E MB IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

1705

—o0——

Abnormal Brain Topological Structure of Mild
Depression During Visual Search Processing
Based on EEG Signals
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Abstract— Studies have shown that attention bias can
affect behavioral indicators in patients with depression, but
it is still unclear how this bias affects the brain network
topology of patients with mild depression (MD). Therefore,
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a novel functional brain network analysis and hierarchi-
cal clustering methods were used to explore the abnor-
mal brain topology of MD patients based on EEG signals
during the visual search paradigm. The behavior results
showed that the reaction time of MD group was signifi-
cantly higher than that of normal group. The results of
functional brain network indicated significant differences in
functional connections between the two groups, the amount
of inter-hemispheric long-distance connections are much
larger than intra-hemispheric short-distance connections.
Patients with MD showed significantly lower local efficiency
and clustering coefficient, destroyed community structure
of frontal lobe and parietal-occipital lobe, frontal asym-
metry, especially in beta band. In addition, the average
value of long-distance connections between left frontal and
right parietal-occipital lobes presented significant correla-
tion with depressive symptoms. Our results suggested that
MD patients achieved long-distance connections between
the frontal and parietal-occipital regions by sacrificing the
connections within the regions, which might provide new
insights into the abnormal cognitive processing mechanism
of depression.

Index Terms—Mild depression, EEG, functional brain
network, tree agglomerative hierarchical clustering, visual
search.

I. INTRODUCTION

EPRESSION is a mental illness common to all human

beings in society. According to World Health Organi-
zation (WHO), there are approximately 300 million people
suffering from depression worldwide, and it may become
the world’s number one disease in 2030 [1]. Depression
includes a variety of symptoms and signs, physical aspects
mainly include sleep disturbance, appetite changes, fatigue,
slow psychomotor and agitation, while psychological aspects
mostly contain loss of self-esteem, feelings of guilt, inability
to concentrate, and thoughts of suicide and self-harm, etc [2].
According to domestic survey, the suicide rate of depression is
about 20 times higher than that of the general population [3].
In recent years, the incidence of depression (and suicide) began
to show a trend of younger age (college students, even primary
and secondary school students) [4]. Mild depression (MD) is
more common than major depressive disorder in daily life and
may increase in severity over time [5]. However, it receives
much less attention than major depressive disorder. At present,
there is no objective and quantitative method for detection and
treatment of mild depression that can help MD patients to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-9647-8233
https://orcid.org/0000-0002-8592-3087
https://orcid.org/0000-0002-7358-6503
https://orcid.org/0000-0003-3514-5413
https://orcid.org/0000-0002-0505-5751

1706

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

take precautions and avoid developing into major depression.
The most widely used diagnostic criteria for depression are
based on the Diagnostic and Statistical Manual of Mental
Disorders-IV (DSM-IV) [6] and International Classification of
Diseases-10 (ICD-10) [7]. Influenced by doctors’ proficiency
and patients’ cooperation, traditional diagnostic methods show
strong subjectivity and low sensitivity [8]. Therefore, early
identification and exploration of abnormal neural mechanisms
especially of mild depression, are key issues to be solved.

Electroencephalogram (EEG) is a method of recording brain
activity using electrophysiological indicators, resulting from
the summations of postsynaptic potentials generated by a large
number of neuronal synchronization during brain activity. EEG
records the electrical wave changes during brain activity and
is the overall reflection of electrophysiological activities of
brain nerve cells on the cerebral cortex or scalp [9]. Due
to its high time resolution (<1ms) [10], non-invasiveness,
relatively low cost, portability and etc., EEG technology has
been widely used to assess the brain functional connection
mode of depressive patients in the resting state [11], [12].

Traditional functional connection analysis was based on
the weighted functional connection matrix. Although some
findings have been obtained, for example, compared to normal
controls, depressive patients had higher functional connectivity
in different frequency bands [13], [14], more and more studies
are based on binary functional brain networks. Because bina-
rization methods can not only alleviate the noise level, but
also reveal the main topological structure of potential brain
activity [15]. At present, the unbiased binarization technique
minimum spanning tree (MST) method is often used in
research, since it can overcome the problem of subjective devi-
ation and inconsistent number of edges caused by threshold
selection [16], [17]. But there still remain some disadvantages,
for example, it will lead to a high degree of sparse network,
which may leave out the information about the network
topology. In addition, it may also include weaker brain func-
tional network connections, which may obscure the potential
network topology. Therefore, we choose a novel and unbiased
cluster span threshold (CST) method. It sets the threshold by
balancing the ratio of closed and open triples, rather than fixing
the connection density at an arbitrary value [18]. CST captures
differences found at high and low threshold levels, which
may make different network metrics more sensitive [19]. This
method has been proved effective in our previous studies on
depression [15], but whether this method can capture the subtle
changes of network topology in patients with mild depression
will be a problem to be explored in this study.

