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Abstract— Electrical status epilepticus during
sleep (ESES) is an epileptic encephalopathy in children
with complex clinical manifestations. It is accompanied
by specific electroencephalography (EEG) patterns of
continuous spike and slow-waves. Quantifying such
EEG patterns is critical to the diagnosis of ESES. While
most of the existing automatic ESES quantification
systems ignore the morphological variations of the
signal as well as the individual variability among subjects.
To address these issues, this paper presents a hybrid expert
system that dedicates to mimicking the decision-making
process of clinicians in ESES quantification by taking
the morphological variations, individual variability, and
medical knowledge into consideration. The proposed
hybrid system not only offers a general scheme that could
propel a semi-auto morphology analysis-based expert
decision model to a fully automated ESES quantification
with biogeography-based optimization (BBO), but also
proposes a more precise individualized quantification
system to involve the personalized characteristics
by adopting an individualized parameters-selection
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framework. The feasibility and reliability of the proposed
method are evaluated on a clinical dataset collected from
twenty subjects at Children’s Hospital of Fudan University,
Shanghai, China. The estimation error for the individualized
quantitative descriptor ESES is 0-4.32% and the average
estimation error is 0.95% for all subjects. Experimental
results show the presented system outperforms existing
works and the individualized system significantly improves
the performance of ESES quantification. The favorable
results indicate that the proposed hybrid expert system for
automatic ESES quantification is promising to support the
diagnosis of ESES.

Index Terms— Biogeography-based optimization, elec-
troencephalography, electrical status epilepticus during
sleep.

I. INTRODUCTION

ELECTRICAL status epilepticus during sleep (ESES) is a
syndrome of epileptic encephalopathy with onset either

in infancy or childhood [1], [2]. It is one of the rare forms
of epilepsy-related to the decline in cognitive, behavioral, and
psychomotor abilities, and it is also associated with complex
etiologies such as structural brain abnormalities, genetic abnor-
malities, etc. Persistent ESES can lead to children’s abnor-
mal development, including cognitive impairment, behavioral
disturbance, and language function decay [3], [4]. Therefore,
accurate diagnosis and active intervention of ESES as early
as possible are significant to improve the prognosis of ESES.
However, children with ESES often show various and complex
clinical manifestations, adding difficulty to the early diagnosis
of the disease. Electroencephalography (EEG), as the gold
standard in the diagnosis of epilepsy, also plays an important
role in the diagnosis of ESES [5]. The patients with ESES,
accompanied by strong activation of epileptiform activity
during slow sleep, present the particular EEG patterns of
continuous spike and slow-wave abnormalities [6]. Such signal
patterns characterize the typical ESES patterns. Evaluating
EEG with the quantitative descriptor of ESES patterns plays a
key role in diagnosing and treating patients [5], [7]. Clinically,
the quantitative descriptor is usually obtained through visual
inspecting EEG recordings over time and marking ESES pat-
terns by an experienced expert. This quantification process is
time-consuming and makes clinicians weary. Moreover, man-
ual scoring results can be variable from different observers.
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Therefore, developing automatic methods for quantifying EEG
pattern related to ESES is essential to relieve the burden of
doctors and contribute to the early diagnosis and treatment of
children with ESES.

Quantifying ESES-related EEG aims to provide the quan-
titative descriptor of ESES patterns, which expresses the
percentage of ESES activity during sleep to diagnose patients.
It requires the methods to recognize ESES patterns in sleep
EEG and evaluate them with the quantitative descriptor.
As ESES patterns are characterized by continuous spike
and slow-waves abnormalities, some investigators try to find
ESES patterns through detecting spikes, which are parts of
characteristic waves of ESES patterns. The automatic ESES
quantification methods can be roughly classified into machine
learning-based approach and knowledge-based approach. Most
of machine learning-based techniques can achieve favor-
able performance [8]–[13]. For example, to accomplish the
automated classification of epileptic seizures, Supriya et al.
developed a graph theory-based innovative framework [14].
Zarei et al. proposed a new scheme based on principal compo-
nent analysis and machine learning techniques [15]. However,
it also requires big volumes of data to explore and build the
decision-making model. As an epileptic encephalopathy, the
features of ESES are rather different from epileptic seizures.
Besides, due to the scarcity of cases, the data belonging to
ESES is much smaller. Thus, we proposed a hybrid expert
system integrating biogeography-based optimization method
instead of simply applying machine learning methods. As for
the knowledge-based approach, it can offer a straightforward
and explainable solution for ESES quantification. To illustrate,
Nonclercq et al. [16] proposed an automatic spike detection
method based on template matching to apply ESES quantifi-
cation. Favorable detection results can be obtained when the
shape of the chosen template is similar to the contour of the
spike portion of ESES patterns. However, with the evolution
of ESES activity [17], its characteristic wave can vary in
amplitude and duration, which would increase false detections.
Considering variable spikes in EEG, Nonclercq et al. [18]
improved the algorithm using clustering to include various
shapes of spike waves. The detection performance was ele-
vated, but the presented algorithm still largely relied upon
the pre-selected templates. Although these works suggested
that the quantification of ESES patterns could be achieved by
detecting spikes, all of them only identified the spike waves
coming from the simple spike and slow waves. They ignored
the interlaced overlapped spike and slow waves. This type of
ESES waveform is more complex and frequently occurs as
ESES activity evolves. Moreover, in terms of assessing the
duration of ESES pattern, these spike detection-based methods
led to a significant bias due to the lack of slow-wave abnor-
malities detection. These defects also imply that many other
approaches designed for spike detection are not appropriate
for the automatic quantification of ESES activity [19], [20].

