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EEGSym: Overcoming Inter-Subject Variability in
Motor Imagery Based BCIs With Deep Learning
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Abstract— In this study, we present a new Deep Learn-
ing (DL) architecture for Motor Imagery (MI) based Brain
Computer Interfaces (BCIs) called EEGSym. Our imple-
mentation aims to improve previous state-of-the-art perfor-
mances on MI classification by overcoming inter-subject
variability and reducing BCI inefficiency, which has been
estimated to affect 10-50% of the population. This con-
volutional neural network includes the use of inception
modules, residual connections and a design that introduces
the symmetry of the brain through the mid-sagittal plane into
the network architecture. It is complemented with a data
augmentation technique that improves the generalization
of the model and with the use of transfer learning across
different datasets. We compare EEGSym’s performance on
inter-subject MI classification with ShallowConvNet, Deep-
ConvNet, EEGNet and EEG-Inception. This comparison is
performed on 5 publiclyavailabledatasets that include left or
right hand motor imagery of 280 subjects. This population is
the largest that has been evaluated in similar studies to date.
EEGSym significantly outperforms the baseline models
reaching accuracies of 88.6±9.0 on Physionet, 83.3±9.3 on
OpenBMI, 85.1±9.5 on Kaya2018,87.4±8.0 on Meng2019 and
90.2±6.5 on Stieger2021. At the same time, it allows 95.7%
of the tested population (268 out of 280 users) to reach
BCI control (≥70% accuracy).Furthermore, these results are
achieved using only 16 electrodes of the more than 60 avail-
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able on some datasets. Our implementation of EEGSym,
which includes new advances for EEG processing with DL,
outperforms previous state-of-the-art approaches on inter-
subject MI classification.

Index Terms— Brain computer interface (BCI), deep learn-
ing (DL), motor imagery, transfer learning, inter-subject.

I. INTRODUCTION

ELECTRICAL brain activity can be registered through
electroencephalography (EEG), which consists of non-

invasive recordings from electrodes placed on the user’s scalp.
EEG is characterized by its relative low cost, ease of use,
high temporal resolution and portability, but also for the
drawbacks of a poor spatial resolution and low signal-to-noise-
ratio (SNR) [1]. Non-invasive brain-computer interface (BCI)
applications make use of the EEG to enable an alternative path
for the brain to communicate with the environment [2], [3].
These applications range from moving a mouse cursor through
a screen [4] or command selection, [5], [6] to commanding
prosthetic limbs, which are ultimately developed to assist
people with severe motor disabilities [7].

In order to decode the user’s intentions from the EEG,
BCIs usually rely on control signals triggered through strate-
gies known as BCI paradigms. In this work, we will
focus on decoding the user’s intention through their Motor
Imagery (MI). For MI, the most extended protocol is to use
left or right hand movement imagination. Each instance of MI
is considered a trial, and the type of imagination performed
can be decoded through the sensorimotor rhythms (SMR).
SMR are oscillations in the electric field detected in the
sensorimotor cortex of the brain. These areas are related with
the preparation, control and production of voluntary move-
ments including imaginary ones [8]. Additionally, there are
other control signals related with MI like Movement Related
Cortical Potentials (MRCP) [8] and Lateralized Readiness
Potentials (LRP) [9]. MI is of great interest due to its great
potential for rehabilitation. The use of a MI-based BCI on
twelve participants has been reported to induce plasticity at
the cortical level [10]. A correlation between the classification
accuracy of the MI-based BCI rehabilitation and the improve-
ment of the upper limb function was found on a population
of 74 stroke patients with severe upper limb paralysis [11].
Other works studied the effect of different ways of presenting
the feedback, like sensory threshold neuromuscular electrical
stimulation [12] or through virtual reality [13]. The evidence
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found in these works has led to MI-based BCI rehabilitation
to be exploited by commercial applications [14]–[16].

Nonetheless, one major drawback of BCIs is the decoding
accuracy of EEG. Classical approaches of machine learn-
ing (ML) for BCIs, like common spatial patterns (CSP) with
some improvements [17], [18], filter bank common spatial
patterns (FBCSP) [19], and Riemannian geometry [20] in
combination with linear discriminant analysis (LDA) or sup-
port vector machines (SVM), need a tiresome calibration
run from each user. This calibration run would not be a
clear disadvantage if not for the intersession and inter-subject
variability [21]. On one hand, the inter-subject variability
does not allow a model trained in one subject to be used
on another one with acceptable performance. And on the
other hand, the intersession variability does not allow trials
from previous sessions of the same subject to train a good
performing model for the next session. Due to the combination
of both, classic ML for BCIs often require a calibration run for
each session, and in turn obtain not very good performances
overall. However, Deep Learning (DL) models outperformed
classical ML approaches, and at the same time reduced the
impact of inter-subject and intersession variability due to the
ability that DL has for transfer learning [22], [23].

