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The Effects of a Virtual Reality Rehabilitation
Task on Elderly Subjects: An Experimental
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Abstract— Ageing populations are becoming a global
issue. Against this background, the assessment and treat-
ment of geriatric conditions have become increasingly
important. This study draws on the multisensory integration
of virtual reality (VR) devices in the field of rehabilitation to
assess brain function in young and old people. The study
is based on multimodal data generated by combining high
temporal resolution electroencephalogram (EEG) and sub-
jective scales and behavioural indicators reflecting motor
abilities. The phase locking value (PLV) was chosen as
an indicator of functional connectivity (FC), and six brain
regions, namely LPFC, RPFC, LOL, ROL, LMC and RMC,
were analysed. The results showed a significant difference
in the alpha band on comparing the resting and task states
in the younger group. A significant difference between the
two states in the alpha and beta bands was observed when
comparing task states in the younger and older groups.
Meanwhile, this study affirms that advancing age signifi-
cantly affects human locomotor performance and also has
a correlation with cognitive level. The study proposes a
novel accurate and valid assessment method that offers
new possibilities for assessing and rehabilitating geriatric
diseases. Thus, this method has the potential to contribute
to the field of rehabilitation medicine.

Index Terms— EEG, multimodal data, rehabilitation
assessment, virtual reality.

I. INTRODUCTION

THE ageing population is a universal phenomenon that
has profound implications for all aspects of human life.

According to the 2019 World Population Prospects report
released by the United Nations, the world’s population will
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enter an unprecedented stage of ageing owing to the combined
effects of declining global fertility and increasing average life
expectancy, while population growth will experience a general
slowdown in the next decade. Overall, it is expected that by
2050, the global proportion of people aged 65 years or above
will rise from 9% in 2019 to 16% [1]. According to statistical
data from China’s National Bureau of Statistics, by the end of
2021, China’s population will be composed of 20.56 million
people aged 65 and above, accounting for 14.2% of the coun-
try’s population [2]. As population ageing intensifies, medical
insurance systems for the elderly face serious challenges.
Of the 293 diseases covered by the Global Burden of Disease
(GBD), 92 (31.4%) are identified as age-related, including
a variety of infectious diseases, trauma-based diseases, non-
communicable chronic diseases (cardiovascular diseases, can-
cer, neurological diseases, etc.) and others [3]. Population
ageing has multiplied the number of elderly people suffer-
ing from related diseases, putting enormous pressure on the
state, society and families in various aspects such as medical
expenses and daily care. To reduce the multiple pressures
caused by an ageing population, more accurate methods and
tools are needed to assess diseases, provide help at different
stages of the diseases, reduce the prevalence of diseases and
mitigate the diseases as much as possible.

Nowadays, virtual reality (VR) is widely used in the field of
rehabilitation medicine, both in assessment and treatment [4].
The use of VR for the timely and accurate evaluation of
a subject’s condition allows for the phased adjustment of
rehabilitation training tasks, leading to better treatment out-
comes. The rehabilitation process is often long and arduous
for patients [5]. They need to make reasonable arrangements
in terms of time, while trained therapists are required to
assist them from the sidelines to achieve better rehabilita-
tion results. This puts an increased burden on both families
and society. Computer-based VR environments cannot only
respond to different scenarios of rehabilitation but also provide
timely feedback [6]. Saposnik et al. found that rehabilitation
training incorporating VR helps stroke patients regain arm
movement [7]. VR is a form of rehabilitation that is not only
of benefit to the body but also to brain function and cognitive
levels. Tan et al. found that the use of specific stimulus scenar-
ios enhances the effectiveness of memory training in rehabili-
tation [8]. Park et al. observed that VR-based cognitive-motor
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rehabilitation could improve cognitive function in older adults
better than traditional cognitive rehabilitation [9]. Riaz et al.
found that VR-based environmental enrichment could stabilise
cognitive function in patients [10]. The immersive interac-
tion that VR provides by creating a multisensory simulation
environment can improve patient focus, motivation and initia-
tive when undergoing rehabilitation training. Hence, training
outcomes tend to be better with immersive VR compared
with other interventions, and multi-sensory engagement may
be a potential reason for this [11]. Given the multisensory
integration of VR, the simultaneous involvement of multi-
ple brain regions in the study task, the ease of use and
the strong interactivity, VR technology was chosen for our
experimental design. With the increasing demand for specific
and personalised rehabilitation, more accurate appraisal tools
are needed. Therefore, combining VR technology with other
methods can allow better assessment and interpretation of
the physiological and psychological changes patients undergo
during rehabilitation.