Clustering and hierarchical clustering organization reveal
the main building blocks of the brain network correspond
to specialized brain functions [20]. In the brain network,
the cluster or community structure is defined as a subset of
highly interconnected nodes with similar characteristics [21].
Previous studies have shown that brain networks are hierar-
chical and modular [8], [15]. Constructing the hierarchical
modularity of the brain, hierarchical clustering is a special
method that represents the main components or hierarchical
modularity of the brain network [22]. Some recent studies
have found that the use of a tree agglomerated hierarchical

clustering (TAHC) method can effectively detect clusters in the
MST of artificial trees and weighted social networks [23], [24].
However, as the previously mentioned CST method has certain
advantages over MST, we propose to apply TAHC method to
the functional brain network constructed based on CST, hoping
to capture a more significant modular structure of the network
topology of the mild depressive patients.

The visual search paradigm generally requires subjects
to search for and respond to a specified target in several
distractors. This is a top-down, conscious cognitive processing
task [25]. The visual search paradigm can distinguish between
attentional alertness and attentional disengagement difficulties.
At present, the experiments on attention-biased visual search
are usually divided into two categories. One is to search for
neutral targets in emotional distractions, which mainly exam-
ines the ability to disarm attention. If searching for a neutral
stimulus in the emotional matrix is slower than searching for
another neutral stimulus in the neutral matrix, that means it
is difficult to pay attention to the emotional stimulus. Hahn
et al. investigated the role of emotional faces as distractors
by comparing the search for neutral faces between happy
faces and angry faces, they found both younger and older
adults showed a more effective search when the discrepant
face was angry rather than happy or neutral [26]. The other
type is searching for emotional targets in neutral distractors,
mainly to investigate attention and alertness. If searching for
an emotional stimulus in the neutral matrix is faster than
searching for another neutral stimulus in the neutral matrix,
it indicates that there is alertness to the emotional stimulus.
Traits of anxious people’s visual search experiments found
that searching for sad faces in neutral faces was faster than
happy faces, indicating that people with trait of a higher
level of anxieties have negative attentional alertness [27].
Previous researches mainly studied the abnormal attention bias
of depression patients based on behavioral indicators [28]-
[29]. However, it is still unclear whether this bias affects the
whole brain networks topology of MD patients. Therefore,
this study chose to analyze the abnormal attention bias of MD
patients based on functional brain network metrics in the visual
search task.

In this study, the EEG signals of 24 MD patients and
24 normal controls (NC) subjects were recorded under the
visual search paradigm. The main work includes the follow-
ing aspects: Firstly, behavioral data analysis is carried out,
including reaction time and accuracy. Secondly, the differences
in functional connection matrix and network properties (e.g.
Edge Betweenness Centrality, Node Betweenness Centrality)
between MD patients and NC subjects are studied. Then,
we use TAHC algorithm to observe the abnormal modular
structure of MD patients, and analyze the brain asymme-
try problem. Finally, we assessed the potential relationships
between network metrics and clinical symptoms.

In summary, the main contributions of this study are three
folds: 1) This study adopted novel functional brain network
analysis method and hierarchical clustering algorithm for the
first time to systematically explore the abnormal brain topol-
ogy of patients with MD based on EEG signals, which could
ensure a trade-off of sparsity and density of network structure,
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TABLE |
STATISTICAL RESULTS OF DEMOGRAPHIC VARIABLES OF MD
PATIENTS AND NC SUBJECTS

MD (n=24) NC (n=24)

Characteristic p-value
Mean Std Mean  Std
Age 22.54 2.17 2379  2.00 0.523
Gender (Female/Male) 18/6 15/9 0.525
Education 3.25 1.70 4.00 1.53 0.410
BDI 16.17 5.92 3.67 270  <0.001

! Independent sample t test was used for age, education, and BDI. Chi-
square test was used for gender. The statistical value was p<<0.05. Std
is the standard deviation.

and then capture the subtle differences of topology changes. 2)
This is the first study combined behavioral indicators and brain
network metrics to comprehensively characterize attentional
bias in patients with MD during the visual search paradigm.
3) This study explored potential relationships between network
metrics and clinical symptoms. It was found that the average
value of long-distance connections between left frontal and
right parietal-occipital lobes presented significant correlation
with depressive symptoms, which might provide the underly-
ing biomarkers for probable MD identification.

[I. MATERIALS AND METHODS

In this section, we will introduce the data and methods used
in this study. The major abbreviations notations used in this
paper were shown in the supplementary materials V.

A. Participants

In this study, 48 subjects from Lanzhou University were
participated in the experiment. All subjects completed the
psychological screening system and received an interview with
a psychologist. According to the psychologist, 24 subjects
were considered depressed and 24 subjects were considered
normal. All of them had no prior history of mental disorder and
normal or corrected-to-normal vision. In addition, participants
were asked to finish the Beck Depression Inventory test-II
(BDI-II) [30] before the start of the experiment. Analysis
of BDI showed that the BDI scores in the depressed group
were between 14 and 29, corresponding to mild depression,
whereas the BDI scores of the normal controls were all lower
than 13. Table I shows the demographic characteristics and
BDI scores of the two groups. There were no significant
differences between two groups in gender (y2 = 0.403,
p = 0.525), age (t = 0.644, p = 0.523), and education (t =
—1.605, p = 0.115). There was statistical difference in the
BDI scale between the two groups, which met the relevant
experimental requirements (p < 0.001). All participants were
rewarded after finishing the experiment.

