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Abstract— Objective: We propose a tactile-induced-
oscillation approach to reduce the calibration time in
somatosensory brain-computer interfaces (BCI). Methods:
Based on the similarity between tactile induced event-
related desynchronization (ERD) and imagined sensation
induced ERD activation, we extensively evaluated BCI per-
formance when using a conventional and a novel calibra-
tion strategy. In the conventional calibration, the tactile
imagined data was used, while in the sensory calibration
model sensory stimulation data was used. Subjects were
required to sense the tactile stimulus when real tactile
was applied to the left or right wrist and were required
to perform imagined sensation tasks in the somatosen-
sory BCI paradigm. Results: The sensory calibration led
to a significantly better performance than the conventional
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calibration when tested on the same imagined sensation
dataset (F(1,19)=10.89, P=0.0038), with an average 5.1%
improvement in accuracy. Moreover, the sensory calibration
was 39.3% faster in reaching a performance level of above
70% accuracy. Conclusion:The proposed approach of using
tactile ERD from the sensory cortex provides an effective
way of reducing the calibration time in a somatosensory
BCI system. Significance: The tactile stimulation would be
specifically useful before BCI usage, avoiding excessive
fatigue when the mental task is difficult to perform. The
tactile ERD approach may find BCI applications for patients
or users with preserved afferent pathways.

Index Terms— Brain-computer interface (BCI), tactile
event-related desynchronization (ERD), somatosensory
BCI, imagined sensation.

I. INTRODUCTION

BRAIN-COMPUTER Interface (BCI) establishes a
non-muscular channel for interaction between the

external environment and the brain, by decoding the
motor/sensory or cognitive intention from the ongoing
or evoked brain activity [1]–[3]. By mentally performing
motor imagery (MI) [4], [5], the motor intention can be
detected from EEG signals by analyzing event-related
(de)synchronization (ERD/ERS) [6], [7], or movement-related
cortical potentials [8]. Contrary to BCI systems based
on visual P300 and steady-state visual evoked potentials
(SSVEP) [9], [10], the MI-based BCIs do not dependent
on external stimuli [11]–[14]. The MI-based BCI has been
shown to have a wide range of potential applications, such as
wheelchair control [15], [16], helicopter navigation [17], [18],
neuro-prostheses in patients suffering from a high-level spinal
cord injury [19]–[21], and for motor function rehabilitation of
stroke patients [22]–[25]. Complementary to MI-based BCIs,
we have shown that a new BCI paradigm based on imagined
sensation can increase the number of BCI modalities, and
we have validated that imagination of tactile stimuli can be
reliably classified from EEG signal, which has been defined
as SAO (somatosensory attentional orientation) [26]–[30].
In the proposed somatosensory BCI system, we have shown
that real tactile stimulation on a subject’s wrists can help to
train the subject to perform the imagined sensation task [31],
and can provide a way to train the BCI system before the
online decoding on the imagined SAO task [32].

Both imagined movement and imagined sensation are covert
mental tasks, which are inherently internal and difficult to
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observe and measure when no external cue is applied. This
causes a wide range of performance variations [33], [34], with
relatively poor performance even when training across weeks
[35]–[37].

The quality and amount of the calibration data at the begin-
ning of BCI usage is an important factor influencing BCI per-
formance. Usually, it takes approximately 20 minutes to collect
enough labeled training data for calibrating the classifier for
SAO tasks. To reduce the calibration time and improve BCI
performance, several approaches have been applied. Based on
the similarity among subjects and sessions, transfer learning
provides a potential approach to reduce the number of training
trials and improve the system performance [38]. By exploring
data from previous days or different subjects for compensating
the lack of labeled data from the current user, a weighted
transfer learning has been proposed to reduce the calibration
effort with fewer trials than the conventional approach [39].
Moreover, domain adaptation is another potential way to
further reduce the calibration effort by using advanced algo-
rithms [40]. Besides from an algorithmic perspective, several
experimental studies have shown new approaches to reduce the
calibration effort. Based on the similarity of the EEG activation
pattern between MI mental tasks and several other observable
and controllable tasks, such as active/passive movement, and
functional electrical stimulation [41]–[43], several calibration
strategies have been developed and validated for MI task
decoding. By using the data from different tasks other than
MI itself, those new calibration strategies have shown to be
beneficial in robot-assisted stroke rehabilitation [44], in a
clinical population [45], for several specific users who can-
not provide calibration data in conventional approaches [46].
Moreover, our previous studies showed that vibration-induced
EEG signals can be utilized for setting up MI-based BCIs [47],
and also for imagined somatosensory-based BCIs [32].