Schirrmeister et al. [22] and Lawhern et al. [23] proved the
ability of Convolutional Neural Networks (CNN) architec-
tures for EEG decodification across different paradigms.
Dose et. al [24] and Zhang et al. [25] implemented an adap-
tation of the CNN proposed by Schirrmeister et al. [22] to
Physionet [26] and OpenBMI [27] datasets, respectively. These
two works tried to reach higher accuracies in MI-based BCIs
by providing an increase of training trials compared to the
dataset used in the original work for MI [22]. There have
been works that have tried to improve these performances
with new DL techniques from the computer vision field.
Santamaría-Vázquez et al. [5] already proved the improve-
ment that inception modules [28] have on CNNs accuracy
for EEG decoding in an event related potentials (ERP) based
speller. Fan et al. [29] tackled inter-subject variability in MI
with an improved CNN that included residual connections [30]
and an attention mechanism [31]. Kostas et al. [32] adapted
the DenseNet DL Network [33] from the field of computer
vision to EEG decoding of MI, and Kwon et al. [34] applied
feature engineering to the input of their proposed CNN by
creating a spectro-spatial feature representation from the EEG.

Despite the advances of DL in the field of BCIs,
there are several limitations that have not been addressed.
Firstly, in spite of the success of Lawhern et al. [23] and
Schirrmeister et al. [22] on EEG decodification at the time,
there has been a surge of improved DL techniques in the
field of computer vision that had yet to be adapted for EEG
decoding networks. Secondly, previous CNNs extract spatial
features with a single convolution along the spatial dimension
in the first layers of the network [5], [22]–[24], [32], which
limits the spatial relationships discovered to this first convo-
lution. The extraction of spatial features could be enhanced
by introducing the known structure of the brain into the CNN
architecture or by using residual connections [30] to maintain
the structure of the EEG data. Thirdly, the studies in the area

of MI decoding did not fully take advantage of the power that
DL has for transfer learning. They validated the results on
datasets with a large amount of subjects and trials but did not
try to extend its procedures on more than one dataset. At the
same time, they lost the opportunity to improve their models’
performance with the increased training data that including
other datasets offer. Fourthly, a reduced number of electrodes
facilitates real world applications by reducing the set up dura-
tion, and by decreasing the cost of the EEG recording system
needed. For reference, placing an EEG cap of 64 electrodes
can take up to 1 hour [35], but only Dose et al. [24] and
Fan et al. [29] studied the effect that reducing the number
of electrodes had on their DL model’s performance for inter-
subject MI classification. Finally, despite using all available
electrodes and having calibration runs, current approaches still
suffer from BCI inefficiency (also known as BCI illiteracy).
This is the inability of BCI applications to extract discernible
features from an user, which is estimated to affect 10-50%
of potential users [36] in MI-based BCIs. Previous studies
consider that a user attains BCI control if he reaches accuracies
higher than 70% in MI binary classification [27], [37].

To overcome the above limitations, this study aims to design
a novel CNN called EEGSym outperforming previous state-of-
the-art DL architectures. To this end, we compare our model
on 280 subjects from 5 different datasets against 4 state-of-
the-art CNN based models. To the best of our knowledge, this
population is the largest used in compared studies to date.
Our approach takes advantage of transfer learning through
several datasets to overcome inter-subject variability with only
8 or 16 electrodes. The novelties that this study introduces are
summarized in the following points:

• A data augmentation (DA) technique that includes patch
perturbation, hemisphere perturbation, and a random shift
of the onset.

• An improved extraction of features through residual con-
nections that tries to keep the spatio-temporal structure
of the signal through several layers of the network.

• A siamese-network approach to exploit the symmetry of
the brain along the mid-sagittal plane.

An open source implementation of the architecture and DA
can be found in https://github.com/Serpeve/EEGSym

II. METHODS

A. Datasets

Five datasets were used to evaluate the baseline models
and EEGSym: Physionet [26], OpenBMI [27], Kaya2018 [38],
Meng2019 [37], and Stieger2021 [39]. We selected these
datasets due to the amount of subjects they include (i.e., 109,
54, 13, 42, and 62, respectively), the amount of trials, and
for their shared type of movement imagined. The imagination
consisted of opening/closing either the left or right hand. The
shared imagination paradigm should be key for the transfer
learning between datasets and subjects. All datasets except
Physionet include sessions where feedback of their EEG
was presented to the participants. Furthermore, Kaya2018,
Meng2019 and Stieger2021 only consist of trials from feed-
back sessions [37]–[39]. MI duration of Stieger2021’s trials
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TABLE I
DETAILS OF THE DATASETS

vary due to the subjects reaching the target presented [39].
The summarized characteristics of each dataset are detailed
on table I.