B. Experimental Paradigm

Fig. 1 showed the sequence of clues and targets used in the
visual search paradigm. Fig. 2 showed the demo of the mark
display. Table II presented the relationship between the color
change of distractors, the number of distractors and the marks
in the block. The experiment was divided into four conditions,
including G4, G8, R4 and RS, each block has 64 trails. In this
experiment, the “+” gaze point will appear first. Later, 4 or 8

Fig. 1. The sequence of clues and targets in a typical trial from the visual
search paradigm.

(@) (b) () (d)

Fig. 2. Demo of the Mark display. Where (a)(b)(c)(d) are G4, R4, G8
and R8 respectively.

“B” patterns arranged in a circle will appear on the screen as a
position reminder. After 500ms, the “H” pattern will change to
different letters. Subjects need to find the “E” or “H” among
these letters. If the green/red “E” appears, subjects need to
press the “Q” key with the index finger of the left hand; if
the green/red “H” appears, subjects need to press the “P” key
with the index finger of the right hand. After pressing the
button, it will automatically enter the next trial. If there is no
response for more than 6 seconds, proceed directly to the next
trial. Subjects should respond as quickly as possible under
each test.

C. EEG Recording and Preprocessing

The EEG data was collected in a quiet, non-electromagnetic
interference room. The distance between the subjects and the
screen was 60cm. The data was collected by 64-channel elec-
trode cap (Brain Products, Germany). The sampling rate was
1000Hz, the reference electrode was FCz, and the electrode
impedance was kept below 10kQ. Matlab R2020b software,
EEGLab14.1.1 toolbox and several plugins were used for data
processed. The preprocessing includes the following parts:

(1) Data filtering: the commonly used filter methods to
improve the signal qualities includes: Hanning windowed FIR
filter [31], Hamming windowed FIR filter [32] and the latest
Fourier decomposition method [33], [34]. In this paper, the
EEG data was filtered using a Hanning windowed Sinc FIR
filter due to its high frequency resolution and less spectrum
leakage [35]. The high-pass filter and low-pass filter were
set at 0.5 Hz and 40 Hz, respectively, which are the recom-
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TABLE Il
THE MARK OF DIFFERENT CONDITIONS

Conditions G4 G8 R4 RS

Mark 11 12 13 14

mended frequencies for the typical experiments to study cog-
nitive, affective, and perceptual processes [36]. And the phase
delays introduced by the FIR filters are nullified by applying
zero-phase digital filtering based on Matlab function filtfilt().
The filter order was set to the default mode (automatic),
which was estimated using heuristic algorithm. After the
above processing, low-frequency drift, powerline interference,
high-frequency noise and electromyographic artifacts will be
effectively removed.

(2) Independent component analysis (ICA) is implemented
by using plugins in the EEGLAB tool box under Matlab
R2020b software. The Extended Infomax algorithm [37] was
adopted to find the demixing matrix and calculate indepen-
dent components, and its performance was better than Fast
ICA [38]. The ICA was run for each subject that included
all trials. Then, the Adjust plug-in was used to remove
components such as ocular electricity, ECG and EMG due
to its automation, absence of constraints on the experimental
paradigm, and flexibility to new extensions [39].

(3) In this study, the automatic channels rejection plug-in
in EEGLAB was used to remove bad channels. It was found
that two subjects each had one bad channel in the MD group
(0.083 + 0.282), while there was no bad channels for every
subject in the NC group (0). Then, the location of removed
bad channels was interpolated using spherical interpolation.
The re-reference is used for the average reference.

(4) There are many ways to extract frequency bands
including traditional methods such as Hanning windowed and
Hamming windowed, and novel methods such as Fourier
decomposition methods [33], [34]. In this paper, Hanning
filter was used to extract delta (1-4Hz), theta (4-8Hz), alpha
(8-13Hz) and beta (13-30Hz) bands because it has good
spectral characteristics and can significantly reduce the errors
caused by asynchronous sampling [40].

(5) Extract different types of data segments (G4, G8, R4,
and R8) based on the stimuli marks. There are a total of
256 trails, with 64 trails for each condition.

D. Functional Connection Analysis

1) Coupling Method: For the functional connectivity matrix,
its nodes are defined by each electrode in the EEG system.
Its edges are defined as the connection strength between the
different electrodes. Since Imaginary part of coherency (ICoh)
method has been proved to be robust under the influence of
volume conductivity and has been increasingly used in the
research of some mental diseases (such as Alzheimer’s disease
and autism) [41], [42]. This work utilized this coupling method
to construct the functional connection matrix. Details of this
method were in the supplementary materials 1.