ERD/ERS is not only correlated with real/imagined move-
ment and real sensory stimulus processing [48]–[51], but
also with the imagined sensation, which was explored in
somatosensory BCIs [26]. We have previously validated that
tactile-induced oscillatory dynamics provide a novel approach
to enhancing tactile BCI performance [52]–[54], by using the
tactile ERD. Here, we hypothesized that the tactile ERD can
be a potential approach to help to reduce the calibration effort
by using fewer trials or training time required in the calibration
phase before the actual usage of the BCI system and can
also provide a more accurate approach than the conventional
calibration strategy.

II. METHODOLOGY

A. Subjects
Twenty healthy BCI-naïve subjects participated in the

experiments (eight females, all right-handed, average age
23.5±1.8 years). The study was approved by the Ethics
Committee of Zhejiang University, Hangzhou, China, and the
University of Waterloo, Waterloo, Canada. All participants
signed an informed consent form before participation.

B. EEG Recording and Somatosensory Stimulation
EEG signals were recorded using g.Nautilus wireless EEG

system (g.tec, Austria) with 32 electrodes, which were placed

according to the extended 10/20 system. The ground electrode
was located on the forehead and the reference electrode on
the right earlobe. The sampling rate of the system was set
at 250 Hz.

Linear resonant actuators (10 mm, C10-100, Precision
Microdrives Ltd., typical normalized amplitude 1.4 G) were
used for vibrotactile stimulation and were applied to the left
and right wrists. The stimulation device produced a 27 Hz
sine wave modulated with a 175 Hz sine carrier wave, which
is in the frequency range of activating mechanical receptors
of the Pacinian and Meissner corpuscles [55]. The vibration
amplitude was adjusted individually such that the subjects
were comfortable with perceiving the vibration.

C. Experimental Protocol

As shown in Fig. 1, the sensory cortex was activated by
real tactile stimulation or by imagined tactile sensation. Dur-
ing the sensory stimulation (SS) period, the subjects were
required to feel the tactile stimuli on the wrist. SS-L or
SS-R corresponds to the condition when only the left or
right wrist was tactile stimulated. For the imagined sensation
(SAO task), there was no tactile stimulus during the task
period, and the subjects were required to shift and maintain
their somatosensory attention on the wrist and imagine the
sensation (before the experiment, the subjects were exposed
to the actual vibration beforehand to know how it ‘feels’ and
can thus replicate this feeling during the imagined task). The
subjects were required to perform two SAO blocks designated
as the conventional calibration dataset, then two SS blocks as
the sensory calibration dataset, and finally two SAO blocks
as the common testing dataset. There were 40 trials for each
block, with 20 for the left task and 20 for the right task. The
subjects were seated on a comfortable armchair, with both
forearms and hands resting on the armrests. The subjects were
instructed to limit their eye, facial, and arm movements. The
subjects were required to take self-controlled and sufficient
rest (0.5∼1 min) between every two blocks. The procedure of
the SAO and SS blocks was as follows:

1) SAO Block: At the beginning of each trial (T = 0 s),
a white fixation symbol (“+”) appeared in the center of the
screen. At T = 2 s, a 200 ms vibration pulse stimulated both
hands to alert the user of the impending task. At T = 3 s, a red
left or right cue was randomly presented and lasted for 1.5 s,
with a left-arrow informing the subjects to perform the SAO-L
task and a right-arrow for the SAO-R task. The imagined SAO
task lasted for 5 s (the fixation symbol disappeared at T = 8 s).
Next, a 1.5 s relaxation period was followed. Finally, the next
trial started after a random time between 0 to 2 s.