As ESES is one of the rare epilepsies, the related and
well-labeled data are challenging and expensive to obtain,
in which case a suitable morphology analysis-based expert
decision model (MA-EDM) can be a better solution to identify
and quantify ESES patterns [21]. Results from our previous
work have demonstrated their great potential for the appli-

cation of the quantification of ESES patterns. Nevertheless,
this existing knowledge-based approach still has some issues
that need to be resolved. First, morphological filtering-based
feature detectors were designed to distinguish features from
time series, whose parameters severely affect the identifica-
tion accuracy of ESES patterns. Manual regulation of these
parameters was adopted by the approach, which ignores the
morphological variation of signals. Second, feature extraction
operation was used to localize and extract features, where
the horizon can influence the duration estimation of ESES
patterns. The same and empirical horizon was used by the
approach for all features, which overlooked the differences
among features. Finally, the approach did not consider individ-
ual characteristics. To improve this knowledge-based approach
for automatic quantification of ESES patterns, morphological
variation of signals and different features should be considered
in the decision model.

In this paper, a hybrid expert system integrating
biogeography-based optimization techniques into the mor-
phology analysis-based expert model for quantifying ESES
is proposed. It dedicates to mimicking the decision-making
process of clinicians in ESES quantification by considering the
personalized characteristics and medical knowledge. Firstly,
a parameter selection scheme on basis of biogeography-based
optimization algorithm to propel a semi-auto MA-EDM model
to a fully automated ESES quantification model is devised.
Secondly, based on the automatic scheme, an individualized
ESES quantification system that takes account of personalized
characteristics is proposed. Finally, the impact of the amount
of prior knowledge on the individualized ESES quantification
is explored and the minimum percentage of individual data
for generating the appropriate feature detector and extraction
operation parameters is provided. The main contributions of
this paper can be summarized as follows.

1) The proposed scheme offers an effective solution for
automatically adjusting the feature detector and extrac-
tion operation parameters.

2) By involving little prior knowledge, the individualized
ESES quantification system could achieve superior per-
formance as compared with the automatic scheme.

3) We explored the performance that can be achieved with
as small amount of training data as possible.

The proposed system allows an automated setting-up and
adjustment of feature detector and extraction operation by
considering not only signal morphology but also personalized
characteristics. Therefore, the proposed hybrid expert system
is expected to significantly improve the performance of ESES
quantification.

II. METHOD

In this section, our previous work is briefly introduced and
then an automatic ESES quantification scheme and an indi-
vidualized system based on biogeography-based optimization
are proposed.

A. EEG Quantification Scheme Using Expert Knowledge
and Morphology Analysis

A brief description of MA-EDM is presented below, more
details can be found in our previous work [21].
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Fig. 1. Two examples of EEG signals and the corresponding results obtained with different peak detectors. The left and right sides drawn using
different colors are the results of two subjects respectively. Different values of length W1,2 are predefined for the detector. The height of structuring
elements hk is the same value of 3 as in [21]. (a) Original EEG signals, where actual spike and slow-waves labeled by the expert are plotted in red
color. (b) The signal from the peak detector with W1=3 and W2=3. (c) The signal from the peak detector with W1=3 and W2=30. (d) The signal from
the peak detector with W1=30 and W2=3. (e) The signal from the peak detector with W1=30 and W2=30.

1) Data Preprocess: Raw EEG signals were filtered to
remove artifacts. As ESES is a typical EEG waveform during
sleep. Only sleep EEG characteristic is considered in this
paper. According to the American Academy of Sleep Medi-
cine (AASM) guidelines [22], the recommended filter setting
for EEG derivations is 0.3-35 Hz. In this paper, in conjunction
with AASM and the clinician’s recommendation, we used
a bandpass filter from 0.5 to 40 Hz and 400μV for noise
elimination.

2) Morphological Feature Extraction: The spike and
slow-waves abnormalities in ESES activity can be identified
using morphological features, namely positive peaks, negative
pits, and corresponding temporal sequences of them. Positive
peaks or negative pits are firstly discriminated from time
series by performing peak/pit detector, followed by the
feature extraction operation to extract them from signals.
Feature detectors constructed by morphological filters (MF)
are designed and performed to the pre-processed signal. They
can separate morphological features from signals meanwhile
restrain the interference from background waves [23], [24].
For the pre-processed signal EEG signal f (n) of length
N, the result by performing peak detector (PKD) and pit
detector (PTD) on f(n) can be expressed using 1 and 2,
respectively.

pk(n) = P K D[ f (n)] = ( f ◦ g1)(n) − [( f ◦ g1) • g2)](n)

(1)

pt(n) = PT D[ f (n)] = ( f • g1)(n) − [( f • g1) ◦ g2)](n)

(2)

where ◦ and • denote opening operation and closing opera-
tion, respectively. gi(n), i = 1, 2, 3, 4 is the same dome-like

structuring element but has different widths Wi as follows,
whose width or length (2 ∗ Wi ) mainly relies upon the length
of signal features to be detected.

gi(n) =
{

h × [1 − ex p(−n)], f or n = 0, 1, . . . , Wi

g(2Wi − n), f or n = Wi + 1, . . . , 2Wi
(3)

Feature extraction operation is employed to all obtained
results p. The beginning and ending points of these features
are also estimated, which provide important clues for the
latter identification of spike and slow-waves. Using (4) firstly
transforms the features (peak/pit) in the obtained result p
into bipolar oscillating impulses (positive-negative/ negative-
positive) in the output c. Then, for each bipolar oscillating
impulse, the first local extreme point (maximum/minimum) on
its left is detected as the beginning of the features (peak/pit);
the extreme point (minimum/maximum) on its left on its right
is detected as the end of the features (peak/pit).

c(n) = FC[p(n)] =
∑

m=0,...,r−1

p(n + m) − p(n),

f or n = 1, 2, . . . , L − r + 1 (4)

where FC[·] represents the functional calculus that summates
the differences of input signal p (namely pk , pt ) in a forward
horizon r . The c represents the output data.

