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Abstract— The optimization of coding stimulus is
a crucial factor in the study of steady-state visual
evoked potential (SSVEP)-based brain-computer inter-
face(BCI).This study proposed an encoding approach
named Multi-Symbol Time Division Coding (MSTDC). This
approach is based on a protocol of maximizing the dis-
tance between neural responses, which aims to encode
stimulation systems implementing any number of targets
with finite stimulations of different frequencies and phases.
Firstly, this study designed an SSVEP-based BCI system
containing forty targets with this approach. The stimulation
encoding of this system was achieved with four temporal-
divided stimuli that adopt the same frequency of 30 Hz and
different phases. During the online experiments of twelve
subjects, this system achieved an average accuracy of
96.77 ± 2.47% and an average information transfer rate
(ITR) of 119.05 ± 6.11 bits/min. This study also devised an
SSVEP-based BCI system containing 72 targets and pro-
posed a Template Splicing task-related component analy-
sis (TRCA) algorithm that utilized the dataset of the previous
system containing forty targets as the training dataset. The
subjects acquired an average accuracy of 86.23 ± 7.75%
and an average ITR of 95.68 ± 14.19 bits/min. It can be
inferred that MSTDC can encode multiple targets with lim-
ited frequencies and phases of stimuli. Meanwhile, this
protocol can be effortlessly expanded into other systems
and sufficiently reduce the cost of collecting training data.
This study provides a feasible technique for obtaining a
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comfortable SSVEP-based BCI with multiple targets while
maintaining high information transfer rate.

Index Terms— Brain-computer interface, steady-state
visual evoked potential, time division coding, multi-target,
high-frequency, phase modulation.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is an innovational
human-computer interaction technique. It establishes a

direct communication pathway between human and external
devices without relying on peripheral muscles [1]. BCI sys-
tems have been widely used in medical and rehabilitation
fields [2], [3]. Steady-state visual evoked potential (SSVEP)-
based BCI, an influential paradigm of noninvasive BCI, has
attracted considerable attention because of its high information
transfer rate (ITR) and robustness. SSVEP is a distinctive
neural response in the human brain, evoked by visual stimuli
with fixed frequencies, and SSVEP responses in the visual
cortex present stable features in the frequency domain [4].
Traditional SSVEP-based BCI usually comprised stimuli of
different frequencies, so the BCI system can recognize the
commands that the users wish to deliver by detecting the
components of SSVEP responses in electroencephalogram
(EEG) [5], [6].

Although the researches on SSVEP-based BCI develop
rapidly, some tremendous difficulties still exist in the appli-
cation area. Typically, how to devise a system implementing
numerous targets; how to optimize stimulation paradigm [7];
how to enhance the comfortability of stimuli; how to reduce
the fatigue of subjects [8] are critical questions that restrict
the expansion of SSVEP-based BCI applications.

Multi-target SSVEP-based BCI is an important direction
in the field of SSVEP-based BCI research. Researchers have
tried to realize the SSVEP multi-target coding paradigm in a
variety of ways. Yang et al. designed an SSVEP-based BCI
system with 40 candidate targets based on frequency coding
(8-15.8Hz, 0.2-Hz steps) [9]. Chen et al. proposed a method
of hybrid frequency and phase coding, which can encode
forty targets with eight stimulation frequencies (8-15Hz, 1-Hz
steps) and five phases (0, 0.4π , 0.8π , 1.2π , 1.6π) [10].
However, it is challenging to encode numerous visual stimuli
with frequency and phase modulation because the efficient fre-
quencies of visual stimuli are limited, considering the human
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body’s physiological characteristics. To solve this problem,
Zhang et al. introduced multiple frequencies sequential coding
(MFSC), which combining time domain and frequency domain
to achieve a 4 targets paradigm by two stimulation frequencies
(7.5Hz, 12Hz) [11]. Time domain and frequency domain
fusion coding is a good design idea, but a general solution
for multi-target SSVEP-based BCI has not yet been proposed.

SSVEP-based BCI is one of the most robust and general-
ized BCI systems, but visual discomfort caused by stimula-
tions is a key drawback in SSVEP-based BCI. In general,
visual stimuli under low frequencies (less than 15Hz) will
arouse stronger responses that are beneficial for detection.
However, low-frequency stimuli also cause obvious visual
discomfort; high-frequency stimuli (higher than 30Hz) will
significantly trigger lesser discomfort at the risk of weaker
responses [12], [13]. Many studies of high-frequency stimuli
have been done. Chen et al. encoded 45 targets with 45 high
frequencies (35.6-44.4Hz, 0.2Hz steps) [14]. Reference [15]
encoded six targets with three frequencies (25, 33.3, 40 Hz).
Reference [16] achieved encoding of four targets with the
same frequency (60Hz) and four different phases (0, π /2,
π , 3π /2). Nevertheless, most of those studies only encoded
limited targets, and the overall performance was relatively
poor.