2) SS Block: The timing structure of the trial was the same
as the SAO block. At T =3 s, the subjects were required to
feel the tactile stimulus when the vibrotactile was applied to
the left or right wrist. The sensation task lasted also for 5 s.

D. ERD/ERS and Time-Frequency Decomposition

ERD/ERS is defined as the percentage of the band power
decrease/increase in a defined frequency range in relation to a
reference period [43]. ERD/ERS was calculated as the change
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Fig. 1. Graphic illustration of the reducing calibration effort by using tactile ERD. Note: real tactile stimulus was delivered to subject wrist for producing
tactile induced ERD activation; in imagined task, subjects were instructed to shift and maintain the somatosensory attention on the left or right hand,
and to imagine sensation even when there were no tactile stimuli.

in power within the alpha-beta band (8 Hz - 26 Hz). The
baseline interval was between T = 1 s and T = 1.8 s. The
ERD/ERS difference was defined as the difference between
the ERD/ERS of the C3 channel (left hemisphere) and that
of the C4 channel (right hemisphere).

The EEGLAB toolbox was used to correct artifacts [56].
The trials with head/body movement artifacts were excluded
from the analysis of ERD/ERS. The Fieldtrip toolbox was used
to perform time-frequency decomposition analysis [57]. This
was calculated every 0.2 s with a hanning tapper, convoluted
with a modified sinusoid basis with 7 cycles at each frequency
point to achieve proper time and frequency resolution [57].
The R2 index is the squared Pearson-correlation coefficient
between the feature and class label [58], [59], and was used to
show the EEG channels that are important for the classification
of the corresponding mental tasks.

E. Algorithms and Performance Evaluation

Spatial filters were calculated by the Common Spatial
Pattern (CSP) algorithm, which was used to reduce the number
of channels and enhance the feature discrimination between
different tasks [60], [61]. Mathematically the CSP is realized
by simultaneous diagonalization of the covariance matrices
for the two classes. The log variance of the first and last
three components of the spatially filtered signals was chosen
as feature vectors, and linear discriminative analysis (LDA)
was utilized for classification. Before the CSP spatial filtering,
a 4th-order Butterworth filter (8 Hz – 26 Hz) was applied. EEG
signals were epoched between T = 4 s to T = 7 s. In the
sensory calibration model, the trials in the SS blocks were
used to train the classification model; while in the conventional
calibration model, the trials in the first two SAO blocks were
used. The last two SAO blocks were used as the common
testing dataset to evaluate the calibration models. For the
number of trials used for calibration, we randomly selected
the required number of trials, and this process was repeated

Fig. 2. Grand-averaged ERD/ERS difference within alpha beta fre-
quency band (8 Hz - 26 Hz), with (1) corresponds to Imaged SAO
task and (2) corresponds to Real Tactile Task. Note: The blue-dash line
corresponds to left hand task and the red dash-dotted line corresponds to
right hand task. The grey background corresponds to the task period, and
the upper and lower curves indicate standard error. Time 0s corresponds
to the time when the cue appeared (The 3rd second from the beginning
of the trial).

40 times and the performance on the SAO testing dataset was
averaged.

F. Statistics

One-way ANOVA with repeated measures was used to
analyze performance differences among different calibration
models (with p = 0.05). Whenever the main effect was
found to be significant, multiple comparisons with Bonferroni
correction were used for post-hoc comparison.

III. RESULTS

A. Tactile ERD and SAO Mental Task

Fig. 2 illustrates the ERD/ERS difference between the imag-
ined SAO task and the real tactile task, indicating the similarity
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Fig. 3. Grand-averaged ERD/ERS topographic distribution within alpha-
beta band (8 Hz - 26 Hz) within task period. The top row corresponds
to Imagined SAO task, the bottom row corresponds to Real Tactile Task;
The left column corresponds to left hand task while the right column
corresponds to right hand task.