3) Spike and Slow-Waves Identification: The identification of
ESES patterns is performed by judging spike and slow-waves
abnormalities from extracted features. For identifying mul-
tiple types of spike and slow-waves, the rules inspired by
medical knowledge and signal morphology are used to search
different complex structures of spike and slow-waves. Those
extracted features will be combined and judged as candidates
for the spike and slow-wave preliminarily. The recognition is
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performed by comparing each candidate with a generalized
amplitude criterion, which is taken as the baseline that is
commonly used during expert scoring.

S∗ = η(S, T hl , T hu) =
{

f (ts , te), condi tion

Null, else
(5)

where S∗ denotes the identified spike and slow-wave. S =
f (t1, t2) represents the individual candidate whose onset and
offset are t1 and t2 respectively. T hu and T hl represent the
amplitude range of non-event waveforms. They can be com-
puted from the histogram of the extreme points in non-event
waveforms over the collected data. Condition means that St=te
≥ T hu and T hl < Ste≥t < T hu .

4) Quantitative Measure of ESES Patterns: The quantifica-
tion of EEG related to ESES is achieved by evaluating spike
and slow-waves with the key quantitative parameter, namely
the spike-wave index (SWI). Following the guidelines in ESES
diagnosis, it can be computed as follows.

SW I = (

∑K
j=1 d j

Duration
) ∗ 100. (6)

where d j is the estimated duration of the jth spike and slow-
wave. K is the number of the detected spike and slow-waves.
Duration denotes the non-rapid eye movement sleep (NREM)
duration of the record.

5) Limitations of MA-EDM: In the existing work, the parame-
terized feature detectors were performed manually by authors.
However, manually predefined parameters ignore the mor-
phological variation of signals. The morphological features
may not be discriminated effectively from time series by the
detectors. Fig. 1 displays the corresponding results of EEG
signals of two subjects by setting up the peak detector with
different regulations. The features are not only related to the
parameters of the detector but also related to variances of
individuals. Manually predefined values of lengths may not
obtain effective features of ESES patterns, and the height
of the structuring element used could also affect system
performance. The influence of using different heights for
peak/pit detector had been explored and shown in our previous
work [21]. Moreover, the same and empirical horizon is used
by the system MA-EDM for all features, which overlooks the
differences between peaks and pits as well as the variation
between individuals.

To address these limitations, the following part of the paper
presents a solution by constructing a new framework based
on hybrid techniques. The signal morphology and different
features are considered by the hybrid system employing differ-
ent parameterized feature detectors and extraction operations
for positive peak and negative pit, respectively. It integrates
biogeography-based optimization into the decision model to
generate and select optimal parameters automatically for them.

B. Proposed Automatic ESES Quantification Scheme
Using Biogeography-Based Optimization

Compared with the previous solution, the proposed method
integrates the Biogeography-based optimization (BBO) algo-
rithm in the Morphological feature extraction to further

Fig. 2. Flowchart of CMM-BBO-based automatic parameter selection
by mapping the identification procedure of ESES patterns into BBO.

improve the performance. BBO is similar to other heuristic
optimization algorithms, such as genetic algorithms (GA) [25],
particle swarm optimization (PSO) [26], etc. Compared with
other algorithms, BBO is able to calculate the corresponding
mutation rate according to the number of populations accom-
modated in the habitat and perform mutation operations on
the habitat, which makes the algorithm have a strong adaptive
capability. Thus, BBO has the ability to explore solutions
quickly and can cross the local optimum. Next, we will briefly
introduce the BBO algorithm and our experimental steps.

In recent years, the exploration of biogeography has been
drawing great attention [27]–[32]. BBO was first proposed
by Simon [33]. It is a new evolutionary algorithm based on
biogeography that is developed to tackle global optimization
problems. To measure the stability of habitat, the habitat
suitability index (HSI) is used as an indicator. Suitability
index variables (SIVs) are independent variables to compute
HSI [30]. Many BBO variants have been developed, such as
BBO based on new migration or mutation operators [34],
[35], BBO hybrid with other evolutionary algorithms [36],
[37], and BBO based on multiple populations or local topolo-
gies [38]. Chen et al. [39] proposed the migration operator
based on covariance matrix (CMM) to reduce its reliance on
the coordinate system.

In this study, we employed the BBO with CMM-based
migration operator, which allows habitats to share their impact-
ful information more efficiently. Following we will explain
in detail the optimization of system parameters based on
CMM-BBO. It not only offers an automatically parameters
adjusting solution but also provides a general scheme for para-
meter setting-up. As shown in Fig. 2, the automatic parameter
selection (APS) mainly consists of the following steps:

1) Initialization of Habitats: We initialize the maximum
migration rates E and I for migration operators, the maximum
mutation rate mmax for mutation operator. The population
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consists of NP habitats H G
i , i = 1, 2, . . . , N P , where

G denotes the generation count. Each habitat H G
i =

(X G
i,1,X G

i,2, . . . , X G
i,8) is represented by an eight-dimensional

real system parameter vector. The parameter vector is
[W1,2,3,4, hk , rk , ht , rt ], which are regarded as SIVs of the
habitat. The individual is initialized as follows.

X G
i,d = Ld + rand(0, 1) × (Ud − Ld ). (7)

where i = 1, 2, . . . , N P , which denotes the ith individual
habitat. Ud and Ld denote the upper bound and lower bound of
dth parameter of the system parameter, where d = 1, 2, . . . , 8.