To eliminate those puzzles, we proposed a method named
Multi-Symbol Time Division Coding (MSTDC). Refer to
MFSC, MSTDC can encode any number of targets with a
time-division sequence while only takes advantage of stim-
ulation with few frequencies and phases. Different from
MFSC, MSTDC is a method optimized to maximize the
difference between the responses of different targets, and
cannot only be used to encode symbols of different frequencies
but also can further encode codes of different phases. This
study first proposed a code set distance definition to evaluate
the effectiveness of different code combinations. Secondly,
an optimization method based on simulated annealing algo-
rithm is designed to generate an optimized code set. Thirdly,
applying stimuli of 30Hz frequency and four phases as basic
symbols, this study developed 40 targets SSVEP-based BCI
based on MSTDC and evaluate its efficiency through online
experiments. Finally, we developed an online SSVEP-based
BCI system implementing 72 targets and proposed a Template
Splicing-TRCA algorithm. The result suggests that MSTDC
can be easily expanded into the system of numerous targets,
and the detection algorithm can significantly broaden the
training template with only training datasets of few visual
stimuli.

The structure of this paper is arranged as follow: the
section II introduces the encoding method of MSTDC,
the section III validates the efficiency of this method, the
section IV introduces details about the SSVEP-based BCI
system of forty targets, and the section V expands the number
of targets into 72 and evaluates its scalability.

II. ENCODING METHOD

A. Time-Division Encoding and Optimization Protocols
1) Concepts About MSTDC: This study proposed an encod-

ing method called MSTDC, which is based on maximizing

Fig. 1. The schematic diagram of codeword stimulus. The initial phase
of the stimulus segment is marked on the top of the waveform.

the difference between responses of stimulation, thus encoding
any number of targets with a small number of symbols.

(1) Symbol: symbol is the fundamental stimuli unit in this
approach. It can be defined as any stimuli that can evoke
stable neural responses in the human brain, while the
responses caused by different symbols must be different.
For example, it is possible to define 4 types of symbols
S1 ∼ S4: 30 Hz sine stimulation with initial phases of 0,
π /2, π , and 3π /2 respectively, and the stimulation duration
of each symbol is 0.5 seconds.

(2) Codeword: codewords are primary combinations in
MSTDC. Each codeword corresponds to a stimulus target.
Codewords consist of several temporal divided symbols.
The arrangements of codewords should be mutually exclu-
sive. The number of symbols in a single codeword is
defined as the length of codewords. For example, 4 sym-
bols (the length of codewords=4) from S1 ∼ S4 can be
selected for permutation A total of 44 = 256 kinds of
codewords can be formed, which are respectively denoted
as C1 ∼ C256.

(3) Code set: Code sets are primary research objectives in
MSTDC. Code sets are composed of all codeword arrange-
ments. MSTDC is mainly applied to code sets of the
same length. Thus all codewords should maintain the same
length in every code set. For example, if a paradigm only
needs 2 candidate targets, 2 codewords can be selected
from all codewords (C1 ∼ C256) as target ‘0’ and
target ‘1’. The schematic diagram of codeword stimulus
is shown in Fig. 1.

(4) Symbol response, codeword response and code set
response: the EEG responses evoked by symbols and
codewords are called symbol responses and codeword
responses respectively. Because codewords are tempo-
ral combinations of symbols, codeword responses can
be acquired through fusion of symbol responses. All
codeword responses are called code set responses. The
relationship between those responses are shown in Fig. 2.
The mathematical representations of those responses are
shown in Table I. Where E represents the number of
symbols, and Ue represents the average SSVEP responses
evoked by e, Ns is the sampling points in a single trial.
L is the length of codeword. R(l)

n represents the responses
evoked by l-th symbol in n-th codeword. N is the number
of required codewords.
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Fig. 2. The illustration of symbol, codeword and code set response.

TABLE I
MATHEMATICAL REPRESENTATION OF TERM DEFINITION

(5) Symbol response distance, codeword response distance,
code set distance.
The symbol response distance is defined as the Euclidean
distance between two symbol responses, which can be
expressed as:

DU i U j = 1

Nc

∥∥U i − U j
∥∥2

F (1)

where ‖·‖2
F represents Frobenius norm.

The codeword response distance, likewise, is defined as
the Euclidean distance between two codeword responses,
which can be expressed as:

DRi R j = ∥∥Ri − R j
∥∥2

F = 1

Nc

L∑
l=1

∥∥∥R(l)
i − R(l)

j

∥∥∥2

F
(2)

The code set distance was defined as the minimum dis-
tance between any two codeword responses, which can be
calculated as follows:

DR = min
1≤i< j<≤N

DRi R j

= min
1≤i< j<≤N

1

Nc

L∑
l=1

∥∥∥R(l)
i − R(l)

j

∥∥∥2

F
(3)

2) Objective Function of Optimization: Based upon utilizing
average evoked responses across all subjects under different
symbol stimuli, MSTDC maximizes the divisibility between
all codewords in a code set by arranging the sequences of
symbols. As a consequence, the primary goal of optimization
in MSTDC is maximizing the code set distance through finding
the optimal arrangements of symbol, which can be elaborated
as follows:

R∗ = arg max
R

DR

= argmax
R(l)

i ,R(l)
j ∈{U1···U E }

Ri ,R j ∈R

min
1≤i< j<≤N

1

Nc

L∑
l=1

∥∥∥R(l)
i − R(l)

j

∥∥∥2

F

(4)

B. Optimization Algorithm

The optimal selections of template sets can be acquired
through solving the optimization problem. Similar to the
discrete p-dispersion problem discussed in [17], under the
restriction of maximizing the minimum distance, the optimiza-
tion of the code set is supposed to be an NP-complete problem.
Thus, this optimal answer cannot be found with polynomial
time. To address this problem, this study adopted Simulated
Annealing (SA) [18] to find the approximate optimal solution.