Fig. 4. The classification accuracy across subjects by using different
calibration strategies, which were tested on the same testing dataset.
The blue bar corresponds to conventional calibration model; the red
bar corresponds to the sensory calibration model. The stars indicate
significant different with p<0.01.

of induced activity between them, and the left and right-hand
tasks were different. Moreover, Fig. 3 illustrates the spatial
distribution of the ERD/ERS within the task period across
different tasks, indicating the spatial similarity between the
imagined SAO task and the real tactile task, and diverse spatial
patterns between left and right-hand tasks.

B. Performance for Different Calibration Strategies

Fig. 4 shows the classification performance of each sub-
ject by using conventional calibration and sensory calibration
strategies. One-way ANOVA with repeated-measure showed
that there was a significant difference between the conventional
calibration and sensory calibration (F(1,19)=10.89, P=0.0038),
with 73.9%±13.6% for the conventional calibration model and
79.0%±12.3% for the sensory calibration model. Moreover,
the grand-averaged R2 distribution (Fig. 5), indicates a simi-
larity between the imagined SAO task and the tactile sensation
task across the different frequency bands, while in general the
SS task exhibited higher R2 in the upper alpha band than the

Fig. 5. The grand-averaged R2 distribution across different frequency
band and between imagined SAO task and real tactile Task. The upper
row corresponds to imagined SAO task, and the bottom row corresponds
to real tactile task. Different columns correspond to different frequency
band.

Fig. 6. Performance of the calibration models by using different number
of trials. (1) The averaged classification accuracy of different calibration
models by gradually increasing number of trials for model training. Note:
Number of Trials represents the trial number of each class. (2) The
performance of models across subjects when 10 left and 10 right trials
were randomly selected, at the time when averaged performance of
sensory calibration surpasses 70%. (3) The performance of models
across subjects when 20 left and 20 right trials were randomly selected,
at the time when averaged performance of conventional calibration
reaches 70%. The stars indicate significant difference with P < 0.01.

SAO task. Both tasks exhibited lower R2 in the lower alpha
band than the upper alpha band.

C. Reducing the Calibration Effort by Using Tactile ERD

Fig. 6 shows the performance difference between the two
calibration strategies when a different number of trials were
utilized for calibration training. Higher performance is attained
by using sensory calibration when the same number of trials
were used for the calibration. In the case when 10 left
and 10 right trials were selected for training, the perfor-
mance of sensory calibration was significantly higher than
that of conventional calibration (F(1,19)=23.46, P=0.0001);
in the case when 20 left and 20 right trials were used
for training, the performance of the sensory calibration was
also consistently higher than that of the conventional calibra-
tion (F(1,19)=17.69, P=0.0005). When setting 70% accuracy
for each subject and each calibration strategy, the sensory
calibration strategy could reduce the time by 39.3%±23.9%
on average.



1874 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

IV. DISCUSSION

We showed that the time required for calibration as well
as the accuracy of a somatosensory BCI can be significantly
improved by implementing a novel calibration strategy based
on tactile vibration. Testing was performed on a relatively
large number of subjects, and the performance even when the
training data was reduced by 39.3% remained significantly
greater (on average, 5.1% increase in accuracy) compared to
conventional calibration. The conventional strategy requires
data of the training and testing set to be from the same or
very similar tasks. Conversely, the approach proposed here
allows the inclusion of data from quite different tasks for the
training data. In the current study, this was comprised of data
from real tactile stimulation and testing data from the imagined
task. The SAO is a purely mental task, which is inherently
internal and difficult to be monitored by others, however, the
vibrotactile stimulation is external and can be precisely applied
when needed. Thereby, the training data from SS is easier to
obtain and more consistent as compared to SAO. In practice,
the tactile-induced-oscillation approach would be specifically
useful before BCI usage, avoiding excessive fatigue when the
mental task is difficult to perform.