2) Evaluating HSI for Each Habitat: The HSI of habitat is
assessed with the objective function of the decision model.
In our presented scheme, the F1 score of system performance
is taken as the HSI of each habitat in BBO. The F1 score which
measures detection performance is calculated by comparing
detections with the actual events marked by expert.

3) Modifying Habitats With CMM-Based Migration Operator:
For a habitat H G

i , its immigration rate λi is used to prob-
abilistically decide whether to adjust each parameter in that
solution. Immigration rate λi and emigration rate μi can be
calculated as follows.

λi = I × (1 − s/n). (8)

μi = E × (s/n). (9)

where s is the order index of the individual habitat Hi in
H after sorting, which is taken as its species account in the
present application. The value of s ranges from 1 to n, where
s = 1 represents the worst individual while s = n represents
the best. n denotes the largest species account, which could
be set as n = N P .

To minimize the interference of the habitat information
sharing, the original coordinate system would be rotated to
an eigenvector-based system by the CMM-based migration
operator, which is mathematically described in [39].

Cov(H G) = QH ΛH QT
H . (10)

eigH G
i = H G

i ×QH eigH G
i =(eigX G

i,1,eigX G
i,2, . . . , X G

i,8).

(11)

H G+1
i = eigH G+1

i × QT
H (12)

where QH is the D × D matrix that has the eigenvector of
Cov(H G) as its ith column. ΛH is the diagonal matrix that has
the corresponding eigenvalues as its diagonal entries. eigH G

i
is the rotated solution, eigX G

i,d is the rotated parameter in the
eigenvector-based coordinate system, and i = 1, 2, . . . .N P .

4) Mutating the Population With the Mutation Operator:
Each habitat has an associated species count probability Pi

computed from λi and μi . A habitat with medium HSI is the
most probable solution to the problem. A habitat with very
high or low HSI is likely to mutate to a different solution. The
mutation operator replaces its SIV with a new random value.
Each habitat has a mutation rate mi measured as follows.

mi = mmax × (
1 − Pi

Pmax
) (13)

where mmax is a control parameter defined by the user, and
Pmax is the probability that the habitat has the most species.

Fig. 3. Scheme of biogeography-based optimization tuned hybrid expert
system for individualized quantification.

5) Halting Criterion: The steps above will stop till the halting
criterion is satisfied or the maximum number of iterations is
reached. The maximum iteration number of objective function
evaluations is defined in the experimental setup section. The
halting criterion in our scheme is the HSI of 1.0, which
corresponds to the F1 score of the decision model. The HSI
of each new adjusted habitat will be evaluated and the elite
habitat to update the best solutions will be selected.

C. Proposed Individualized Quantification System

The whole process is shown in Fig. 3. To accommodate
the variability of individual characteristics, the algorithm is
executed separately for different subjects. In the pre-processing
and data selection, we read raw EEG signals and reduce the
interference from artifacts to signals in the recording. Map-
ping the identification procedure of ESES patterns into BBO,
potential solutions are generated by performing CMM-BBO
algorithm on partial EEG data. After comparing their perfor-
mance with expert scoring, these solutions would be modified
using migration and mutation operators till the best solution
is searched. As such, the optimal parameters can be generated
by adjusting the parameterized operations to the selected sig-
nals using CMM-BBO algorithm. By presenting the obtained
optimal parameters into the morphology analysis-based expert
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decision model, the morphological feature extraction is auto-
matically set up with these parameters. For different fea-
tures, diverse feature detectors and extraction operations are
employed for their extraction. They can be adjusted to the
signals by using the obtained parameters. Hence, we can obtain
a tuned decision model and apply it to the remaining EEG data
to obtain final quantitative results for ESES.

In the presented individualized system, the
biogeography-based optimization algorithm is embedded
in the decision model for computing system parameters.
Meanwhile, the decision model is fused inside the
biogeography-based optimization algorithm for evaluating the
performance of these parameters. Through this hybrid scheme,
the decision model is tuned by the biogeography-based
optimization algorithm.

III. RESULTS

A. Data Collection

The data used for this research was obtained from the
Children’s Hospital of Fudan University, Shanghai, China.
A total of 20 children with ESES syndrome (12 males and
8 females) aged from 3 to 14 years old were involved. The
data collection was approved by the hospital ethical committee
(approval No. (2020) 173). Informed consent was obtained
from the parents or legal guardians of each subject before their
participation. The data were collected when the subject was
in the time of medical examinations. The surface EEG signals
at rest were recorded using the Nicolet EEG device which
includes the channels from the 10-20 international electrode
placement system. The recording lasted 3 hours on average
to guarantee a complete sleep cycle of EEG signals. All EEG
recordings were digitized at a sampling rate of 500 Hz and
stored in the files of EDF format. To evaluate the presented
hybrid expert system, the data collected for this research
is divided into two sub-datasets. The first dataset includes
4 subjects (2 males and 2 females) aged from 4 to 11 years
old. 40 short excerpts (10 excerpts from each subject) that
contain the abundance of ESES discharges during sleep were
selected and analyzed by the expert. The second dataset
includes all long-term recordings from 20 subjects (12 males
and 8 females) aged from 3 to 14 years old for final evaluation.
Each recording ranges from 179.1 to 195.6 min. The first
dataset is used to quantitatively assess the spike and slow
waves and to validate the feasibility of the proposed system.
The second dataset is used for the final SWI evaluation. While
it is worth mentioning that the second dataset contains the
whole long-term EEG recordings of these 4 patients, while
the first dataset only consists of 40 short excerpts from these
4 patients.