2) Cluster Span Threshold (CST): CST is an unbiased
threshold method for network analysis. It achieves the

threshold setting by adjusting the ratio of closed triples and
open triples to achieve a balance [43], [44] (a brief description
of CST was in the supplementary materials I).

3) Graph Theory Analysis: Graph theory analysis has been
widely used to explore the abnormalities of various network
metrics of depression, because these metrics are reliable
and easy to calculate. In this study, the network properties
are calculated from the perspective of functional separation
and integration. Functional integration features include: Edge
Betweenness Centrality (EBC), Node Betweenness Centrality
(NBC), and Global Efficiency (GE); functional separation
features include: Clustering Coefficient (CC) and Local Effi-
ciency (LE). Mathematical formulas of these metrics are in
the supplementary materials 1. To explore the differences of
network metrics (GE, NBC, LE, EBC, and CC) between
the MD and NC groups, the CST method is employed at
the individual level. We used the CST to obtain the binary
networks from each trial of every subject. Then, network
metrics were extracted and averaged from binary networks
across all trials for each subject.

4) Hierarchical Clustering Analysis: Clustering is an effective
method for studying data node clusters in data mining. In this
study, the TAHC method was used to detect clusters in CST.
The summary of the TAHC algorithm is as follows: first we
use the Dijkstra’s shortest path algorithm [45] to compute the
geodesic distances matrix of all possible pairs of nodes of
given graph, and we use the geodesic distances matrix as an
input to the agglomerative hierarchical clustering algorithm.
Then the proximity matrix of geodesic matrix is calculated by
spearman’s rank correlation.

634

nn? —1)
where p is Spearman’s rank correlation, and its value is
between 0 and 1. n is the sample size, and d; is the difference
between the two rows of each observation.

After that, finding the two closest clusters according to the
proximity matrix, and merge them into one cluster. Finally,
recalculate similarities between the new cluster and each of the
old clusters based on average-linkage clustering and remerge
clusters until all nodes are merged into a single cluster. In this
study, hierarchical clustering analysis was performed in the
group level as the previous research did [20], [23], [24].
We averaged functional connection matrices across trials and
subjects to obtain functional connection matrix for each group.
Then, CST binarization method was conducted on the func-
tional connection matrix at the group level, which we called
group-level CST. In the final, the TAHC method is performed
on each group-level CST to obtain the corresponding tree
diagram, and the global electrode diagram is used to describe
the distribution of nodes and clusters in hierarchical clustering.

There are many evaluation indicators for determining the
optimal number of clusters, such as Davies Bouldin Index,
Dunn Validity Index, Rand Index, Bootstrap resampling and
so on. Since Bootstrap resampling effectively resamples and
analyzes the data, the in-depth characteristics of the data itself
can be obtained. Therefore in this study, we use Bootstrap
resampling technology to determine the optimal number of

p=1 M
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clusters [46]. The core of this method is to copy the current
data set, the copied data set not only has the attributes of
the original data set, but also has the stable characteristics
of the original data set. The specific process of Bootstrap
resampling technology is as follows: given a data set Data
containing n samples, we sample it to generate a data set
Data’: randomly select a sample from Data each time, copy
it into Data’, and then the sample is put back into the initial
data set Data, so that the sample may still be collected in the
next sampling; after this process is repeated n times, we get
a data set Dara’ containing n samples. Algorithm 1 is the
algorithm for determining the optimal number of clusters using
Bootstrap resampling technology. Among them, the selection
of the parameters is based on the effective results obtained and
proven by previous experiments [46].

E. Statistical Analysis

In this study, three-way repeated measures analysis of
variance (ANOVA) was used to test the significant effects
on behavioral data and network attributes. Among them, the
color change of distractors (C: change is green (G) & no
change is red (R)) and the number of distractors (N: 4 &
8) are used as intra-group factors, while group (Group: MD
& NC) as inter-subject factors. If interaction between factors
is found, a simple-simple effect analysis will be carried out.
All analyses are performed at a significance level of 0.05.
Independent sample t-test was used to find the difference
matrix of two groups. Significance level was set as 0.001,
the p values were adjusted for multiple comparisons using the
Benjamini Hochberg false discovery rate (FDR) correction.
In addition, we would assess the correlation between features
(e.g. network metrics, functional connections) with significant
differences of two groups and clinical symptoms by Pearson
correlation base on permutation test (n = 10000, p = 0.05).
Statistical analysis was carried out by SPSS (version 19.0) and
Matlab R2020b software.