There have been extensive studies on machine learning
approaches to reduce the calibration effort before the actual
BCI usage [62]. A regularization approach provides an effec-
tive way to construct the data model when the number of
training data is small, and a regularized estimation of the
covariance matrices can be obtained by shrinkage [63], [64].
By relying on user-to-user transfer, the data from other
users or previous data from target users can be used to
improve the calibration when a small amount of training
data is available [65], [66]; by using semi-supervised learn-
ing, the decoding model is adaptively retrained as new
EEG data become available and the unseen data are labeled
according to the classifier output [67], [68]. Using a priori
physiological information, such as by selecting the relevant
channels or source regions, can also reduce the parame-
ters to be estimated, thereby reducing the number of trials
needed [69]. Artificial EEG data generation was also shown
to be a promising approach to improve performance and
reduce the calibration trials, by generating enough labeled
data from already available limited numbers of labeled sam-
ples [62], [70]. Our approach is different from the algorith-
mic approaches but could provide new calibration data to
novel algorithms. The combination of our sensory calibration
with advanced training algorithms could further enhance BCI
performance.

ERD/ERS dynamics can not only be induced by real/ imag-
ined movement [4], [71], but also by sensory stimulation [51].
In the current study, the unilateral tactile sensation showed a
decrease in power in the contralateral hemisphere, indicating
activation of the somatosensory cortex. And this somatosen-
sory ERD activation can be passively modulated by delivering
stimuli to different body parts in a controllable way, such as
the left and right wrist in this work. The tactile ERD provides
a novel signal modality for tactile BCIs [52], [72], and can
largely improve tactile BCI performance based on steady-state
somatosensory evoked potentials (SSSEP) to repeated tactile

stimuli [73]–[75], similar to SSVEP responses to repeated
visual stimuli, reaching an average accuracy of 70.4% [76].
However, 80% of subjects showed an accuracy below 70%
(4 out of 5 subjects). This BCI paradigm was reproduced by
another similar study on SSSEP with more subjects involved
in the evaluation, resulting in average performance of 58%
over a group of 16 subjects [77]. By evaluating a larger
number of 57 users, we have shown that tactile-ERD-based
BCI was able to improve tactile BCI performance by around
10% [53], [54]. The present study further confirmed that
the somatosensory cortex ERD activation can be induced by
unilateral tactile stimulation, and showed a stable activation
across subjects and a higher discriminative spatial pattern
between left and right stimulation, as depicted in the R2

distribution in Fig. 5. Moreover, the co-stimulation of both
hands would induce co-activation of both left and right sen-
sorimotor cortex [54], which can then be utilized to increase
the output commands of the current BCI system. The benefit
of the tactile ERD approach for reducing the calibration
effort in multi-class BCI system would be worthy of future
study.

The proposed approach was motivated and based on our
previous work on MI calibration [47], in which vibration
stimulation was introduced to facilitate MI training, and on
imagined SAO calibration and training [31], [32], in which
we showed the feasibility of using tactile stimuli for both
calibration and training before BCI usage. In the current
study, however, we further demonstrated how the proposed
calibration strategy can facilitate reducing the calibration
effort and improve the system performance on more users.
The proposed methodology could have potential applications
for patients with attention deficits, such as attention deficit
hyperactivity disorde (ADHD), the controlable stimulus may
be utilized to attract their attention, and after a short calibration
time, the system can work as an independent BCI modality
without external stimulus. In addition, for those stroke patients
with motor impairment, while preserving sensory ability, the
current approach may help their motor rehabilitation. Due
to the mechanical property of LRA vibrators, the range of
controllable parameters was limited. The induced ERD acti-
vation may correlate with the stimulation parameters, such
as amplitude. In the future, an advanced piezo stimulation
system (parameters can be fully controlled) should be utilized
to evaluate the effect of the optimized parameters for further
reducing the calibration effort.

V. CONCLUSION

In this study, we evaluated a tactile ERD strategy to reduce
the calibration effort on somatosensory BCI based on imagined
sensation. The proposed tactile ERD approach significantly
improved the conventional approach by 5.1% and reduced
calibration time by 39.3%. The current approach also provides
novel domain data for transfer learning, which provides the
potential to further advance the BCI performance.
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