Cognitive abilities can be classified into several specific
domains such as attention, memory, executive cognitive func-
tion, language and visuospatial ability, each of which declines
significantly with age [12]. The diminishing of sensori-
motor functions, such as coordination difficulties, reduced
motor speed and balance difficulties, also occurs widely with
age [13]. Existing assessment methods include both subjec-
tive assessment and objective measures. As a simple, easy-
to-understand and convenient method, scales are suitable for
individual and group diagnosis and facilitate the collection of
large amounts of data. They enable the quantitative measure-
ment of the subjective state of people, which would be difficult
to observe directly. Commonly used cognitive scales include
the Mini–Mental State Examination (MMSE), Montreal Cog-
nitive Assessment (MoCA) [14], the Trail Making Test (TMT)
and Wechsler Memory Scales (WMS). These methods of
appraisal using subjective scales are simple and quick, but
differences in education, cultural background, examiner’s skill
and experience in using the scales, the examination setting,
and the emotional and mental state of the subject can all have
an impact on the scores. Qualitative assessment is not possible
using scales only and is subject to subjective influences.

Objective measures are mainly based on various techniques
of brain imaging, such as positron emission tomography
(PET) [15]. This is an imaging technique that captures cerebral
blood flow activity by measuring perfusion emission and
uses radioactive material to identify abnormalities in organ
function. The method can be used to measure deeper parts
of the brain with high sensitivity and precise localisation,
but the imaging process is long, the required system is
expensive, and, although largely harmless, it is limited by
the dose of radioactive material and should not be used
frequently on the same subject. Functional magnetic resonance
imaging (fMRI) [16] and functional near-infrared spectroscopy
(fNIRS) [17] are both functional brain-imaging techniques
based on the principle that neural activity in the brain causes
local haemodynamic changes. fMRI assesses brain activity
by detecting changes in blood flow [18]. Compared with
PET, fMRI does not use radioactive substances, involves less

risk and can be used multiple times on the same subject
over a short period. fMRI delivers high spatial resolution but
low temporal resolution, mainly owing to the physiological
changes that accompany the neural activity [19]. It also has
the disadvantage of being expensive, noisy, bulky and not
easily mobile and is not suitable for patients with claustro-
phobia. fNIRS reflects brain activity by measuring changes
in oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HbR).
Its advantages include high spatial localisation, low cost and
portability. It is not noisy, it is non-invasive and not particularly
sensitive to the subject’s movements during the experiment.
It can be used across all kinds of populations, including infants
and bedridden patients. Due to the slow and delayed changes
in blood oxygen metabolic activity, the temporal resolution of
fNIRS is approximately 100 milliseconds.

Electroencephalogram (EEG) offers new possibilities for
evaluation as a non-invasive, easily accessible method provid-
ing high temporal resolution [20]. EEG measures the electrical
activity generated by the brain through electrodes placed on
the scalp and allows easy visualisation of brain activity in the
form of electrical signals, enabling the observer to visualise the
real brain activity behind human behaviour [21]. EEG is cost-
effective, easy to use, portable and non-invasive and suitable
for subjects of all ages. It is widely used in cognitive-related
neurological disorders such as dementia [22] and Parkinson’s
disease [23], as it directly reflects the electrical activity of the
central nervous system and offers a higher temporal resolution
than the other techniques mentioned previously. However, the
aforementioned methods, whether subjective or objective, only
derive results from a single source of data and do not allow
for a comprehensive multi-faceted appraisal. The treatment of
geriatric diseases is a long-term process, and more timely and
accurate assessment methods are needed to gain insights into
the patient’s current rehabilitation status to improve rehabili-
tation planning. The main challenge with current multimodal
data–based rehabilitation assessments arises in the collection
and analysis of data. Indicators that are more representative of
the condition to be assessed must be selected and integrated
to make the best use of their strengths.