I1l. RESULT
A. Behavioral Data Analysis

In this study, we calculated the reaction time under dif-
ferent conditions for the MD group and the NC group, the
reaction time refers to the process from the appearance of
the experimental stimulus to the corresponding reaction of the
individual. We removed the reaction time of less than 100ms
or more than 1000ms trials to minimize the impact of discrete
points on the results. Repeated measurement analysis was
conducted to compare the reaction time under different stimuli
conditions between the two groups. As shown in Table III,
a significant group effect was observed on the reaction time
(F(1, 44) = 4.758, p = 0.035), and the reaction time of
MD group is significantly higher than NC group for the
four conditions. The interaction effect of the color change of
distractors (C) x the number of distractors (N) was significant
(F(1, 44) = 80.2, p < 0.001). The effects of C (F(1, 44) =
377.02, p < 0.001) and N (F(1, 44) = 8.02, p < 0.007) were
significant. In addition, we also compared the accuracy of
different stimuli conditions between groups. The interaction

Algorithm 1 Optimal Cluster Number Determination
Algorithm
Input: Dara (Raw data)

Output: k* (Optimal number of clusters)

1: Choose a clustering algorithm;

2: Enter k; (minimum number of clusters) and k» (maximum
number of clusters) for testing;

3: Enter n (n is the number of bootstrap data generated, finally
obtaining B, bootstrap data where a = 1...n);

4: Cluster each bootstrap data;

5: Calculate each W (P, a) = Zle le,ec/sz(x,-, gr), (dis-
persion within the cluster, K is the number of clusters) c,/{
is the k-th cluster, g is the cluster center of c,’(, and D is
the distance;

6: Calculate AWy (A W; is the observation probability corre-
sponding to the 68% confidence interval on each bootstrap
data);

7: Calculate My (it is the clustering tightness on each boot-
strap data);

AW oMy

8: Calculate Ry = a =% (m) + b * (W)’ where

a = 0.75,b = 0.25; For each cluster k, |[|[AW]|| =
I~k I~k
Zkzzkl (A Wk)z, [l6M]| = Zkzzkl (5Mk)2;
9: The number of clusters k* corresponding to the minimum
Ry, is the real k;

effect of N x Group was significant (F(1, 44) = 4.664, p =
0.036). Moreover, the accuracy of MD group is lower than
NC group in each condition.

B. Functional Connection Analysis

The distribution of connections with significant differences
was shown in Fig. 3 From the results we could find that in
the four conditions and four frequency bands, there were more
inter-hemispheres connections than intra-hemispheres connec-
tions, and the number of long-distance connections were larger
than that of the short-distance connections. This showed that
when dealing with complex tasks, the MD patients have
abnormal information processing pattern. Further to explore
the differences of network topology between the MD and NC
groups, all the binary brain network matrices obtained from
ICoh coupling methods and CST binarization approaches were
quantitatively analyzed using graph theory analysis.

C. Network Metrics Analysis

1) Analysis of Group Differences in Network Metrics: This
study used network metrics (GE, NBC, LE, EBC, and CC) to
analyze the functional brain network topology of MD patients
and NC subjects under the visual search task. Results indicated
that there was a significant interaction effect of C x Group
in the beta band of all five network metrics (CC: [F(1, 46)
= 5.055, p = 0.029], EBC: [F(1, 46) = 5.207, p = 0.027],
GE: [F(1, 46) = 5.238, p = 0.027], LE: [F(1, 46) = 4.998,
p = 0.03], NBC: [F(1, 46) = 5.207, p = 0.03]). However,
there were no significant interaction effects of the five network
metrics in the delta, theta and alpha bands (detailed results
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TABLE Il
REPEATED MEASUREMENT ANALYSIS OF REACTION TIME AND ACCURACY
Color change of distractors Intersubjective
Number of fFect
distractors No change (Red) Changed (Green) eltec
MD NC MD NC F p
4 706.19+49.06  681.35+214.88  620.67+£72.00 610.39+193.79
i i 4.758 0.035%*
Reaction Time 8 751.24487.19 74131412126  631.70+£70.19  615.284101.93 =
4 95.974+4.77% 96.4143.77% 96.284+4.73% 97.2843.20%
Accuracy 1.86 0.180
8 95.0645.60% 97.4742.93% 95.514+7.38% 98.254+3.38%
delta theta alpha beta

Alpha Theta Delta

Beta

Fig. 3. The distribution of connections with significant differences under
the four conditions in four bands based on the ICoh method. Red, yellow,
green and blue nodes represent frontal lobe, central lobe, temporal lobe
and parietal-occipital lobe, respectively. The colored line indicates that
there are significant differences in the connected edges of this area,
and the black line indicates that there are significant differences in the
connected edges of different regions. Statistic value p<0.001.

were in the supplementary materials III). So in the following
work, the simple-simple effect analysis was only performed
in the beta frequency band. As shown in Fig. 4, in the beta
band under the G4 condition, the LE and CC metrics of
MD group was significant lower than that of NC group (LE:
MD = 0.756 + 0.008, NC = 0.763 £+ 0.011, p = 0.016;
CC: MD = 0.513 £ 0.016, NC = 0.527 £ 0.021, p = 0.016).