The experimental protocol share the same structure for every
dataset. Starts with a resting period from 1 to 4 seconds where
a fixation cue is presented to prepare the subjects for the
imagination period. It is followed by a MI period of different
duration where a cue is presented to perform either left or
right hand MI. This varying MI duration implies that when
extracting the same time window length, some trials will
include only part of the imagination period while others will
also include the following resting period or even the start of
the following trial on Kaya2018 [38]. Ends with a final resting
period of 2-6 seconds of relaxation previous to the next trial.

B. Preprocessing

The raw signal of each dataset was processed as follows:
1) Extraction of channels ‘F3’, ‘C3’, ‘P3’, ‘Cz’, ‘Pz’,

‘F4’, ‘C4’, and ‘P4’ from the available channels in
each dataset for the 8 electrodes configuration. The
16 electrodes configuration includes also the ‘F7’, ‘T7’,
‘P7’, ‘O1’, ‘F8’, ‘T8’, ‘P8’, and ‘O2’ channels from
the 10/20 system. The amount of electrodes in these
two configurations are widely used in relatively low-cost
EEG-caps, and provide a reduced set-up duration.

2) Application of a fourth-order infinite impulse
response (IIR) notch filter to eliminate power line
signal at 50/60 Hz of each dataset that did not have it
removed by hardware [26], [27].

3) Application of common average reference (CAR) spatial
filtering to these 8/16 channels.

4) Resampling to 128 Hz to homogenize the datasets.
5) Extraction of the trials with a time window length of

3 seconds after the onset. This 3 second time window
was the largest possible to extract over all datasets
without having to discard trials without enough samples
or having to artificially pad the signal.

6) Application to each trial of a channel-wise z-score
standardization. Each channel signal in a trial ends with
zero mean and unit variance. This operation removes the
continuous component of the signal and accommodates
the data to be fed to a DL neural network.

C. Data Augmentation

DA is applied to generate new training examples from
existing data. This technique reduces over-fitting and enables

the training of bigger models that offer better generalization on
new data [40]. When applying DA, a uniform random selection
between the following four options was applied for each
trial differently in each pass through the whole training data:
patch perturbation, hemisphere perturbation, random shift or
no augmentation. Therefore, the training set would be unique
for each training epoch and it would be very unlikely for
a model to be trained on the same composition of trials
twice.

The DA in this work was composed of 3 different ideas:
1) Patch perturbation. We adapted a DA technique from

computer vision called random erasing [41] because
its principles could be extrapolated to EEG data. First,
we select a time window duration to be modified. Similar
to random erasing, the aim of patch perturbation is to
make the model robust to the presence of noise on the
EEG data. Like dropout, randomly perturbing different
time sections or channels of the signal will force the
model to learn relations from non perturbed sections of
EEG to make up for the perturbed data. At the same
time, it will make the model less reliant on specific time
segments or channels and generalize better. The duration
is selected from an uniform distribution between 0.6 to
all 3 seconds of each trial to be distorted. Secondly,
a position where to place this time window is randomly
selected. Thirdly, a number of channels in which this
time window will be distorted is randomly selected.
Always at least one channel will be left unmodified to
preserve the information of that time window. Finally,
the distortion consists of either changing the affected
patch by 0s (erased) or by adding noise. The added noise
follows a Gaussian distribution with 0 mean and with a
standard deviation that varies uniformly from 0.01 up to
2 times the standard deviation of the signal.

2) Hemisphere perturbation. We hypothesize that the differ-
ence between the control signals (i.e., SMR, LRP, MCP)
of left/right hand MI can be decoded from EEG changes
in one hemisphere. With this in mind, the electrodes
corresponding either to the left or right hemisphere are
perturbed. This perturbation consist of either altering its
positions in a random order or replacing all hemisphere
data by Gaussian noise with 0 mean and 1 standard
deviation. This technique aims for the model to learn a
clear and discernible pattern of MI in either hemisphere.
This perturbation also has a regularization effect, but in
this case it is restricted to the spatial dimension of the
signal.