This study uses VR to create immersive and interactive
virtual environments for the test subjects, drawing on the
multisensory integration of VR as much as possible, combined
with a Kinect device, to obtain behavioural data that allow a
visual representation of the subjects’ motor abilities. These
behavioural data are integrated with EEG data to obtain
objective measures. At the same time, this study also includes
the results of the scale used in the subjective appraisal.
The result is a combination of quantitative and qualitative,
objective and subjective data, aggregating information from
multiple sources to form multimodal data, thus providing a
comprehensive, accurate and valid evaluation method from a
variety of perspectives. Based on the results of the multimodal
data, it is hypothesised that cognitive levels decline with age,
as does motor ability, represented by behavioural indicators,
and that brain function is also affected by age. These findings
provide evidence for cognitive decline and offer a new method
of assessment. Using this assessment method, multiple data are
used to accurately assess the subjects’ current condition and
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TABLE I
SUBJECTS’ PERSONAL INFORMATION

can provide guidance for rehabilitation intervention strategies.
Through timely and accurate evaluation, we can make sugges-
tions for disease prevention, complement medical interventions
with technology during the disease phase, manage the con-
dition promptly, continuously monitor patients’ recovery and
assist with rehabilitation. At the same time, it allows for a new
way of designing rehabilitation products for the elderly.

II. MATERIALS AND METHODS

A. Participants

Forty volunteers were recruited from Shandong Univer-
sity in two age groups, 16 of whom were elderly (age:
60.31±7.021 years) and 24 of whom were young (age:
20.13±0.797 years). The subjects’ basic personal information
such as age, height and weight were recorded before the test,
and their cognitive abilities were quickly assessed using the
MoCA scale. Table I shows the subjects’ personal information.
The inclusion criteria included the following: (1) no trau-
matic brain injury, (2) not suffering from any neurological
disease, (3) no recent medications related to neurological
effects, (4) no visual impairment, (5) adequate sleep during the
week before the experiment, and (6) no motor impairment. The
results of the MoCA scale ranged from 16 to 30 points. A total
of 32 subjects were judged to be cognitively normal (scores
of 26 points and above), and 8 were abnormal (scores below
26 points), with the abnormalities occurring in the elderly
group. All experiments were conducted after receiving the
informed consent of the subjects. The experimental procedures
were authorised by the Human Ethics Committee of Shandong
University and met the ethical standards set out in the Helsinki
Declaration of 1975 (revised in 1983).

B. Experimental Equipment

EEG, VR and motion capture equipment were used in the
experiment.

ANT Neuro’s next-generation EEG/ERP recording and
analysis system, eego™ mylab, was used to acquire the EEG
data. The three products included in the system, namely wave-
guard™ original cap, the eego™ amplifier and the eego™
software, were all utilised. The waveguard™ original EEG
cap based on the five percent electrode system was used.
This electrode placement scheme is an extension of the 10/20
and 10/10 systems. Figure 1 shows the channel position of
EEG. After 32 channels of electrode caps were selected, data
acquisition was performed using the eego™ software, and the

Fig. 1. The channel position of EEG.

sampling frequency was 1000 Hz. The eego™ amplifier uses
active shielding technology to ensure signal quality during
the acquisition process. In previous studies, the ANT Neuro
range of products was applied to assess the correlation between
levels of vigilance [24] and to evaluate the correlation between
the effects of continuous theta-burst stimulation on motor
evoked potentials [25].

The Oculus Quest 2 was chosen as the VR device. The
Oculus Quest 2 is a wireless all-in-one VR device, weighing
503 g, with a built-in Android core, powered by the Qualcomm
Snapdragon XR2 platform and an integrated engine for visual
analytics. It has a monocular resolution of 1832 × 1920,
supports 60, 72 and 90 Hz refresh rates and enables controller-
free gesture tracking. The device supports a large number
of games and contains different categories. After testing,
we chose for our experimental task the game Beat Saber,
where the gamepad is used to cut through two coloured squares
with music and which requires large continuous movements of
the upper limbs. This game takes full advantage of the multi-
sensory engagement of VR to better assess and train subjects’
cognitive levels. On the visual side, subjects can see different-
coloured squares in the immersive environment, and by judg-
ing the colours, their cognitive skills can be trained. On the
auditory side, subjects can hear music, and the speed of the
game varies with the speed of the music. This stimulates the
brain, enhancing their attention and reflecting the differences
in cognitive levels more fully. In terms of movement, both
speed and the left and right hands corresponding to different
colours affected the subjects’ behaviour, helping to make a
better assessment and showing the effect of cognitive level
and age on behavioural ability.