In order to investigate the nature of the interaction between
the two factors, a simple-simple effect analysis was performed.
As shown in Table IV, a significant interaction of the changed
color of distractors (G) x Group was observed on the LE and
CC (LE: F(1, 46) = 5.457, p = 0.024; CC: F(1, 46) = 5.354,
p = 0.025). And it can be inferred from Fig. 2 that patients
with MD were less sensitive to the change of distractors’ color
than the NC.

Though there were multi-factor interaction differences of
EBC, GE, and NBC in the beta band, there was no significant
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Fig. 4. Statistical results of five network metrics in four bands based on
the ICoh+CST method. Blue and pink * represent intra-group difference
in MD group and NC group, respectively. Black * indicates there is
a significant difference between MD and NC groups. Statistic value
p<0.05.

TABLE IV
SIMPLE-SIMPLE EFFECT ANALYSIS OF THE FIVE NETWORK METRICS
IN THE BETA BAND

EBC GE LE NBC CcC
Color
F P F P F P F P F
G 2.803 0.101 2820 0.100 5457 0.024 2.803 0.101 5354 0.025
R 0.076 0.784  0.076  0.784 0.802 0.375 0.076 0.784  0.744  0.393

difference between the two groups after a simple-simple
effect analysis. To explain this phenomenon, we did a simple
interaction effect analysis. The results are shown in Table V.
It was found that there was intra-group marginal significance
of EBC, GE and NBC in MD group regardless of the change
of the color of distractors. Therefore, it can be considered
that the two-factor interaction differences shown by these
three network metrics in the beta band are due to individual
differences within the group.

In the meantime, we also calculated the sparsity of the
networks obtained from CST binarization method. Results
indicated that there was no significant difference between
MD group and NC group (detailed results were provided in
the supplementary materials II), which proved that CST was
an effective method to explore the aberrant brain network
topology structure of MD.
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Fig. 5. The hierarchical clustering graphs and brain distribution map of clusters of MD and NC groups based on TAHC algorithm in the beta band

under the G4 condition.

TABLE V
SIMPLE INTERACTION ANALYSIS OF THE THREE NETWORK METRICS
OF EBC, GE AND NBC IN THE BETA BAND

EBC GE NBC
MD NC MD NC MD NC
Color (p-value) 0.071 0.174 0.069 0.177 0.071 0.174

2) Analysis of Intra-Group Differences in Network Metrics:
From Fig. 4, it was found that in alpha band, there were
significant intra-group differences of the five network metrics
(GE, LE, EBC, NBC and CC) of NC group between R4
and R8 conditions and between G4 and R4 conditions. And
in delta band, there was significant intra-group difference of
the network metric GE of NC group between R4 and R8
conditions.

In addition, we also analyzed the network metrics calculated
from ICoh coupling method and MST binarization method.
However, no significant group and intra-group differences of
network metrics were found based on this method (detailed
results were in the supplementary materials IIT), which demon-
strated the superiority of ICoh + CST. And based on this
method, we found that there were significant differences of
CC and LE between the two groups in the beta band under
the G4 condition. Therefore, the hierarchical structure of the
two groups will be further explored on this condition.

D. Hierarchical Clustering Analysis

TAHC algorithm was applied to construct the hierarchi-
cal clustering of the functional connection network for both
groups in the beta band under the G4 condition. And the opti-
mal number of clusters 6 was obtained based on the optimal
cluster number determination algorithm (see Fig. 5(a) and (b)).
To display the details of the cluster result, we plotted brain
distribution map of clusters in Fig. 5(c) and (d). It was found
that the MD group tended to cluster according to the physical
structure of the brain, corresponding to the left and right
hemisphere, whereas the NC group tended to cluster according
to the functional structure of the brain, corresponding to
different functional regions. More importantly, we found that
a large number of electrodes in frontal and parieto-occipital
regions were clustered into a community in the NC group.
However, for the MD group, both the left and right frontal
were clustered with the opposite parietal-occipital regions into
a community, respectively. And from brain distribution map of
the clusters, we speculated that patients with MD might have
brain asymmetry.

E. Brain Asymmetry Analysis

To explore the brain asymmetry of MD patients in the
beta band under the G4 condition, this study divided the
brain into different regions including Left-frontal (LF), Right-
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frontal (RF), Left-central (LC), Right-central (RC), Left-
temporal (LT), Right-temporal (RT), Left-parietal-occipital
(LPO), Right-parietal-occipital (RPO) according to their
anatomical positions [47] (see Table S1 in the supplementary
materials III). Specific hypotheses were tested using one-way
ANOVA. The significant level p was 0.05. Brain asymmetry
indices were calculated by subtracting the natural log of the
power of the left hemisphere electrodes from that of the
homologous right hemisphere electrodes [48]:

In(right (power)) — In(left(power))

In(right (power)) + In(lef t (power))

In this way, positive scores indicated right hemispheric
electrodes had greater beta power than the left hemispheric
electrodes. Due to the inverse relationship between beta
power and cortical activity, the positive scores represented
relative greater activity in the left-sided brain region, while
the negative scores represented relative greater activity in the
right-sided brain region [49]. The brain asymmetry results of
the MD group and the NC group were shown in Fig. 6. It was
found that the left frontal activity in MD group (Mean =
—0.256, Std = 0.698) was significantly lower (F(1, 46) =
4.167, p = 0.047) than that in NC group (Mean = 0.139,
Std = 0.384). However, there was no difference in other brain
regions between the two groups.