3) Random shift. In MI, we know the exact time when the
onset cue is presented to the users, but not the reaction
time that they have for each trial. The reaction time
varies its distribution for each user. We also want to
consider distracted or tired subjects which will exhibit
a slower reaction time in some trials. To account for
this variability, the data is also augmented by shifting
forward the trials onset as much as half a second. This
value was set to consider the slowest tail of the two-
choice reaction time distribution in humans [42]. The
exact amount of time is extracted from an uniform



PÉREZ-VELASCO et al.: EEGSym: OVERCOMING INTER-SUBJECT VARIABILITY IN MI BASED BCIs WITH DL 1769

Fig. 1. Overview of EEGSym architecture. (a) Schematic of the division of input electrodes for an 8 electrode configuration Z: hemispheres (i.e., 2),
S: samples (i.e., 384), C: electrodes per hemisphere (i.e., 5), F: number of filters. (b) Legend of the architecture overview. (c) Inception block.
(d) Residual block. (e) EEGSym architecture. All convolution and grouped convolution operations are followed by batch normalization, ‘elu’ activation
and dropout regularization in this order. The output sizes of each operation are indicated in gray, whereas the dimension that is affected after each
stage is indicated in red. Detailed tables of 8 and 16 electrode configurations that include the details (i.e. kernel sizes, number of filters, etc.) of each
operation are present in the supplementary material, and in the open implementation that can be found in https://github.com/Serpeve/EEGSym.

distribution from 1 to 64 samples (corresponding to half
a second with a sampling frequency of 128 Hz).

D. EEGSym

EEGSym includes previous techniques that have been
proven to work for EEG decodification. One of them is the
use of inception modules [28] in the first operations of the
architecture as in EEG-Inception [5]. Another one is the use
of grouped convolutions [43] to emulate the success that
EEGNet [23] and EEG-Inception [5] had applying depthwise
convolutions. Depthwise convolutions are a particular case
of grouped convolutions when the number of groups is the
same as the number of filters. Every convolution operation is
followed by batch normalization, ‘elu’ activation and dropout
regularization. The dropout rate (dr ), number of filters in
inception modules (N) and learning rate (lr ), were determined
through grid search on the validation set. The search spaces
for these hypeparameters were: dr = [0.2 : 0.1 : 0.5];
N = [8 : 8 : 32]; and lr = [0.01, 0.001, 0.0001]. The values
selected were 0.4, 24, and 0.001, respectively.

An overview of EEGSym’s architecture is presented in
Fig. 1. Detailed tables of 8 and 16 electrode configurations that
include the details (i.e. kernel sizes, number of filters, etc.) of
each operation are available in the open implementation, and

in the supplementary material. The architecture of EEGSym
can be separated in 5 stages:

1) Symmetric division. Symmetric division. It creates the
virtual division represented in Fig. 1.a that is performed
inside the model. Hence, no redundant information is fed
into the DL arquitecture. The symmetric division of the
electrodes also helps to reduce the number of parameters
in the spatial filters present in the following tempospatial
analysis stage.

2) Tempospatial analysis. It captures the most detailed
temporal relationships in the architecture. It is composed
of two instances of inception blocks and three of residual
blocks. The number and kernel sizes of the inception
modules in the first inception block (i.e., 3 modules of
size 64, 32, and 16) was selected to replicate the ones
chosen in EEG-Inception [5]. These sizes correspond
to temporal windows of duration 500 ms, 250 ms and
125 ms. The result of the signal processed by each
convolution in the inception module is concatenated and
added to the input through residual connections [30].
Afterwards, an average pooling layer reduces dimen-
sionality in the temporal (i.e., S) dimension to prevent
overfitting and reduce computation time. Finally the
spatial extraction is designed with a grouped convolution
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that spans all hemisphere’s channels (i.e., C), reducing
its channels dimension to 1, and then adds the result to
every channel with residual connections. These grouped
convolutions are designed with the same number of
groups and input filters to reproduce the function of
depthwise convolutions. The residual block has as well a
temporal analysis followed by dimensionality reduction
through an average pooling operation and a spatial
analysis performed this time with a convolution instead
of a grouped convolution, which will mix the infor-
mation of all previous temporal filters extracted. After
leaving the last residual block, there is a convolution
with residual connections to capture temporal relations
after the last spatial operation followed by an average
pooling operation.

3) Channel merging. In this stage, the signal’s spatial
dimensionality is reduced to 1 (i.e., Z and C). It is
composed of two convolutions with residual connections
in the spatial dimension to capture the last distinguish-
able spatial features extracted. The merging of the chan-
nels dimension is performed by a grouped convolution.
All convolutions and gropued convolutions in this stage
are performed on both hemispheres and all channels at
the same time (i.e., kernel size of 2 × 1×5).