B. Performance Evaluation

The first dataset is adopted to test the feasibility of the
presented system by fully assessing the detailed information
of spike and slow-wave abnormalities. After that, the system
parameters can be generated and tuned to the data related
to ESES. We compare detections with events by one-to-one
matching. During the matching procedure, two events are

compared by employing Intersection over Union (IoU), which
has been commonly utilized to quantify the overlap between
two events in detection tasks [40]–[43]. An overlap threshold
value of a = 0.4 is used, which is stricter than the values
of these works [31], [33]. The second dataset is applied to
further validate the reliability of the presented system, and the
experimental results of the existing methods are compared.

In the experiment on the first dataset, taking the expert as
the gold standard, the SWI error and F1 score are computed to
evaluate the performance. In addition, we use precise (Pre.),
sensitivity (Sens.), and false discovery rate (FDR) to mea-
sure the ability of the model for recognizing ESES patterns.
Moreover, the assessment of the duration and the quantitative
parameter of ESES patterns are involved in the process of
quantification. In the experiment on the second dataset, the
expert scores the data during sleep by calculating the quanti-
tative descriptor SWI. Different methods are employed on the
same dataset, and the SWI results given by the expert and the
algorithm are compared.

C. Experimental Setup

For CMM-BBO, several reasonable values, which are sug-
gested in the application of BBO algorithm [39], are adopted
to set the following control parameters for the current imple-
mentation: population size N P = 100, mutation probability
mmax = 0.005, emigration rate E and immigration rate I for
habitat = 1, the control parameter of CMM-based migration
operator Pe = 0.5, elitism parameter p = 1, and maximum
number of objective function evaluations = 15000. For the
morphology analysis-based expert decision model, the bidi-
rectional amplitude threshold T hu = 71 and T hl = −25
is taken, which follows the convention employed for ESES
analysis [21]. The presented hybrid expert system is imple-
mented and evaluated in MATLAB R2019a.

To evaluate the feasibility of the presented system, we con-
ducted our experiments over 20 independent runs by applying
the system on the first dataset. For each run, 10%, 20%, 50%,
80% of the data were randomly selected as the training set used
by the CMM-BBO model for computing optimal parameters,
and the remaining data were used for testing the overall quan-
tification system. We have conducted experiments separately
for individuals and for group to explore the personalized
performance of the proposed system. The minimum training
data ratio that achieves considerable accuracy can be obtained
through the experiments. Moreover, a comprehensive experi-
ment for the application of ESES evaluation is performed by
complementing the proposed system on the second dataset.

D. Experimental Results on the First Dataset

We tested the presented system by implementing it to
the excerpts from 4 subjects, which contain the abundance
of ESES discharges during sleep. For the presented system
running on an Intel Core i5 CPU 3.40 GHz, the average time
taken for each run was 69689s. The average time for each
iteration was 464.60s. The average convergence time for each
run was 27875.71s. The average time taken to evaluate the
objective function was 4.65s.
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Fig. 4. Results of the individualized and generalized system using
different percentages of the training data. Group represents four subjects
to train together with the generalized system.

Fig. 4 showed the detection performance of the presented
hybrid expert system. Compare with the generalized system,
the individualized system trained on individual data obtained
better performance. The results for subject C are relatively
worse, while the performance of all the other three subjects
is considerably higher. Comparing the results of different
percentages of training data, it is obvious that the performance
of the algorithm increases as the training data increases.
The trend is more explicit on individualized system than
generalized system. For all subjects, the proposed system
achieved the F1 score of almost 0.7 using 10% of the data.
When the amount of training data increased to 80%, F1 score
increased to more than 0.8. The best detection performance
for individuals was obtained on subject D with F1 score of
0.87 using 80% of the data. It showed acceptable performance
using fewer data, and superior performance using more data.
The overall performances of the algorithm from Fig. 4 demon-
strated that the presented individualized hybrid expert system
significantly improves the performance of ESES quantification
in comparison with the generalized scheme.

Fig. 5. SWI error obtained by the individualized and generalized system.
Results of four subjects training using different percentages (10%, 20%,
50%, 80%) of the data.

Fig. 5 shows the SWI errors for different subjects. It also
demonstrates that the presented individualized system out-
performs the generalized scheme.However, as the training
data increased, the system obtained worse SWI estimation in
several subjects. On the one hand, CMM-BBO model regarded
F1 score as the target, which leads to the recognition area
deviating beyond the actual area, thereby increasing the SWI
error. On the other hand, although the SWI error fluctuated
within a certain range, the algorithm can still achieve good
performance. In estimating the quantitative descriptor SWI, the
system enhanced the effectiveness in individual experiments.
The SWI error of the presented system was 1.49% for the
group of subjects. It had errors within 1% for different
subjects. For the SWI evaluation, no significant difference
between the results obtained from training with different ratio
data was found (p > 0.05). Comprehensively considering the
amount of data used, the recognition accuracy and the SWI
estimation error of the system, 10% can be considered as the
appropriate percentage of the data for training in determining
the feature detector and extraction operation parameters.

E. Experimental Results on the Second Dataset

To further validate the presented system, we applied
the individualized system with the 10% of EEG record-
ings from 20 subjects with ESES syndrome for evaluat-
ing SWI. As shown in Table I, the SWI errors of twenty
subjects between individualized system and expert were
from 0 to 4.32%, and the average SWI error was low to
0.95%. For individual subjects, the smallest SWI error was
0 on subject 10 and the largest SWI error was 4.32% on
subject 15. The SWI estimation with an error less than 1%,
5%, and 10% accounted for 75% (15/20), 100% (20/20) and
100% (20/20) respectively on this dataset. Compared with the
MA-EDM, the proposed individualized system significantly
improved the overall SWI for these subjects, and achieved
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Fig. 6. Detection results of EEG series from the morphology analysis-based expert decision model with the traditional MA-EDM, and from that with
automatic parameter setting-up (the proposed system), respectively. The red line denotes the events in the gold standard dataset. The detections
from the two algorithms are denoted with blue and green lines, respectively. The starting and ending points of each line are the onset and offset of
each event or detection.