The process of SA algorithm is demonstrated in Fig. 3, and
the implementation process is shown as following:

Step 1: Setting the initial temperature Tinit , the cut-off
temperature Tend , the maximum number of iteration itermax .
The current temperature T is equal to the initial temperature,
and the current number of iteration iter is zero. Besides,
an initial code set Cinit is built.

Step 2: Generating a new code set Cnew

Step 2.1: Randomly generating a new codeword that
doesn’t belong to the current code set.

Step 2.2: Randomly selecting a codeword from the
current code set.

Step 2.3: Exchanging the two codewords. The switched
code set is defined as new code set.

Step 3: The algorithm decides whether to accept the new
code set according to Metropolis criteria [18]. Repeating
Step 2 until reaching the maximum number of iterations, and
this algorithm jump to Step 4.

Step 3.1: Separately calculating the distances of two
code set response Dcur and Dnew .

Step 3.2: When Dnew > Dcur , the new code set replaces
the current code set.

Step 3.3: When Dnew < Dcur , the new code set replaces
the current code set with a fixed probability.

Step 4: Updating the current temperature T , if the tem-
perature doesn’t achieve the cut-off temperature, the system
switches to Step 2. Otherwise, the result is outputted.

Table II shows the ‘pseudo code’ of this algorithm. The
function Distance() is designed for evaluating code set dis-
tance, and the function UpdateCodeset() is designed for acquir-
ing new code set. The initial temperature Tinit is 1000 × L, the
cut-off temperature Tend is 0.001, and the maximum number
of iteration itermax is 500.
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Fig. 3. The illustration of SA algorithm (a) Main framework; (b) Schematic diagram of code set update; (c) Schematic diagram of Metropolis criteria.

TABLE II
THE PROCESS OF APPLYING SA ALGORITHM ON

OPTIMIZATION OF THE CODE SET

III. VALIDATION OF THE ENCODING APPROACH

A. Estimation of Codeword Response

MSTDC considers the code word response as the funda-
mental component in the optimization method, so EEG data
from different subjects is required as an optimized data set.
A dataset, named Experiment A-Offline, was introduced to
help optimizing the code set. (Experimental comparison table
is shown in Table III)

This dataset was based on experiments of 4-target SSVEP-
based BCI, including EEG data of ten subjects under 30Hz
stimulus frequency and four kinds of phase (0, π /2, π ,
3π /2) [16]. All subjects were requested to fulfill the exper-
iments of five blocks, while every block consists of 16 trials
(four trials under each condition). Each trial lasted for 5s,
containing 1s of inter-trial gaze shift and 4s of visual stimuli.
The original sampling rate of this dataset was 1000Hz.

TABLE III
EXPERIMENTAL COMPARISON TABLE

This research used 4 kinds of sinusoidal stimulus signals
(frequency was 30Hz, initial phases were 0, π /2, π , 3π /2) as
the basic code elements. Nine channels in the occipital region
(Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, O2) were chosen to
extract the symbol responses. In the preprocessing stage, the
data was down sampled to 250 Hz, and a 50Hz notch filter was
used to eliminate the noise. Besides, two band pass filters on
28-32Hz and 58-62Hz were used to extract the base frequency
and second harmonics of SSVEP responses.

Individual templates under different visual stimuli can be
acquired by averaging the SSVEP response of each subject.
Moreover, the global symbol response was acquired through
averaging individual templates.

This study estimated the distances between symbol
responses in Experiment A-Offline dataset from 0.25s to 0.5s,
as shown in Fig. 3. It can be inferred that the symbol response
distance between two symbols with π of phase difference is
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higher than two symbols with π /2 of phase difference, which
corresponds to the visual stimuli itself. However, comparing
the 0, 3π /2 phase code response distance (325.5) and the π ,
3π /2 phase code response distance (231.5) under the condition
of 0.5s; It can be found that although the symbol stimulation is
equally spaced by π /2 phase, the distance difference between
different symbol responses is enormous. Using symbols with a
more considerable symbol response distance for encoding can
effectively improve the distinguishability between codewords.

B. Encoding Validation Experiments

1) Paradigm Design: In order to validate the effectiveness
of MSTDC, this study proposed a series of experiments
(Experiment B-Offline) for validation. By estimating the result
of Experiment A-Offline symbol response, the optimal code set
arrangement (SA-Codeset) is selected through the simulated
annealing algorithm. Meanwhile, deriving from ten million
kinds of a randomly generated code set, a specific code set
(RO-Codeset) enabling the largest code set response distance
was chosen. It should be specially pointed out that both
SA-Codeset and RO-Codeset use 0.5s as a single symbol
length in the optimization process, and the corresponding
codeword length is 2s.Under the condition of 4 types of
symbols (0, π /2, π , 3π /2), 4 bits of symbols can form a total of
44 = 256 types of codewords. Randomly select 40 codewords
from 256 types of codewords to form a code set, repeatedly
generate 107 code sets, and select the one with the largest code
set distance as the RO-Codeset. RO-Codeset will be performed
as a control group experiment to verify the optimization effect
of SA-Codeset.