4) Temporal merging. After this stage, the temporal dimen-
sionality is reduced to 1 (i.e., S). It has a convolution
with residual connections followed by a grouped con-
volution. Both operations has a kernel size the same as
the temporal dimension that enters this stage.

5) Output module. After the temporal merging, we only
remain with a number of features that depends on the
number of filters per branch in the inception modules
(i.e., for 24 filters per branch 36 features enter this
stage). This stage performs 4 convolutions with residual
connections, flatten the features, and perform a softmax
classification over the two classes of MI.

Furthermore, EEGSym includes 2 novel ideas that take
advantage of the spatial characteristics of the brain and the
EEG:

1) Residual connections. Our network includes an extrac-
tion of spatial features, spatial correlations between the
signal of different electrodes, with residual connections
that are present at every instance of the tempospa-
tial analysis until the channel merging stage. Residual
connections are a solution that allows training deeper
models without reducing performance [30]. It creates
shortcuts for the information leaving the previous layer
to skip the transformation of the current layer. The
inclusion of residual connections also allows for some
layers to be skipped by pushing the weight values of
a residual layer to 0. Meanwhile, the information will
travel to the next layer through the shortcut. This way,
it is easier for the input information to travel unmodified
through the whole architecture. The reasoning behind
this design is that the spatial correlations of the signal
would be different in further stages of the temporal
processing of the signal.

2) Symmetry. The symmetry of the brain through the
mid-sagittal plane is implicitly introduced in EEGSym
architecture. This idea takes inspiration from a paper
about gaze recognition in which the authors take into
account the symmetry of both eyes in the first layers
of the network [44]. In a similar fashion, EEGSym
first extracts common spatial characteristics from both
hemispheres in the tempospatial analysis stage. In the
channel merging stage, it extracts complex relationships
between channels of both hemispheres. An scheme of
the division of the input for an 8 electrode configuration
can be found in Fig. 1.a.

The contribution of the two novelties introduced in EEGSym
architecture is evaluated with an ablation study presented
in III-B.

E. Baseline Models

For comparison purposes, we used ShallowConvNet and
DeepConvNet [22], EEGNet [23], and EEG-Inception [5]
applying the hyperparameters described in their original pub-
lications.

1) ShallowConvNet/DeepConvNet: The work of
Schirrmeister et al. [22] focused on showing how to design
and train CNNs to decode task-related information from the
raw EEG without handcrafted features [22]. They proposed
two CNN architectures, ShallowConvNet and DeepConvNet,
which were compared with FBCSP showing similar and
even better performance in some cases. Here, we use the
reproduction of the models made by Lawhern et al. [23]
on TensorFlow. The details of its implementation can be
found in [22].

2) EEGNet: Lawhern et al. [23] introduced EEGNet,
a compact CNN for EEG-based BCIs, and compared its
performance for intra-subject and inter-subject classification.
They showed that it generalized across different BCI
paradigms, and achieving comparably higher performances
than other state-of-the-art algorithms when limited training
data is available. We used the implementation released by the
author whose details can be found in [23].

3) EEG-Inception: Santamaría-Vázquez et al. [5] were the
firsts to introduce a CNN model for EEG decodification
that integrated inception modules. This network improved
the performance of EEGNet and DeepConvNet, as well as
other traditional approaches in ERP detection. The model
in TensorFlow and their specific architecture details can be
found in [5].

F. Cross-Validation Analysis

All models were trained on a NVIDIA 3080Ti GPU, with
CUDA 11.2 and cuDNN 8.1.0, in Tensorflow 2.5. An scheme
of the cross-validation analysis is presented in Fig. 2. The
trials are splitted into pre-training, fine-tuning and test:

1) We select a target dataset for which we are going to
obtain the inter-subject MI prediction accuracy, and use
every other dataset as pre-training (Fig. 2.b). From the
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Fig. 2. Cross-validation analysis performed over each dataset as Target DB. Pre-Training DB: datasets used for pre-training the model. Target DB:
dataset in which leave one subject out (LOSO) is performed, testing on one subject and fine-tuning the model on the remaining subjects. (a) Scheme
of the cross-validation analysis. (b) Pre-training dataset. (c) Fine-tuning dataset and testing subject.

pre-training operation we obtain an initialization of the
weights’ values that will be the same for every following
fine-tuning operation on the target dataset. From each
subject of the pre-training datasets, 10 trials of each class
are selected to be part of the validation split, and the rest
will be part of the training split.