TABLE I
SWI EVALUATION RESULTS OF 20 SUBJECTS

ON THE SECOND DATASET

lower SWI error in most cases. For some subjects like subject
2 and 15, higher SWI errors were obtained by individualized
system. It was mainly due to the fact that parameters in
MA-EDM were manually adjusted for many trials over a long
period of time. Meanwhile, for these subjects with higher SWI
error, a relatively shorter recording was observed, which may
indirectly affect the performance of the individualized system
in parameter selection.

IV. DISCUSSION

This paper mimics the clinical decision-making process of
ESES patterns by merging medical knowledge with signal

TABLE II
COMPARISON OF THE RESULTS ON THE FIRST DATASET FROM THE

TRADITIONAL MA-EDM, AND FROM THAT WITH

THE PROPOSED SYSTEM

morphology analysis. Meanwhile, the biogeography-based
optimization technique is integrated into this morphology
analysis-based expert decision model to form the hybrid expert
system.

A. Performance Comparison Between Automatically
Individualized Parameters and Manually Selected
Parameters

We fully assess its results in terms of the detection and
the percentage of spike and slow-waves during sleep. Fig. 6
displays the identification results of ESES patterns in EEG
series from the system with manual parameter setting-up
(the traditional MA-EDM), and with automatic parameter
setting-up (the proposed system). Results before 6s show that
the detections from the system with automatic parameters
are closer to the actual events than those from the system
with manual parameters. The detections from 12 to 13s and
from 15 to 16s show that for such complex ESES patterns,
the system with automatic parameters outperforms that with
manual parameters. The identification results of ESES patterns
in Fig. 6 show visually that the system with automatic para-
meter setting-up performs better, especially for the detection
of complex spike and slow-waves.

Table II shows the comparison of the quantification results
of ESES patterns. For all subjects, estimation errors in the SWI
from the system with automatic parameters are significantly
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less than those with manual parameters. The comparison
results in Table II quantify the specific added-value of auto-
matic parameter setting-up by the APS based on CMM-BBO
as the initial step in the quantification process. Comparing
the results for individuals and groups from Table II, the SWI
error for the individuals ranges from 0.49% to 0.86% and
the average SWI error of the group is 1.49%. The proposed
system is able to obtain better results on different individuals
and outperformed the generalized model, which illustrates the
effectiveness of the individualized scheme.

Therefore, compared with predefined system parameters
of manual regulation, the proposed individualized system of
automatic parameter setting-up shows great capability for the
quantification of EEG related to ESES.

B. Comparison Between Proposed Individualized ESES
Quantification System and Existing Work

This study achieves the quantification of ESES by present-
ing a novel hybrid expert system. It is one of the few studies
proposed for automatic ESES analysis in the literature [16],
[18], [20]. We compare the presented individualized system
with the existing relevant works for the detection and quantifi-
cation of ESES activity. Evaluating EEG with the quantitative
descriptor of ESES patterns, namely SWI, is the key to the
diagnosis criteria [5]. Fig. 7 compares their performance on
the first dataset from four subjects. Table III compares their
performance by applying them to the same EEG recordings
from a large population with ESES syndrome.

As shown in Fig. 7, our system obtained fewer errors in
SWI estimation both on the group and individuals. Proposed
system obtained the higher F1 scores on groups, but lower
than that of the MA-EDM method for individual subjects,
mainly due to the low proportion of training data. However,
compared with MA-EDM, the feature extraction operation in
our system was tailored to positive peaks and negative pits
separately. Furthermore, we designed a BBO-based parameter
selection procedure for the automatic setup of the system,
which was more efficient than the manual setup in MA-EDM.
After complementing it on partly data scored by the expert,
the system was tuned by using optimal system parameters that
had been adjusted to the data. Signal morphological variation
and individualized differentiated features overlooked by the
traditional MA-EDM were considered during our detection
process.

Compared with template matching, K-mean clustering, and
MA-EDM, the estimation error between the proposed system
and the expert was 0.95%. The quantification performance
of the proposed system was better than theirs both on the
group and different subjects. Compared with the traditional
MA-EDM, the SWI results from the proposed system were
closer to that from the expert. As shown in Table III, the
percentage of SWI error within 10% of the proposed systems
was 100%. Compared with MA-EDM, the percentage of
SWI errors within 1% was raised by the proposed system
from 0 to 70%. MA-EDM relies on manual parameters, which
is easy to fall into local optimization. Our proposed system
can automatically set parameters to improve performance.

Fig. 7. Comparison with existing works for the quantification of ESES
by performing them on the first database.

The clinical validation on the larger dataset indicates the
ability of the presented system for the quantification of EEG
related to ESES. From comparisons with existing methods in
Fig. 7 and Table III, the overall performance of the proposed
system was favorable and comparable.