The sine sampling approach [19] was implemented in this
study, presenting forty visual stimuli on a 24.5-inch LCD mon-
itor. The monitor is Alienware AW2518H with a refreshing
rate of 240Hz and a resolution of 1920 × 1080.

Every visual stimulus corresponded to a codeword in the
code set, every stimulus sequence consisted of four symbols
(L = 4). Every symbol lasted for 0.5s with the stimulation
frequency of 30Hz. The candidate symbol element contains
a total of 4 phase-coded symbol element stimuli (0, π /2,
π , 3π /2), and the brightness during the stimulation process
was fluctuated according to a sine function (Sine). During the
stimulation process, a trigger signal was recorded at the onset
of symbol presentation. The waveform of codeword stimulus
brightness is shown in Fig. 1.

The experiment adopted the form of a cue-guided target
selection task, simulating the online experiment to record
data for offline analysis. SA-Codeset and RO-Codeset both
recorded four blocks of data in an interleaved way. Every
block contained forty trials, and each trial lasted for 3s. In each
trial, the subjects were asked to follow the visual cue (the red
box surrounding the target) to gaze at the target, and forty
targets were scanned in a random order. At the beginning
of a trial, the visual cue lasted for 1s, then users shift their
attention on the stimuli target. During this time, all targets
were not flashing. All stimuli began to flicker after the visual
cue lasted for 1s, and a red triangle was given at the bottom
of the required stimulus square, the stimulation phase lasted

for 2s (0.5s per symbols). The users were requested to avoid
eye blinking during visual stimuli, and the interval between
block was 2 minutes.

2) Data Acquisition: Experiment B-Offline adopted the
Neusen W system (Neuracle, Inc) to record EEG data. Nine
electrodes (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, O2) were
placed at the occipital region, and the reference electrode was
placed at the crown of the head. Impedances of all electrodes
were maintained lower than 10k�. Meanwhile, the sampling
rate is 1000Hz, but the data were down sampled to 250Hz
after being recorded. A 50Hz notch filter was introduced to
eliminate power line noises.

Twelve subjects (five females and seven males, age
20-25) with normal or corrected-to-normal vision participated
in the experiments. Every subject read and signed the informed
consent. Every subject received financial rewards after the
experiments. All experiments in this study were approved by
the Tsinghua Institutional Review Board.

3) Data Analysis and Evaluation Criteria: Standard TRCA
[20] is the detection algorithm in Experiment B-Offline. In the
calculation process, two band-pass filters of 28-32 Hz and
58-62 Hz were used to extract the fundamental and the
second harmonics components of the SSVEP response, and the
weights of the two filters were both set to 1. Other parameters
maintained the same with study [20].

In order to reduce the negative effect of the incubation
period, all induced SSVEP responses were intercepted with
a delay of 0.14s [20]. Leave-one-block-out was enabled in
the analysis process, and the integrated results were computed
with four cycles.

Detection accuracy and information transfer rate (ITR) were
the primary evaluation indexes, to compare the detection
efficiency of SA-Codeset and RO-Codeset. ITR was defined
as:
ITR =

(
log2 N + log2 P + (1 − P)log2

(
1 − P

N − 1

))
∗

(
60

T

)

(5)

where N is the number of targets, P is the average classifi-
cation accuracy, T is the average detection time that contains
the time of codeword stimulation and 0.5s for the inter-trial
rest.

C. Result of Encoding Validation Experiments

1) Symbol Response Distance: The average symbol
response distance was shown in Fig. 5. By comparing Fig. 4
and Fig. 5, it can be found that the symbol response distance
between the two datasets is maintained similarly. The code
response distance under the π-phase stimulation was mostly
higher than the code response distance under the π/2 phase
stimulus. But for Fig. 5, the distance between the 0-phase
symbol response and the 3π /2-phase symbol response is huge,
and it has even exceeded the symbol response distance under
the interval π-phase stimulus. Those phenomena may be
caused by the experimental paradigm. During the Experiment
B-Offline, the stage for reminding the target will start per
2s, and all targets maintained the highest brightness, which
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Fig. 4. Distances between symbol responses in Experiment A-offline
dataset from 0.25s to 0.5s.

Fig. 5. The average symbol response distance in Experiment B-Offline
dataset from 0.25s to 0.5s.

is similar to the symbol stimulus of the π/2 phase. Con-
sequently, transient-state responses (TSR) may exist at the
beginning stage of stimulation [21], resulting in errors in
estimating symbol response distance. However, according to
the results of following experiments, the overall performance
of this encoding proposal didn’t reduce, despite some symbol
response distance were different in Fig. 4 and Fig. 5.

2) The Code Set Response Distance: This study intercepted
symbols of different lengths at Experiment B-Offline dataset to
investigate the performance difference under different lengths
of symbols. For instance, if we extracted the symbol response
data of 0.25s, which means 0.25s of data of every symbol
was cut from the starting point, while a codeword response
consisted of four symbols, so the length of the eventual
codeword response was 1s.

Then we tested the responses of all subjects in the Exper-
iment B-Offline experimental data set. According to the
response distance defined by equation (3), the individual data
of each subject is used as the unit to calculate the response
distance of each subject in SA-Codeset and RO-Codeset in
Experiment B-Offline. The results are shown in Fig. 6. The
average response distance of SA-Codeset were superior than
RO-Codeset, and the standard deviation on subjects were
lower.