2) Every subjects’ trials present in the target dataset except
for the one we will user for testing (Fig. 2.c) will be part
of the fine-tuning. Each fine-tuning subject’s trials are
splitted into training and validation with a 9 to 1 ratio,
respectively.

3) After the fine-tuning operation, we use the trials of
each independent subject as test following a leave one
subject out (LOSO) scheme (Fig. 2.c). This means that,
for each dataset, the fine-tuning and testing operation
is performed as many times as independent subjects
are in the target dataset to obtain the inter-subject MI
prediction accuracy.

For each CNN, we performed the preprocessing as described
in subsection II-B and implemented the following DL
techniques:

• Early stopping on pre-training and fine-tuning that halts
the training when validation loss does not improve for
25 consecutive iterations.

• Pre-training of the models on all datasets excluding the
target dataset. The DA described in subsection II-C was
only applied in this stage of the process. The learning
rate used is the same for all models (i.e., 1e-2). This
value is the one present in the open implementation
of Lawhern et . [23] for ShallowConvNet, DeepConvNet
and EEGNet, and also in the open implementation of
Santamaría-Vázquez et al. [5] for EEG-Inception.

• Fine-tuning on the target dataset without DA. The full
architecture is freezed (its parameters will not be updated
during training) apart from the last softmax layer. It is
trained with a very low learning rate (i.e., 1e-4) until the
early stopping is triggered. Finally, the full architecture is
allowed to update all of its parameters with this low learn-
ing rate, until the early stopping activates. The first fine-
tuning process aims to maintain the knowledge extracted
in the pre-training by only adjusting the importance of the
features in the softmax classification layer. On the other
hand, the second fine-tuning process will further adapt
the feature extraction process when the target dataset is
very diffferent to the ones present in the pretraining. This

procedure is adapted from the indications for fine-tuning
a model present in [45].

III. RESULTS

A. Comparison With Baseline Models

Following the preprocessing and cross-validation analysis
described before, we tested the 8 and 16 electrode configu-
rations with the new EEGSym and the baseline models. The
mean accuracy obtained between all subjects with its standard
deviation (σ ), and the number of users that achieve BCI control
(users that reach 70% accuracy) for each dataset evaluated are
presented in Table II.

As can be seen in Table II, EEGSym always obtains sig-
nificantly ( p-value < 0.05) higher mean accuracies than the
baseline models according to Wilcoxon signed rank test [46],
with the false discovery rate (FDR) corrected with Benjamini-
Hochberg approach [47]. This occurs for both electrode con-
figurations and all datasets.

EEGSym enabled 268 users out of 280 tested users to
achieve BCI control. EEG-Inception follows with 264 users,
next is DeepConvNet with 260, ShallowConvNet with 258 and
last is EEGNet with 252. Regardless of the architecture,
it is worth noting that with our pre-training pipeline every
architecture achieves ≥90% users with BCI control with only
16 electrodes in a calibrationless application.

B. Ablation Study

An ablation study to give insight into the usefulness of the
strengths of EEGSym is presented below. On the one hand,
we analyzed the effect of introducing residual connections to
extract spatial features at different stages of the processed
information inside the DL architecture. On the other hand,
the introduction of brain’s symmetry inside the architec-
ture. Both contributions have been evaluated separately for
8 and 16 electrode configurations over the Physionet [26]
dataset. This dataset was selected for this comparison for being
the one with the largest number of subjects. The results are
summarized in Table III.

As can be observed in the 16 electrode configuration,
applying each one of the novelties achieves significantly
(p-value < 0.05) greater performances than the base model
without symmetry or residual connections, according to
Wilcoxon signed rank test [46], with the false discovery
rate (FDR) corrected with Benjamini-Hochberg approach [47].



1772 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

TABLE II
COMPARISON OF ACCURACIES ON TARGET DATASETS FOR 8 AND 16 ELECTRODE CONFIGURATIONS

TABLE III
CONTRIBUTION OF EACH NOVELTY ON PHYSIONET

Although performances also increased for the 8 electrode con-
figuration when applying both contributions separately, only
the symmetric approach yielded a significant improvement.
Nevertheless, the result of jointly using both approaches gives
the best performances in both electrode configurations.

Additionally, the evolution of the training and validation
losses during the pre-training on the target dataset Phys-
ionet [26], and during one instance of fine-tuning of EEGSym
can be observed in Fig. 3. These results are for the 8 electrode
configuration.