Based on the limitations of the proposed system, we give a
brief summary on the potential research. Firstly, more subjects
should be involved to further enhance the method performance.
With a limited dataset, we are dedicated to finding a minimum
training data ratio that not only achieves fairly high accuracy,
but also reduces the burden on the expert in labeling. This
paper verifies the feasibility and reliability of the proposed
system when only very small proportions of training data are
available. Also, its performance can be improved when more
training data are involved. The proposed method is conducted
on a small dataset, which is accompanied by interpretability in
combination with clinical analysis. However, further rigorous
experiments with more data are required. In the future, we will
collaborate with other hospitals/centers to collect more data
to further verify the robustness of the proposed method.
Secondly, multi-objective optimization algorithm should be
considered. The result from Fig. 5 shows that the quantita-
tive errors on the subjects could be relatively high due to
the expanded recognition area where the algorithm aims to
improve the F1 score. The quantitative errors on the subjects
could be relatively high due to the expanded recognition area
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TABLE III
COMPARISON WITH EXISTING WORKS FOR THE QUANTIFICATION OF ESES BY APPLYING THEM ON THE SECOND DATASET

where the algorithm aims to improve the F1 score. In our
current approach, the single-objective optimization algorithm
can only select one indicator for optimization. The devel-
opment of multi-objective optimization algorithms is needed
to achieve more accurate identification and lower estimation
errors. The multi-objective optimization algorithm can increase
the recognition precision and reduce the SWI estimation error
in the meantime. The multi-objective optimization algorithm
can increase the recognition precision and reduce the SWI
estimation error in the meantime. Thirdly, clinical descriptions
of ESES activity involve the topography and morphology of
EEG. Multichannel analysis can be also researched by the pro-
posed system to enhance its performance. Moreover, further
explorations on the results obtained with our system may of
significance for epilepsy research. At present, EEG is used to
evaluate the SWI and has been used for the diagnosis of chil-
dren’s ESES, which plays an important role in clinical appli-
cations. Besides demonstrating the quantification results using
SWI, it could be of clinical interest to explore various ESES
patterns by classifying the detected spike and slow-waves.

V. CONCLUSION

This paper proposed a hybrid expert system for
quantifying EEG related to electrical status epilepticus
during sleep in children. It was constructed by integrating the
biogeography-based optimization algorithm into a morphology
analysis-based expert decision model. The morphology
analysis-based expert decision model was designed by com-
bining medical knowledge with signal morphology analysis.
Then, to accomplish automatic optimization of the para-
meterized schemes for different features in the morphology
analysis-based model, the biogeography-based optimization
algorithm was applied to select optimal parameters for them
by adjusting them in the decision-making process. As such,
the expert decision model was tuned and performed using
optimized schemes. In tuning the model, a more precise
individualized framework that involves the personalized
characteristics is proposed. With the exploration of the
required amount of prior knowledge in selecting appropriate
parameters, the proposed system can achieve an average SWI
error of 0.95% by adopting only 10% of the individual data
for generating the personalized parameters. Favorable results
proved the ability and reliability of the presented system
for quantifying ESES activity by considering both signal
morphology and personalized characteristics. Meanwhile,
the hybrid individualized expert system is expected to assist
clinicians in precise ESES quantification analysis.
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automatic EEG classification according to the epilepsy type: Benign
focal childhood epilepsy and structural focal epilepsy,” Biomed. Signal
Process. Control, vol. 48, pp. 118–127, Feb. 2019.

[11] K. M. Tsiouris, V. C. Pezoulas, M. Zervakis, S. Konitsiotis,
D. D. Koutsouris, and D. I. Fotiadis, “A long short-term memory deep
learning network for the prediction of epileptic seizures using EEG
signals,” Comput. Biol. Med., vol. 99, pp. 24–37, Aug. 2018.

[12] C. Chen, A. Ugon, C. Sun, W. Chen, C. Philippe, and A. Pinna, “Towards
a hybrid expert system based on sleep event’s threshold dependencies for
automated personalized sleep staging by combining symbolic fusion and
differential evolution algorithm,” IEEE Access, vol. 7, pp. 1775–1792,
2019.

[13] S. Supriya, S. Siuly, H. Wang, and Y. Zhang, “Epilepsy detection from
EEG using complex network techniques: A review,” IEEE Rev. Biomed.
Eng., early access, Feb. 1, 2021, doi: 10.1109/RBME.2021.3055956.

[14] S. Supriya, S. Siuly, H. Wang, and Y. Zhang, “New feature extraction
for automated detection of epileptic seizure using complex network
framework,” Appl. Acoust., vol. 180, Sep. 2021, Art. no. 108098.

[15] R. Zarei, J. He, S. Siuly, G. Huang, and Y. Zhang, “Exploring
Douglas–Peucker algorithm in the detection of epileptic seizure from
multicategory EEG signals,” BioMed Res. Int., vol. 2019, Jul. 2019,
Art. no. 5173589.

[16] A. Nonclercq et al., “Spike detection algorithm automatically adapted
to individual patients applied to spike and wave percentage quantifica-
tion,” Neurophysiol. Clinique/Clin. Neurophysiol., vol. 39, pp. 123–131,
Apr. 2009.

[17] C. A. Tassinari, G. Cantalupo, L. Rios-Pohl, E. D. Giustina, and
G. Rubboli, “Encephalopathy with status epilepticus during slow sleep:
”The Penelope syndrome,” Epilepsia, vol. 50, pp. 4–8, Aug. 2009.

http://dx.doi.org/10.1109/RBME.2021.3055956


1930 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

[18] A. Nonclercq et al., “Cluster-based spike detection algorithm adapts to
interpatient and intrapatient variation in spike morphology,” J. Neurosci.
Methods, vol. 210, no. 2, pp. 259–265, Sep. 2012.

[19] F. E. Abd El-Samie, T. N. Alotaiby, M. I. Khalid, S. A. Alshebeili, and
S. A. Aldosari, “A review of EEG and MEG epileptic spike detection
algorithms,” IEEE Access, vol. 6, pp. 60673–60688, 2018.