)

F. Correlation Analysis

According to the obtained statistic results, correlation analy-
sis was conducted between features that having significant
differences (CC, LE, frontal asymmetry (F_A), and the average
functional connection value between the left frontal lobe and
right parietal occipital (LF_RPO) and between the right frontal
lobe and left parietal occipital (RF_LPO)) and BDI scores.
Results were shown in Fig. 7, in the beta band, LF RPO (r =
0.314, p = 0.030) was significantly positive correlated with
the BDI scores.

time to systematically explore the abnormal brain topology
of patients with MD under the visual search paradigm. Our
main findings were: (1) Behavioral data analysis showed that
compared to the NC group, the MD group exhibited longer
reaction time; (2) Functional connection analysis indicated
that inter-hemispheric long-distance connections accounted
for a larger proportion in significant differences connections
between the two groups; (3) Network attribute analysis showed
that the LE and CC of the MD group were significantly lower
than that of the NC group under the G4 condition in beta band;
(4) Hierarchical clustering analysis indicated that MD group
lost clustering structure of the frontal region and parietal-
occipital region, and the average value of long-distance con-
nections between left frontal and right parietal-occipital lobes
was significantly positive correlated with the BDI scores;
(5) Analysis of brain asymmetry showed that the MD group
existed frontal asymmetry.

A. Abnormal Behavioral Indicators in MD

Our results showed that compared to NC group, MD group
had significant longer reaction time during the visual search
task, which are consistent with previous studies. For example,
Hammar ASA [50]found that when the target stimulus is sig-
nificantly different from the surrounding analytical stimulus,
as the number of surrounding distractors increases, it takes
longer for depressive group to recognize targets, and their
accuracy is slightly lower than that of the control group.
Other studies had pointed out that the continuous deploy-
ment selectivity of spatial attention in depressive patients
was impaired. When depressive patients performed the visual
search task, regardless of whether the stimulus was novel or
non-novel target, depressive patients showed severe lack of
comparative search ability. Therefore, when a novel target
appeared, patients with depression had delayed and biased
judgments on the novelty of the target, and exhibited attention-
biased behavior [51]. Julia F also found that when the target
was defined by a combination of characteristics (e.g. color
and shape), the depressive group showed a severe lack of
comparative search ability [52]. Previous research has verified
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the validity of our results. Thus we believed that the MD
group had selective impairment in the continuous deployment
of spatial attention, which resulted in the MD group probably
in need of more information processing efforts in the face of
intervention task.

B. Abnormal Functional Brain Network Structure in MD

There is increasing evidence that functional interactions
between different brain regions are mediated by their
synchronization oscillations. These interactions are believed
to be associated with various cognitive functions as well
as the integration of information in the healthy brain [53],
[54]. For example, Donner TH. et al. found that long-range
interareal linkage of distributed areas in NeuroCognitive
Networks was mediated by synchronous oscillations of
beta band [55]. And inter-hemispheric communication is
an important part of cognitive and emotional processing
[56], [57]. Especially, when performing complex tasks, the
inter-hemispheric communication is necessary [58]. In this
study, when performing the visual search task, we found
that in the functional connections with significant differences
between the MD and NC groups, the inter-hemispheric long-
distance connections occupied a larger proportion compared
to the intra-hemispheric short-distance connections. Similar
finding showed the long-distance connections between the
pre-frontal area and the parietal area to the temporal area
showed inter-group differences in the theta band [59]. So the
results indicated that when performing complex tasks, patients
with MD had abnormal inter-hemispheres interaction.

The CC and LE are measures of the local information
processing of the network. Our findings indicated that com-
pared with NC group, MD group exhibited decreased LE and
CC network metrics of beta band in the G4 condition, which
suggested that efficiency of information segregation in MD
group was decreased during the processing of the complex
task. Li et al. found that compared to the NC group, MD group
had a lower CC network metric in beta band for exploring
the complexity network under emotion processing task [60].
Some studies also found that patients with depression had
decreased nodal efficiency and CC [51], [61], [62]. Other
studies found that there were decreased CC and LE and
increased characteristic path length and GE of patients with
depression [63], [64], which supported the speculation that
the brain network of patients with depression tended to be
random [65]. However, this study didn’t observe significant
differences of GE between the two groups [51], [66], [67].
In addition, our findings are contrary to other studies, which
showed that patients with depression had increased CC and LE
compared with NC group [67]. These discrepancies between
different studies might be caused by the individual differences
and methodological differences. Thus, more research is needed
to reproduce these findings.