Fig. 6. Average code set response distance of Experiment B-Offline
under different data lengths.

Fig. 7. Comparison of the two coding principles performance in the
Experiment B-Offline data set. (a) classification accuracy (b) information
transfer rate under different code lengths (data length intercepted by each
symbol ∗4). The error bar in the figure represents the standard deviation
between subjects. The asterisks in both figures indicate significant dif-
ference between the two code sets obtained by paired t-tests (∗p<0.05).

3) Classification Accuracy and ITR: Fig. 7 shows the average
classification accuracy and the ideal ITR of the two code sets
when the codeword length is 1s-2s (corresponding symbol
length is 0.25s-0.5s). When length is 2s, the average accuracy
of SA-Codeset is 97.76%, the average ITR is 121.63 bits/min.
Compared to RO-Codeset, the average accuracy and ITR
achieved by SA-Codeset were much higher (paired t-tests on
all subjects, ITR: p-value = 0.0159, Accuracy: p-value =
0.0184). The average classification accuracy increased as
the length of the selected data increases, but the ideal ITR
followed the opposite trend. The comparison results of the
two code sets show that the optimized code set SA-Codeset
performance was better than RO-Codeset when data of any
length is selected. Especially when the data length is 1s,
the average accuracy rate was increased by 1.72% relative to
RO-Codeset, and the ITR was increased by 6.64 bits/min.

In order to improve the recognition accuracy and verify the
impact of the codeword distance on the recognition result,
0.5s was chosen as the basic symbol duration of the online
experiment in the follow-up research.

IV. ENCODING APPLICATION

A. Encoding Application Experiments

1) Paradigm Design: In order to verify the application
effectiveness of the Experiment B-Offline coding principle,
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Fig. 8. Stimulation interface of Experiment C-Offline and Online.

this study designed Experiment C-Offline and Experiment
C-Online. In Experiment C-Offline and Experiment C-Online,
SA-Codeset was used as the 40-target coding scheme, and
the code word stimulus design was the same as described
in section III.B. To simulate the spelling situation, this study
designed the interface layout as shown in Fig. 8. Every stimu-
lus square was presented with 140 × 140 pixels. The adjacent
target has a horizontal spacing of 40 pixels and vertical spacing
of 60 pixels.

Experiment C-Offline adopted the cue-select task paradigm,
and each participant participates in 4 blocks experiment. Each
block contained 41 trials, and the first trial is used to remind
subjects that its data does not participate in the evaluation of
results. Except for the first trial, each target was highlighted
once in random order. Subjects need to focus on the cued
target. At the beginning of each trial, a cue appeared and lasted
for 1 second. All the targets began to blink at the same time
and lasted for 2 seconds. During the simulation, the subjects
were asked to avoid blinking. In order to reduce the effect
of visual fatigue, a 2-minute rest period was arranged for the
subjects between the blocks.

The Experiment C-Online experiment still used the cue-
select task paradigm, and a total of 2 block experiments
were carried out. The experiment process was the same as
Experiment C-Offline. Experiment C-Online is scheduled after
Experiment C-Offline. In the online experiment, the TRCA
algorithm with Experiment C-Offline data as calibration data
was used for EEG real-time analysis and feedback. The overall
experimental process of Experiment C-Online is the same as
that of Experiment C-Offline experiment. But in the online
experiment, the system analyzes participants’ EEG data in
real time and provides feedback on the results after the
stimulation phase. The recognition results will be presented
in blue for feedback to the subjects, and the duration of each
trial feedback phase is randomly about 0.5-1.25s.

Still, the system will analyze the participants’ EEG data
in real-time and give feedback on the results after the stim-
ulation phase. The duration of the feedback phase was 0.5s,
during which the judgment result will be rendered in blue for
feedback to the subjects.

2) Data Acquisition and Analysis: Twelve subjects (six
females and six males, age 20-25) with normal or corrected-
to-normal vision participated in the experiments. Every subject
read and signed the informed consent. Every subject received
financial rewards after the experiments. All subjects took part

Fig. 9. Online recognition results of all subjects in the Experiment
C-Online data set (a) Recognition accuracy (b) ITR.

Fig. 10. The relationship between codeword distance and misjudgment
trials in Experiment C-Online. (a) A distance matrix of 40 target code-
words based on the encoded data set; (b) A matrix of misjudgments
in online experiments of all subjects. The order of codewords is sorted
according to the minimum distance between codewords to ensure that
the minimum distance between any codewords is on both sides of the
diagonal.

in both offline experiments (Experiment C-Offline) and online
experiments (Experiment C-Online). The recorded data in
Experiment C-Offline was used as the source of training data
in Experiment C-Online by TRCA algorithm, the spatial filters
and individual templates of code set were implemented during
the online experiments.

B. Encoding Application Experiment Results

1) Detection Accuracy and ITR: Results of Experiment
C-Online show that the high-frequency phase-encoded forty-
target SSVEP-based BCI application system had a high recog-
nition efficiency, as shown in Fig. 9. With the standard TRCA
as the recognition algorithm, twelve subjects achieved average
recognition accuracy of 96.77%±2.47% and an average ITR
of 119.05±6.11 bits/min. During the experiment, all subjects
achieved a recognition accuracy rate of more than 90%,
of which ten subjects achieved a recognition accuracy rate
of more than 95%. It is worth noting that the recognition
accuracy rates of S3 and S5 even reached 100%. From the
perspective of ITR, twelve subjects achieved an ITR of more
than 100 bits/min under the stimulation of high-frequency
SSVEP, of which seven subjects had an ITR of more than
120 bits/min. The results suggested that the online system
can achieve a significant ITR under relatively comfortable
high-frequency stimulation conditions.