IV. DISCUSSION

In this study, we propose a novel CNN architecture called
EEGSym. It takes advantage of a brain-inspired configuration,
a new extraction of spatial features from the EEG based
on residual connections across all CNN stages, and transfer
learning across subjects. This model was also complemented
by DA techniques called patch perturbation, hemisphere per-
turbation and random shift. It was validated with 5 datasets
including a total of 280 subjects, the largest subject evaluation

of related studies. A direct comparison with 4 baseline models
ShallowConvNet and DeepConvNet [22], EEGNet [23] and
EEG-Inception [5] was presented on those datasets.

A. Advantages of EEGSym

EEGSym allowed on 268 out of 280 subjects to achieve
BCI control (≥70% accuracy) in a completely inter-subject
pipeline, without calibration on test subjects. In other words,
95.7% users reached BCI control in an inter-subject classifica-
tion, suggesting that transfer learning has the potential to solve
BCI inefficiency. BCI inefficiency was previously estimated to
affect 10-50% of potential BCI users [36]. This achievement is
even more remarkable since BCI inefficiency seems to affect
less than 5% of the population in inter-subject calssification,
which is a more challenging problem than the usual intra-
subject classification with calibration runs from the end user.

As shown in Table II, we reached accuracies of 88.6±9.0 on
Physionet [26], 83.3±9.3 on OpenBMI [27], 85.1±9.5
on Kaya2018 [38], 87.4±8.0 on Meng2019 [37], and
90.2±6.5 on Stieger2021 [39]. A comparison with the
mean accuracies of the baseline models was performed
with Wilcoxon signed rank test, correcting the FDR
with Benjamini-Hochberg approach. EEGSym significantly
(p-value < 0.05) outperformed ShallowConvNet and Deep-
ConvNet [22], EEGNet [23] and EEG-Inception [5] in this
binary MI classification.

Furthermore, DL networks have a clear advantage in other
areas like computer vision and natural language processing
when large amounts of data are available. In this work, we fur-
ther exploit the transfer learning capabilities of DL in the field
of BCIs, by using all datasets publicly available that share
the same imagination paradigm. Our results suggest that the
combination of the pipeline described in subsection II-B with
the new architecture, enables a plug-and-play application of
MI-based BCIs. It does not need calibration trials from the end
user using only 8 or 16 electrodes to reach these new state-of-
the-art accuracies. Of note, motivation through rehabilitation
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Fig. 3. Loss and validation loss of pre-training on target dataset
Physionet [26] and fine-tuning on all dataset subjects except for subject 2
for an 8 electrode configuration. Dotted line in fine-tuning marks the early
stopping of the first stage of fine-tuning.

is a key aspect for the treatment’s success [48]. The reduced
set-up duration and calibrationless system achievable with
EEGSym could be key in promoting user’s motivation when
using MI-based BCIs for rehabilitation.

The contribution of EEGSym’s designing novelties present
in the implementation of this new architecture are evaluated
in the ablation study. It showed that jointly applying them
offered significantly better performances for both electrode
configurations. However, each one of them separately showed
improvements that were not always significant. The residual
connections offered an improved performance for an 8 elec-
trode configuration but it was not statistically significant.
On the other hand, the symmetric approach always offered
significantly higher performances.

As shown in Fig. 3, the transfer learning produced by the
36 features extracted by EEGSym between the pre-training and
fine-tuning process is appropriate, since the starting point of
the fine-tuning is similar to the ending of the pre-training. This
is also shown by focusing in the first stage of the fine-tuning.
In this stage only the last softmax is allowed to be fitted,
so the model is being optimized over the 36 features extracted

TABLE IV
COMPARISON WITH BINARY CLASSIFICATION

OF PREVIOUS LITERATURE

during the pre-training. Despite only tuning this last operation
of the model, we reach a better fit than in the pre-training.
What is more, the second stage only improves the validation
loss by a minimum amount before overfitting and triggering
the early-stopping mechanism.

The pre-training for Physionet [26] dataset in a 8 or 16 elec-
trode configuration required a computation time of 4 hours
and 18 minutes or 6 hours and 25 minutes, respectively. For
a new application, only one pre-training opeartion is needed,
and can be skipped if the pre-trained weight values present
in our open implementation are used. The fine-tuning process
in an 8 or 16 electrode configuration required a computation
time of 7 and 12 minutes, respectively. This fine-tuning only
needs to be performed the first time it is adapted to the desired
MI-application, or any time there is a substantial increase of
recorded trials over the first fine-tuning dataset. On inference
mode, i.e. predicting a single trial, the model required 30 ms
in both configurations running on a GPU. The 30 ms needed
for a prediction make this DL approach also suitable for online
decoding.