Further to explore the hierarchical structure of the MD
and NC groups in the beta band under the G4 condition,
it was found that there were different clusters between the
two groups. For the MD group, the hierarchical structure
of the frontal lobe and parieto-occipital lobe was destroyed,
where the left frontal lobe and the right parieto-occipital lobe,

the right frontal lobe and the left parieto-occipital lobe were
clustered into a community, respectively. For the NC group,
the frontal and parieto-occipital lobe were clustered into a
community. Relevant study revealed that the nodes in frontal
regions of the depression group were divided into two clusters
in the left forehead and the right forehead, while the NC
group were clustered into a community [24]. Normal brain
organization is considered to be determined by the economic
trade-off between minimizing costs (high-cost hubs and long-
distance connections) and information processing efficiency
[68]. Buzsaki et al. found that, in a normal brain, direct
connections between brain regions that are far away in space
support faster and more direct information transmission [69].
However, our research found that the MD group achieved
long-distance connections between brain regions at the cost of
interrupting the intra-cluster connections between the frontal
lobe cluster and the parieto-occipital cluster, which might lead
to high-cost hubs and long-distance connections in the brain
tissue, thus breaking the aforementioned balance between
cost minimization and information processing efficiency. More
importantly, the average functional connection value between
the left frontal lobe and right parietal occipital was signif-
icantly correlated with the BDI scores, indicating the more
severe the depression, the higher the average functional con-
nection value, which suggested that the average functional
connection value of this cluster might be an underlying bio-
marker for probable MD identification. And the results are
supported by relevant studies [70], [71]. In addition, from
the cluster results, the destruction of the frontal lobe cluster
and the parieto-occipital lobe cluster (that is, the lack of
connection between the hemispheres) might explain why there
were significant differences in the LE and CC network metrics
between MD and NC groups.

C. Abnormal Brain Symmetry in MD

Frontal lobe and central lobe play an important role in
attention processing [72]. Many EEG studies have found
frontal asymmetry existed in the patients with depression.
For example, Bruder and Kemp found that the depressive
patients generally had lower alpha power in the right frontal
lobe than in the left frontal lobe [73], [74]. Spironelli et al.
found depression patients showed a lack of frontal asymmetry
and a significantly lower activation of left frontal lobe in the
beta band under state-resting [75]. VadimZotev et al. found
the depressive patients had frontal EEG asymmetry in the
high-beta band under emotion self-regulation task [76]. Similar
results were found in our study, MD patients had frontal
asymmetry, where the power of right frontal lobe was lower
than that of left frontal lobe, meaning that the relative activity
of the right frontal lobe was higher than that of left frontal
lobe. There is considerable evidence that affective behavior is
related to frontal activation asymmetries, with negative affect
or withdrawal behaviors being associated with right frontal
activation, and positive affect or approach behaviors being
associated with left frontal activation [77]. So we considered
that compared to the NC group, patients with MD had the
negative affect bias.
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V. LIMITATIONS AND FUTURE DIRECTIONS

Several issues need to be further addressed. First, the sample
size was relatively small that this study can’t stratify the
patients by depressive subtypes. Larger sample is required to
verify our results and to explore neurophysiological aspects of
different depressive levels. Second, this research for the func-
tional brain networks was in sensor level. In order to make the
analysis of functional brain network can be more refined and
accurate, we will explore the distribution in the source space of
EEG signal based on source location technology in the future
work. Finally, a possible disadvantage of the Hanning filter
is that it does not provide a sharp cutoff to decompose the
EEG data into rhythms. Relevant studies demonstrated that
the Fourier decomposition approach [33], [34] could solve
this problem. Therefore, in the further, we will try to use this
method to decompose the EEG data into rhythms.

VI. CONCLUSION

This study adopted novel functional brain network analysis
method and hierarchical clustering algorithm for the first time
to systematically explore the differences of brain topological
structure between patients with MD and normal controls while
they were performing the visual search paradigm. We found
that in the functional connections with significant differences
between the two groups, the inter-hemispheric long-distance
connections occupied a larger proportion compared to the
intra-hemispheric short-distance connections, these indicated
when performing complex tasks, the patients with MD had
abnormal inter-hemispheric communication. Especially in
the beta band, compared to NC group, hierarchical structure
of the frontal lobe and parieto-occipital lobe was destroyed
in the MD group, where the left frontal lobe and the right
parieto-occipital lobe, the right frontal lobe and the left
parieto-occipital lobe were clustered into a community,
respectively. And the average functional connection value
between the left frontal lobe and right parietal occipital was
significantly correlated with the BDI scores, which indicated
that the average connection value of this cluster might be
a potential electrophysiological characteristic for probable
MD identification. Meanwhile, patients with MD showed
significantly lower local efficiency and clustering coefficient,
and frontal asymmetry. These results further confirmed that
there exist abnormal cognitive processing mechanism of
MD patients. In summary, these findings provided insights
into our under-standing of aberrant topology organization in
functional brain networks of patients with MD.
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