2) The Relationship Between Codeword Distance and False
Positive Rate: Fig. 10 reflects the relationship between the
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error detection and the codeword distance in Experiment
C-Online, and the code word distance was cumulatively
computed according to the forty targets encoding principle.
The 40 codewords in Fig. 10 were sorted according to the
distance between the codewords. To be more specific, the
codeword with the smallest distance between the current
codewords is selected as the next codeword. It can be seen
from Fig. 10(a) that through this sorting method, the minimum
distance between codewords will be concentrated on both
sides of the main diagonal, while the more considerable code
distance will be far away from the main diagonal of the
codeword distance matrix. Fig. 10(b) reflects the misjudgment
of the code word in the online experiment. It can be seen that
the misjudgment is also concentrated on both sides of the main
diagonal, where the codeword distance is relatively close.

V. RESEARCH ON APPLICATION OF

AUGMENTED TARGETS

A. Template Splicing-TRCA Algorithm

MSTDC can encode a large number of targets through
encoding codewords. This characteristic allows each target to
maintain the overall difference while retaining a strong correla-
tion between the partial components. As demonstrated in II.A,
a codeword consists of several symbols. Thus, the response can
be approximately estimated through combinations of symbol
responses. So the templates of responses can be acquired
through sequential connections of symbol response templates.
This study designed a Template Splicing-TRCA (TS-TRCA)
that builds all codeword response templates based on symbol
response templates. This method can adaptively modify the
coding set through a training dataset, resulting in lower costs
for the transfer training.

The response data for the n-th codeword in the base code
set was denoted as Xn ∈ R

Nc×Ns . Here, Nc is the number
of channels, Ns is the number of sampling points in each
trial. The filter bank analysis was introduced, decomposing the
data into multiple sub-bands to extract the SSVEP harmonic
components [23]. After applying m-th sub-band filter, X (m)

n

was obtained from Xn . X(m)
n was segmented by the symbol

length, then the segments of data were categorized according
to the symbol sequence in the corresponding word. The symbol
template Ū

(m)
e ∈ R

Nc×Nss of symbol e was obtained by
averaging multiple segments of response data. Here Nss is
the number of sampling points in each segment.

The k-th codeword in the augmented code set was denoted
as μk ∈ Z

L . Here, k indicates the codeword index, L is the
length of codeword. According to symbol sequence in code-
word μk , the corresponding symbol templates were spliced.
The codeword template of k-th codeword in the augmented
code set was defined as

R̄
(m)
k = [Ū (m)

μ1
Ū

(m)
μ2

· · · Ū
(m)
μL

] (6)

The process of calculating the ensemble spatial filter with
the response data of the base code set and the codeword
template data of the augmented code set is as follows:

Define

S(m)
k = R̄

(m)
k (R̄

(m)
k )T (7)

Fig. 11. Stimulation interface of Experiment D-Online.

All trials of response data in the base code set were

sorted into a concatenated matrix in columns �X (m) =
[X1(m)

1 · · · X Nt (m)
1 X1(m)

2 · · · X Nt (m)
2 · · · X1(m)

N · · · X Nt (m)
N ].

Here, m is the sub-band index. Each channel of data was
centered.

Define

Q(m) = �X (m)( �X (m))T (8)

Spatial filters for the k-th codeword in the augmented code
set was calculated as

w
(m)
k = argmax

w

wT S(m)
k w

wT Q(m)w
(9)

The ensemble spatial filter for all codewords was denoted
as W (m) = [w(m)

1 w
(m)
2 . . .w

(m)
K ]. Here, K is the number of

codewords in augmented code set.
As described in section III.B, the classification process of

the test data was conducted with the ensemble spatial filter
and codeword templates.

B. Experiments for Augmented Targets

To validate the feasibility of TS-TRCA, this study designed
Experiment D-Online for augmented targets. The experiments
in this group were carried out at the same time as the
experiment in section IV, and the two groups of experiments
were internally alternated with blocks.

1) Paradigm Design: According to Experiment A-Offline,
this experiment designed a system implementing 72 targets by
MSTDC. The length of codeword L = 5, and the duration of
symbol was also 0.5s. The stimulation interfaces are shown in
Fig. 11. A single codeword stimulus was set as a rectangular
area of 110 × 110 pixels, targets had a horizontal distance of
40 pixels and a vertical distance of 50 pixels between each
other.

Experiment D-Online and Experiment C-Online were hold
in a staggered way, and they shared a same experiment
procedure. All participants in Experiment C-Online also took
part in the Experiment D-Online.

The Experiment D-Online experiment contained two blocks,
and all 72 targets were prompted once in a random order,
so each block experiment contained 72 trials. At the beginning
of each trial, the cues target was selected by a red frame to
help the subject gazing at the target, and the cue time lasted
for 1 second. After the prompt is over, all targets start flashing
simultaneously, and the flashing time lasts for 2.5s. After
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Fig. 12. Online results of the 72-target system (a) accuracy (b) ITR.

the stimulus presentation was over, the system will process
and analyzed the subject’s EEG data. In the visual feedback
stage, the stimuli square of judgment result was rendered blue
and presented for 0.5s. The rest time between blocks was
2 minutes.