Microsoft’s Kinect V2 that uses infrared light to track
multiple parts of the body in real-time was chosen as the
motion capture device. Kinect V2 supports up to 25 skeleton
nodes, and nodes numbered 1–11 and 20–24 were selected
for the analysis of upper-limb data. The data object type
was provided in the form of skeleton frames. Each frame
can hold up to the maximum number of supported bone
points.



QU et al.: EFFECTS OF A VR REHABILITATION TASK ON ELDERLY SUBJECTS: AN EXPERIMENTAL STUDY USING MULTIMODAL DATA 1687

C. Experimental Procedure

Before the experiment, each subject was shown a video
of the game to make sure they understood the rules and
were ready for the test. The subject was equipped with an
EEG acquisition device, and a conductive paste was injected
into the electrode cap to reduce impedance until all channels
were shown in green on the software page. After the subject
had relaxed in a chair and the researchers had ensured that
the subject’s upper limb movements were recognised by the
motion capture device, the experiment was begun.

The experiment was divided into two parts: the resting state
and the task state, with each lasting for 15 minutes.

The first 15 minutes were spent in the resting state, where
the subject was asked to remain still in the chair in a natural,
relaxed, non-sleeping state while EEG data were collected
through electrode caps. The surrounding environment was
kept quiet during the experiment. External disturbances were
kept to a minimum to minimise abnormal fluctuations in the
subject’s brain waves.

After 15 minutes, the subject was put in the task state, where
a VR device was added to the electrode cap and the Kinect
device was switched on to capture upper limb–movement data.
The subject was asked to play Beat Saber, a continuous VR
game, for 15 minutes. To ensure that the data collected was
not affected by other factors, the game was set to the same
music, at the highest difficulty level, with an automatic restart
mode in the event of failure. Figure 2 shows the experimental
procedure.

D. EEG Data Pre-Processing

The EEG signal is a random signal that varies over time
and has a small amplitude. It is highly susceptible to inter-
ference from other signals unrelated to brain activity, known
as artefacts. These mainly include oculogram artefacts, blink
artefacts, eye-movement artefacts, myoelectric artefacts, car-
diac artefacts, DC offsets and industrial frequency interference.
To remove these artefacts, a triple filtering and independent
component analysis (ICA) method was used. Before filtering,
channel localisation and a re-reference were carried out. The
re-referencing method considered the average reference, which
takes the average of all electrode potentials after the acquisi-
tion as the reference signal and is equivalent to artificially
constructing a zero potential point as the reference electrode.
A high-pass filter with a cut-off frequency of 1 Hz was
first chosen to eliminate baseline drift. To stop interference
from high-frequency signals such as myoelectric artefacts and
ensure that the fast waves in the EEG signal were not affected,
a low-pass filter with a cut-off frequency of 40 Hz was
selected for the second filtering. For the third filtering, a notch
filter at 49–51 Hz was used to remove industrial frequency
interference. ICA was then performed to eliminate artefacts
embedded in the data without removing the affected part of
the data. ICA separates the linear mixed signals generated
by multiple source signals into independent signals that are
uncorrelated and non-Gaussian, thus separating the n source
components from the EEG signal channels. As shown in (1),
ICA finds a component ‘unmixing’ matrix (W) that, when

Fig. 2. The experimental procedure.

multiplied by the original data (X), yields the matrix (U) of IC
time courses. In (2), the whole data (X) is the sum of the ICs
(Xi) [26]. Finally, the artefacts were identified and removed
with the help of the ADJUST algorithm, which is a completely
automatic method for the detection of artefacted ICs from
EEG data. For each feature contained in the detectors, the
threshold value was calculated using a fully automated image
processing thresholding algorithm based on the expectation-
maximisation (EM) technique [27]. Equation (3) captures
how the algorithm recognises eye movements. The above-
mentioned pre-processing operations were performed using



1688 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 3. All 32 channels of voltage activity.

