://youtu.be/7UZPYJKDSWE

movements under various demanding conditions. In the video,
the controls are moved slowly to mimic the movements of
people with motor limitations. The video shows the results
of the head movements and controls performed on the UI.
Optimizing accuracy and computation time in real applications
is recommended for further research. More accurate face
detection methods allow for better application of methods.
Furthermore, functionality in the UI, such as different box
sizes, can be added to test cursor control that is more closely
related to actual computer usage conditions.

VII. CONCLUSION

A new solution for touchless assistive devices using head
movements has been proposed. Our touchless head-control
(THC) method could be used to control the mouse cursor
and objects or robots. This algorithm could be operated using
an RGB camera and did not require additional equipment,
such as sensors or electrodes. The obtained results allowed
accurate on-screen mouse control and precise control of the
robot’s orientation. Experiments conducted on a group of
people demonstrated the usefulness of the proposed method
in real-time applications. All subjects could intuitively control
mouse cursors and objects with head movements. This system
provided the possibility to remotely control the movement
of robots, such as robotic arms and grippers. In addition,
the system did not require time-consuming adjustments or
calibrations. Calibration was only necessary to determine the
neutral head position within seconds. Users could activate
and deactivate the control with head movement. During the
experiment, the system never made any unwanted move-
ments, which confirms the system’s robustness. The interac-
tion design could be easily adapted to the user’s demands.
Future studies would cover various standardized tasks with
healthy people and disabled individuals to evaluate system
performance by potential users. The results indicated that the
THC system was adequate for human-computer interaction
and access control to assist disabled people with restricted
motor skills.
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