2) Data Acquisition and Analysis: In the Experiment
D-Online, data of Experiment C-Offline was used in the train-
ing stage. The data preprocessing is the same as described in
section III.B. The processed data was applied to the TS-TRCA
algorithm, and the spatial filters and personal templates of
72-target systems were trained for target recognition in online
experiments.

C. Experiment Results

1) Encoding Scheme: Generally, to increase the number of
codewords in a code set, it is often necessary to sacrifice the
distinguishability between different targets. Using the MSTDC
method can expand the code set by increasing the length of
the code, guaranteeing the distinguishability between the code
words. Each codeword in the code set contained 72 targets
used 5-bit symbol encoding. After adding one-bit symbol, the
minimum code distance of the 72-target code set maintained
the same level as the minimum code distance of the 40-target
code set. The average distance between codewords is further
increased by 23.4% (959.49→1184.13).

2) Online Experiments: According to the data of forty
target stimulus offline experiments, the TS-TRCA method
was used to construct classification templates of 72 tar-
gets. The results of the Experiment D-Online online exper-
iment are shown in Fig. 12. After using the TS-TRCA
method to build the classification template, twelve subjects
achieved average recognition accuracy of 86.23%±7.75%
and an average ITR of 95.68±14.19 bits/min in online
experiments.

From comparing Fig. 9 and Fig. 12, the recognition per-
formance of most subjects in the 72-targets system reduced
significantly. On the one hand, increasing the number of targets
leads to a decrease in the recognition probability. On the other
hand, because the personal templates were derived from the
symbol splicing of the offline data when the training data is
sufficient, there is still a slight gap between the performance
of TS-TRCA and the recognition performance of standard
TRCA. The impact of training data on TS-TRCA will be
further discussed in section VI.C.

VI. DISCUSSIONS

A. Length of Symbols

Some TSR may occur when the process of initiating stim-
uli [21] and the switch between symbols. While TSR are
evoked by user’s gaze shift between stimuli and have no
connection with code word. As a result, TSR are supposed
to be the interference component. Whereas, by extending the
duration of symbol stimulation, the negative influence of TSR
towards classification can be decreased.

Considering the classification performance, participants
show differences among suitability with symbol stimuli of dif-
ferent lengths. For some subjects, their TSR is longer, so their
VEPs reach the steady-state slowly because of the smearing
phenomenon. Their steady-state responses (SSR) components
are weaker; a long time is used for the accumulation of
adequate SSR energy. For those not good enough subjects,
longer symbols are essential for ensuring the higher accuracy
of every symbol.

It is worth mentioning that MSTDC enlarges the internal
distances of code set by prolonging the length of codewords
or adding redundancy. Consequently, the theoretical limit of its
ITR cannot be higher than the ITR of a single symbol. Apply-
ing MSTDC can increase the number of targets or accuracy,
but it cannot bring too much assistance for promoting ITR.

B. The Difference and the Correlation Between
Codeword Response and Hamming Distance

In the area of communication, hamming distance is usually
the primary evaluation index of codeword distance. It was
defined as the number of different characters between two
codewords in a same position. In the traditional communi-
cation system, larger the hamming distance, larger the distin-
guishability is. However, in the BCI system, hamming distance
is not the most favorable criteria of code word distinguisha-
bility. Because the human brain responses specifically towards
different stimulation; so selecting the hamming distance as
the estimation of distinguishability ignores the divergence
between symbol responses, which brings negative influence
on classification.

According to our definition of the codeword response dis-
tance, this definition takes both hamming distance and the
codeword divergence into consideration simultaneously. In this
study, symbols were defined as the responses evoked by stimuli
of different targets, and the symbol distance depends on the
discrepancy between symbol responses. MSTDC selects the
optimal code set by optimizing the arrangements of symbols,
which maximizes the divergence between codeword responses.
Future works may focus on designing specific code set for
different subjects by utilizing the individual dataset.

C. Performance Comparison Between TS-TRCA
and Standard TRCA

Many studies have tried various methods to reduce the
training cost of SSVEP-based BCI [24]. Thanks to the time
division coding method, MSTDC can significantly decrease
the length of training data. To be more specific, MSTDC
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TABLE IV
CLASSIFICATION ACCURACY OF ALL SUBJECTS IN TS-TRCA AND STANDARD TRCA (%)

Fig. 13. Comparison of TS-TRCA and standard TRCA based on different
number of training data (Experiment C-Offline dataset).

is an approach that encodes a large number of codewords
through the repeated combination of limited symbols. Taking
advantage of those finite symbols, experimental paradigms
based on MSTDC only need to collect few blocks of EEG
signals as the training dataset.