Fig. 4. One of the channel voltage activities.

the open-source toolkit EEGLAB based on MATLAB (The
MathWorks, Inc, Natick, Massachusetts, USA) [28].

U = WX (1)

X =
∑

Xi where i = 1, 2, . . . n (2)

Maximum Epoch V ariance

= tr im_and_ max(< si (t)2 >ep − < si (t) >2
ep)i

tr im_and_mean(< si (t)2 >ep − < si (t) >2
ep)i

(3)

where trim_and_max(…)i indicates the maximum of the
trimmed vector of variance values over the epochs, and
trim_and_mean(…)i denotes the average across epochs
computed after the top 1% of the values have been
removed [27].

An item of data was selected, and multiple events were
inserted into it, with 80 seconds between events. The period
from the first 40 seconds to the last 40 seconds of each event
was taken as an epoch. These epochs were superimposed
and averaged. Nave indicates the number of epochs, and
Nave = 10 means that 10 epochs were involved in the
superimposing and averaging. The global field power is the
standard deviation of the electrical activity on all electrodes.
Figures 3, 4, and 5 visualise the electrical activity of the brain.

Fig. 5. Global field power for all channels.

E. Functional Connectivity

Based on the pre-processing of eighty pieces of EEG data,
the functional connectivity (FC) between six brain regions,
namely the left prefrontal cortex (LPFC), right prefrontal
cortex (RPFC), left motor cortex (LMC), right motor cortex
(RMC), left occipital lobe (LOL) and right occipital lobe
(ROL), was calculated using the MNE-Connectivity library in
Python [29].

The signal connectivity between channels was calculated
using the spectral_connectivity_epochs method. As shown
in (4), the phase locking value (PLV) was chosen as a
measure of connectivity. This method uses responses to a
repeated stimulus and looks for latencies at which the phase
difference between the signals varies little across trials (phase
locking) [30]. Fourier was chosen as the method for spectral
estimation. The sampling frequency was fixed at 1000 Hz.
The frequency bands of interest were alpha waves at 8–12 Hz
frequency range and beta waves at 12–40 Hz frequency range.
All 22 channels in the six brain regions were selected, and
by varying the indices parameter, inter-signal connectivity
was obtained for all channels between each of the six brain
regions. The final FC metric was obtained by averaging the
data between each of the six brain regions to get 15 values
in each frequency band, for a total of 30 values in the three
frequency bands.

PLV = |E[ Sxy

|Sxy| ]| (4)

E[ ] denotes the average over epochs. The connectivity
method is based on estimates of the cross- and power-spectral
densities (CSD/PSD) Sxy and Sxx, Syy [29].

F. Extraction of Kinect Data Metrics

Using Python to read the json file generated by the Kinect
device and obtain the corresponding points of the upper
limb, we calculated eight behavioural metrics: overall upper-
limb velocity, the standard deviation of upper-limb velocity,
median upper-limb velocity, overall upper-limb acceleration,
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TABLE II
MEANING OF BEHAVIOURAL INDICATORS

the standard deviation of overall upper-limb acceleration, the
left-arm mean angle of motion, discrete stability ratio and
continuous stability ratio. Table II explains the meaning of
behavioral indicators.

G. Statistical Analyses

For the FC, a one-way ANOVA test was performed on the
data from the task and resting states within the group, using
age as the basis for grouping, to explore the effect of state
on the FC of brain areas. An independent samples t-test was
performed on the younger and older groups within the group,
using the state as the basis for grouping, to investigate the
effect of age on the FC of brain regions. For the Kinect data
metrics, a one-way ANOVA test was used on the overall data
to analyse whether age has a significant effect on behaviour,
using eight behavioural indicators as dependent variables and
age group as a factor. Pearson correlation analyses were
conducted on behaviour, cognitive level, age and FC. The
statistical significance level (P) was set to 0.05 for all analyses.