B. Comparison With Previous Works

A comparison with previous studies can be found in
Table IV. Physionet [26] dataset includes data from 109 sub-
jects, but the works that we use for comparison excluded from
their analysis the data of 4 subjects. Dose et al. [24] did not
specify which subjects they exclude from their study. Further-
more, they extracted 42 trials from each user’s 45 available
trials, without specifying which ones to select. Fan et al. [29]
and Varsehi et al. [49] removed subjects S088, S092, S100,
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and S104 for being damaged. However, Kostas et al. [32]
excluded S088, S090, S092 and S100. In this work, since all
subjects could be used, and noticing the disparity of excluded
users in previous works, we decided to include every subject
and all available trials.

The studies that addressed inter-subject classification with
DL have partially exploited the ability that DL networks
present for transfer learning [24], [25], [29], [32], [34]. They
use the data of other subjects from the same dataset to train
the network and evaluate on the rest of subjects or fine-
tune the model to a specific subject of the same dataset.
We believe that one of the clear advantages of our approach
has been to use data from multiple publicly available datasets
that share an imagination paradigm. They were used for pre-
training the network to initialize the weights of the models
evaluated. This improved use of transfer learning is made clear
when comparing the inter-subject accuracies on Physionet [26]
dataset. All baseline models and EEGSym outperform previous
DL approaches that used all 64 electrodes [24], [29], [32]
available with the information of only 16 electrodes. Further-
more, EEGSym only needs 8 electrodes to overcome previous
studies in this particular dataset. In OpenBMI [27] dataset
EEGSym also obtains similar results as previous studies with
only 16 out of the 62 electrodes of the dataset.

EEGSym outperforms the state-of-the-art models present in
the literature with only 16 electrodes of the more than 60 avail-
able. It has been proved in Physionet [26] and OpenBMI [27]
which include 109 and 54 subjects, respectively. Our results
suggest that the combination of our preprocessing and pre-
training with DA is a tool which enhances DL performance
on this task.

C. Limitations and Future Work

Despite the positive results of EEGSym achieved in this
study, we also acknowledge several limitations that should be
addressed in the future. The proposed method reduces its per-
formance without fine-tuning to the target dataset (accounting
for the operator, device and procedure variability). This implies
that implementing this model to a custom application will need
to collect data from a few subjects to reach accuracies similar
to this study. Therefore, there is still room to improve the
generalization of the model towards a plug-and-play system.
This could be solved by collecting more data from different
centers and users to increase the publicly available resources.

The idea of introducing the known symmetry of the brain
through the mid-sagittal plane into the network architec-
ture enables it to reach higher classification accuracies and
improves the generalization of the model. We have focused on
the ability of the network for inter-subject classification. The
ability to make the most of the available data by introducing
known spatial relations needs to be extended to intra-subject
classification by fine-tuning the model to each user.

Also, understanding better which features the DL networks
are extracting would be very beneficial for further optimiza-
tion of the task. This will fall into the explainable artificial
intelligence (XAI) field, a very promising research line that

could include developing a model with the consideration of
its explainability.

V. CONCLUSION

In this study, we introduce EEGSym, a new CNN for binary
MI classification. It includes the use of inception modules,
residual connections to enhance spatial features extraction, and
the incorporation of the symmetry of the brain through the
mid-sagittal plane into its architecture design. It also makes
use of transfer learning across subjects and datasets and of
a DA technique that includes patch perturbation, hemisphere
perturbation, and random shift. EEGSym improved state-of-
the-art accuracies on inter-subject MI binary classification.
These results are validated in 5 datasets with the largest
amount of subjects (280) in related studies. EEGSym was
compared to previous state-of-the-art CNNs: ShallowConvNet
and DeepConvNet [22], EEGNet [23], and EEG-Inception [5].
The inter-subject scheme implemented in this study allowed
EEGSym to be used without the need of calibration runs on
new subjects and potentially solving the problem of BCI inef-
ficiency. Furthermore, this new state-of-the-art accuracies were
obtained with only 16 electrodes of the more than 60 available
on some datasets. This reduced set of electrodes enables
the use of more inexpensive EEG recording systems with a
reduced set up duration. The combination of a reduced set up
duration and the calibrationless application can boost users’
motivation of MI-based BCIs, which is key for the use of this
applications for rehabilitation. EEGSym outperforms previous
state-of-the-art approaches on inter-subject MI classification
reaching significantly ( p-value < 0.05) higher accuracies on
all 5 datasets tested and allows the higher number of users to
reach BCI control.
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