During the process of collecting Experiment C-Offline
dataset, we test the detection performance of TS-TRCA
and standard TRCA under the conditions that 1-4 blocks
of training data were used for cross-validation. The results
are presented in Table IV. It can be easily found that
TS-TRCA achieved higher accuracy (91.88%±4.8%) than
standard TRCA (72.73%±17.75%) when only one block of
training data was used (p-value = 0.0059, paired t-test).
Typically, S8 enhances its accuracy by almost 70%, probably
caused by the instability of a single block of training data.
After the template splicing strategy was introduced, the stabil-
ity of training data was improved because the average times of
symbol templates are much higher than codeword templates.
With the growth in the number of training data, the growth
rate of detection performance is more notable in standard
TRCA. When more than two blocks of training data were
implemented, the performance of standard TRCA was better
than TS-TRCA. It should be pointed out that the accuracy
acquired by TS-TRCA with one block training data has no
significance compared with standard TRCA under two-block
training data (p-value = 0.3609, paired T-test).

Each symbol in the training data appears 35-44 times in a
block (a single block contains 40 trials, and each trial contains
4 symbols), so only a few blocks need to obtain a stable
symbol response template. It can be seen from Fig. 13 that

the promotion of accuracy caused by the increasing number of
training blocks is not significant. In other words, the stability
of splicing templates satisfied the requirements with only a few
blocks, so MSTDC may play an essential role in reducing the
training costs of SSVEP-based BCI.

D. Compare With Previous High-Frequency
SSVEP-Based BCI Studies

Table V summarizes some of the recent studies on high-
frequency SSVEP-based BCI. As can be seen in the table, most
of the high-frequency SSVEP-based BCIs have few targets,
and the information transfer rate is relatively low. Among
them, the speller system reported in [14] achieves the highest
number of target, and the system reported in [26] gets the
highest ITR. But there are still some gaps in their performance
compared with the 40-target and 72-target systems constructed
in this study (72 targets vs 45 targets, 119.05 bits/min vs
87.2 bits/min). The comparison results show that substantial
progress has been made in the multi-target high-frequency
SSVEP-based BCI system constructed in this study, both in
terms of target number and information transfer rate.

E. Possible Problems

As a time-division coding scheme, the MSTDC method
usually needs to rely on high-precision clock synchronization
in practical applications. The low precision of the clock may
severely impact the detection efficiency of the paradigm,
especially the high-frequency stimulation paradigm. Therefore,
developing the stimulation paradigm composed of the MSTDC
method must ensure that the stimulus code has a relatively high
operating efficiency and low logic complexity.

In the authors’ experience, stimulation programs clocked
with frame intervals tend to achieve higher clock accuracy
than those developed based on timers. For example, in this
study, if it is necessary to generate a symbol target lasting 0.5s,
a better option is to generate a stimulus lasting 120 frames in
the stimulus code rather than set a stimulus to hold for 0.5s
through a timer. If the timing control is performed in units
of frames, the program mainly depends on the internal clock
of the display; while the timer is used as the timing control,
the program depends on the host clock. Although the display
clock is synchronized with the host clock in most cases, the
displayed stimulus may be “dropped” in the case of complex
interfaces. At this time, the stability of the stimulus program
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TABLE V
A COMPARISON OF HIGH-FREQUENCY SSVEP-BASED BCIS

TABLE VI
A COMPARISON BETWEEN THE RELATED WORKS

relying on the display clock will be significantly better than a
program for the host clock.

F. Relationship With Previous Studies

MFSC proposes a scheme of using different frequencies as
stimulus symbols and using time-division coding to achieve
multi-target stimulation [11]. Referring to this idea, this
study proposes code set optimization criteria and optimization
methods, and uses phase encoding to achieve 40-target and
72-target SSVEP-based BCI systems under the condition of
30Hz high-frequency stimulation. In addition to the above-
mentioned references, the MSTDC method proposed in this
study has been applied to the paradigm design of multi-target
training-free SSVEP-based BCI. The authors use the MSTDC
method to optimize the paradigm code set, implementing
a calibration-free SSVEP-based BCI system with 160 tar-
gets [27]. The experimental results show that under the SSVEP
paradigm of 160 candidate targets, the optimized code set
based on MSTDC also has good performance. A comparison
of relevant research contents is shown in Table VI.

VII. CONCLUSION & FUTURE WORKS

This study proposed MSTDC and an optimized encoding
strategy based on response templates. In detail, this study
achieved an SSVEP-based BCI containing forty targets, with
encoding symbols of four phases. The effectiveness of the
optimization strategy was validated through offline experi-
ments. In the online experiments of the forty targets sys-
tem, the encoding scheme based on the optimized strategy
acquired an average accuracy of 96.77%±2.47% and an

average ITR of 119.05±6.11 bits/min. Moreover, this study
also proposed TS-TRCA that corresponds to the system based
on MSTDC. In the offline analysis section, this study vali-
dated the feasibility of MSTDC and TS-TRCA in the multi-
targets SSVEP-based BCI, with less training data. Because
the symbol can be expanded into other areas. As a result,
by combining different kinds of symbols, MSTDC is hopefully
applied in other evoked BCI paradigms such as SSVEP; code
modulated visual evoked potentials (C-VEP); motion-related
visual evoked potential (M-VEP); P300; auditory steady-state
response (ASSR); etc.

In future work, the potential of MSTDC can be exploited
through expanding symbols, optimizing symbols or train-
ing optimization. First of all, symbols in MSTDC can be
extended to other evoked potentials (EP) or event-related
potentials (ERP) through combining different symbols with
building multi-targets SSVEP-based BCI. Furthermore, overall
ITR can be further enhanced by optimizing the length of
symbols or shortening the stimulation duration. Finally, the
training cost of this system can be reduced for better usability
of BCI systems.
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