III. RESULTS

A. Functional Connectivity Results

Independent samples t-tests were used to compare the task
states pertaining to the younger and older groups. In the
alpha band, the PLV values of brain regions LPFC–LMC
(F = 1.530, P = 0.040), LPFC–LOL (F = 0.031, P =
0.040), RPFC–RMC (F = 0.949, P = 0.037), LMC–RMC
(F = 0.934, P = 0.042), LMC–LOL (F = 6.698, P = 0.027)
and RMC–LOL (F = 1.091, P = 0.043) were significantly
higher in the elderly than those in the young. In the beta band,
the PLV values of brain regions LPFC–LMC (F = 1.043,
P = 0.028), LPFC–RMC (F = 1.153, P = 0.035), RPFC–
RMC (F = 1.445, P = 0.034) and RMC–ROL (F = 1.272,
P = 0.041) were significantly higher in the elderly than those
in the young.

In a one-way ANOVA test for resting and task states in the
younger group, the PLV values of brain regions LPFC–RPFC

Fig. 6. FC demonstration of 22 channels of one item of task state data.

(F = 4.705, P = 0.035), LPFC–RMC (F = 4.724, P = 0.035),
RPFC–LMC (F = 5.439, P = 0.024), RPFC–LOL (F = 4.447,
P = 0.040), RPFC–ROL (F = 5.991, P = 0.018), LMC–LOL
(F = 4.087, P = 0.049), LMC–ROL (F = 5.214, P = 0.027)
and RMC–ROL (F = 4.611, P = 0.037) were significantly
higher in the resting state than those in the task state in the
alpha band.

As shown in Figure 6, when the FC indicator, PLV,
is between 0 and 1, the closer the PLV is to 1, the closer
the two signals are to synchronisation and stronger the con-
nectivity is. Figure 7 shows the correlation of brain regions
in three conditions, (a) in the alpha band, comparison of task
states in the younger and older groups, (b) in the beta band,
comparison of task states in the younger and older groups, and
(c) in the alpha band, comparison of resting and task states in
the younger group.

B. Kinect Results

In terms of overall upper-limb velocity (F = 1.028,
P <0.001), median upper-limb velocity (F = 0.415, P <0.001)
and overall upper-limb acceleration (F = 2.731, P <0.001), the
younger group was significantly higher than the older group.
Figure 8 shows the results of the analysis of the behavioral
indicators.

C. Correlation Results

Overall upper-limb velocity (r = 0.353, P = 0.026), median
upper-limb velocity (r = 0.365, P = 0.021), and overall upper-
limb acceleration (r = 0.338, P = 0.033) were significantly
correlated with cognitive level. In the alpha band, the FC
in brain regions LPFC–LOL (r = 0.225, P = 0.045) and
LMC–LOL (r = 0.239, P = 0.033) were significantly cor-
related with age. A significant correlation was also observed
between functional connectivity and behavioural indicators.
In the alpha band, the FC of LPFC–LMC was significantly cor-
related with continuous stability ratio (r = 0.326, P = 0.040),
and the FC of RPFC–RMC was significantly correlated with
the standard deviation of overall-upper limb acceleration
(r = 0.318, P = 0.046).
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Fig. 7. Correlation between brain regions reflected by PLV indicators.

IV. DISCUSSION

This study assessed the effects of age on brain function
in terms of brain FC, cognitive level and behavioural per-
formance. The prefrontal cortex is closely associated with
higher cognitive functions in humans [31]. In concert with
other brain structures, the prefrontal cortex plays an important
role in attention, perception, motivation, planning, sustained
behaviour, working memory, language, control of interference
and executive functions [32]. The area of the cerebral cortex
associated with the emergence of movement is known as the
motor area, and the stimulation of this area causes muscle
movement in various parts of the body. The occipital lobe is
the most dominant visual cortex, and damage to the occipital
lobe results in not only visual impairment but also symptoms
such as memory deficit and motor perception impairment.
FC measures reveal statistical dependencies between the activ-
ity patterns of anatomically separated brain regions and are
often used to assess the functional relationships between brain
regions [33]. In this study, PLV was chosen as an indicator of
FC [34], with the former reflecting the overall convergence of
the phase difference between two real signals.

Fig. 8. Comparison of data on behavioural indicators between the elderly
and the young groups.