[20] T. Fukami, T. Shimada, and B. Ishikawa, “Fast EEG spike detection
via eigenvalue analysis and clustering of spatial amplitude distribution,”
J. Neural Eng., vol. 15, no. 3, Jun. 2018, Art. no. 036030.

[21] X. Zhao et al., “A knowledge-based approach for automatic quan-
tification of epileptiform activity in children with electrical status
epilepticus during sleep,” J. Neural Eng., vol. 17, no. 4, Aug. 2020,
Art. no. 046032.

[22] C. Iber, S. Ancoli-Israel, A. Chesson, and S. Quan, “The AASM manual
for the scoring of sleep and associated events: Rules, terminology
and technical specifications,” Westchester, IL, Amer. Acad. Sleep Med.,
Jan. 2007.

[23] C.-H. H. Chu and E. J. Delp, “Impulsive noise suppression and back-
ground normalization of electrocardiogram signals using morphological
operators,” IEEE Trans. Biomed. Eng., vol. 36, no. 2, pp. 262–273,
Feb. 1989.

[24] B. Krishnan et al., “A novel spatiotemporal analysis of peri-ictal spiking
to probe the relation of spikes and seizures in epilepsy,” Ann. Biomed.
Eng., vol. 42, no. 8, pp. 1606–1617, Aug. 2014.

[25] S. Al-Sharhan and A. Bimba, “Adaptive multi-parent crossover GA
for feature optimization in epileptic seizure identification,” Appl. Soft
Comput., vol. 75, pp. 575–587, Feb. 2019.

[26] A. De, J. Wang, and M. K. Tiwari, “Hybridizing basic variable neigh-
borhood search with particle swarm optimization for solving sustainable
ship routing and bunker management problem,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 3, pp. 986–997, Mar. 2020.

[27] C. Darwin and J. Huxley, The Origin of Species: 150th Anniversary
Edition, 150th ed. New York, NY, USA: Signet, Sep. 2003.

[28] A. R. Wallace, The Geographical Distribution of Animals: With a Study
of the Relations of Living and Extinct Faunas as Elucidating the Past
Changes of the Earth’s Surface. Prague, Czech Republic: E-artnow,
Aug. 2020.

[29] R. H. MacArthur and E. O. Wilson, The Theory of Island Biogeography.
Princeton, NJ, USA: Princeton Univ. Press, Apr. 2001.

[30] R. Dhiman, J. S. Saini, and Priyanka, “Biogeography based hybrid
scheme for automatic detection of epileptic seizures from EEG signa-
tures,” Appl. Soft Comput., vol. 51, pp. 116–129, Feb. 2017.

[31] K. Liu, C. Zou, K. Li, and T. Wik, “Charging pattern optimization for
lithium-ion batteries with an electrothermal-aging model,” IEEE Trans.
Ind. Informat., vol. 14, no. 12, pp. 5463–5474, Dec. 2018.

[32] A. R. Kashani, M. Gandomi, C. V. Camp, and A. H. Gandomi,
“Optimum design of shallow foundation using evolutionary algorithms,”
Soft Comput., vol. 24, no. 9, pp. 6809–6833, May 2020.

[33] D. Simon, “Biogeography-based optimization,” IEEE Trans. Evol. Com-
put., vol. 12, no. 6, pp. 702–713, Dec. 2008.

[34] D. Simon, M. G. H. Omran, and M. Clerc, “Linearized biogeography-
based optimization with re-initialization and local search,” Inf. Sci.,
vol. 267, pp. 140–157, May 2014.

[35] G. Xiong, D. Shi, and X. Duan, “Enhancing the performance of
biogeography-based optimization using polyphyletic migration operator
and orthogonal learning,” Comput. Oper. Res., vol. 41, pp. 125–139,
Jan. 2014.

[36] P. Savsani, R. L. Jhala, and V. Savsani, “Effect of hybridiz-
ing biogeography-based optimization (BBO) technique with artificial
immune algorithm (AIA) and ant colony optimization (ACO),” Appl.
Soft Comput., vol. 21, pp. 542–553, Aug. 2014.

[37] W. Gong, Z. Cai, and C. X. Ling, “DE/BBO: A hybrid differential
evolution with biogeography-based optimization for global numerical
optimization,” Soft Comput., vol. 15, no. 4, pp. 645–665, Apr. 2010.

[38] X.-W. Zheng, D.-J. Lu, X.-G. Wang, and H. Liu, “A cooperative
coevolutionary biogeography-based optimizer,” Appl. Intell., vol. 43,
no. 1, pp. 95–111, 2015.

[39] X. Chen, H. Tianfield, W. Du, and G. Liu, “Biogeography-based opti-
mization with covariance matrix based migration,” Appl. Soft Comput.,
vol. 45, pp. 71–85, Aug. 2016.

[40] W. Gong, Z. Cai, C. X. Ling, and H. Li, “A real-coded biogeography-
based optimization with mutation,” Appl. Math. Comput., vol. 216, no. 9,
pp. 2749–2758, Jul. 2010.

[41] S. C. Warby et al., “Sleep–spindle detection: Crowdsourcing and eval-
uating performance of experts, non–experts and automated methods,”
Nature Methods, vol. 11, pp. 385–392, Apr. 2014.

[42] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, June 2016,
pp. 779–788.

[43] S. Chambon, V. Thorey, P. J. Arnal, E. Mignot, and A. Gramfort,
“DOSED: A deep learning approach to detect multiple sleep micro-
events in EEG signal,” J. Neurosci. Methods, vol. 321, pp. 64–78,
Jun. 2019.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