The results of the brain FC between the young and elderly
groups for the task state showed that in the alpha band, the
PLV values between the six brain regions were significantly
higher in the elderly group than those in the young group.
In the beta band, four groups of inter-brain interval PLV values
were significantly higher in the older group than those in the
younger group. We suggest that this change in FC may be
due to ageing and also correlates with cognitive level. When
a person engages in a conscious visual activity or intense
thinking exercise, the alpha rhythm decreases, and there is
a corresponding increase in high-frequency, low-amplitude
beta waves. Ageing affects many aspects of brain structure
and function and is associated with cognitive decline [35].
The brain age gap is a better predictor of cognitive decline
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in subjects than their actual age [36]. Previous studies have
shown that cognitive decline with age is evidenced by a
significant increase in theta and alpha1 bandwidths, an increase
in the theta-beta differential [37], and an increase in relative
theta power in the posterior quadrant [38]. Neurological mea-
sures of quantitative electroencephalogram (QEEG) have been
found to be a sensitive indicator of the degree of cognitive
impairment, with previous research showing that cognitive
decline is reflected in increased absolute and relative power in
the theta band and increased power in the delta band during the
later stages of deterioration [39]. Claus et al. found that higher
theta values in the frontocentral and parieto-occipital regions
were significantly associated with a decline in the overall
cognitive function [40]. Koyama et al. observed significantly
higher relative beta power in older subjects [41]. Many of
the brain’s higher cognitive functions rely on the synergy
between different brain regions rather than being reliant on
just a specific brain region. FC is commonly used as a
measure of brain function. Previous research has shown that
subjects with age-related frailty exhibit reduced FC between
posterior regions of the parietal cortex [34]. Zhao et al. found
differences in the strength of dynamic FC in the left anterior
wedge, default mode network and dorsal attentional network
between normal controls, amnestic mild cognitive impairment
(aMCI) patients and Alzheimer’s disease (AD) patients [42].
Chen et al. identified that dynamic FC in individuals with
subjective cognitive decline showed a significant correlation
with cognitive performance [43]. The EEG signal is a highly
stochastic physiological signal with a wide variety of rhythms,
and a variety of different emotions and states of mind can
affect the changes in brain waves. As with others, our results
reflect the influence of age and cognitive level on brain
function, but the subtle differences in the significance of the
various frequency bands and brain regions demonstrated may
be influenced by the experiment, the imaging technique and
the FC metrics selected.

The results of FC in the resting and task states of the
young group showed that the PLV values between the eight
brain regions were significantly higher in the resting state
than those in the task state in the alpha band. We suggest
that this difference in FC between the resting and task states
is due to VR incorporation and limb movements. In this
study, VR was used for the experiment, and a game was
chosen that could reflect the cognitive level of the subjects
to a certain extent, aided by the acquisition of other data
such as behavioural data. VR is widely used in the field of
rehabilitation, and in addition to multi-sensory stimulation, the
computer programme can be set up in such a way that the
subject’s condition can be acquired in time and the difficulty
of the training and the training programme can be adjusted
accordingly, bringing about better rehabilitation outcomes.
Scenes in VR cause different stimulations of brain electrical
activity in humans [8]. The study shows that the FC between
the core cortex of the mirror neuron system and the senso-
rimotor cortex is significantly enhanced in the first-person
view of VR scenes [44]. Alpha waves, with a frequency of
8–12 Hz, represent the predominant waveform in adults in
the quiet, closed-eye state and are associated with human

attention, emotion, cognition and awareness. Alpha waves are
most pronounced in the parietal and occipital regions, and are
suppressed in the presence of external stimuli. Since the resting
state was followed by a short rest period of a few minutes
only before the task state was initiated, the subjects may have
experienced fatigue, thus affecting EEG activity.

In the analysis of the EEG data, besides the significant
differences presented previously, we found that the results of
FC showed very significant individual variability within the
same group. Furthermore, in the beta band, the mean FC values
for the region LPFC–RPFC as well as LMC–ROL were lower
in the older group than those in the younger group, although
this difference was not significant.

Behavioural data from the younger and elderly groups
showed that the younger group scored significantly higher
than the elderly group in overall upper-limb velocity, median
upper-limb velocity and overall upper-limb acceleration. There
is a widespread decrease in sensorimotor function with age.
A weakening of cognitive abilities can also lead to a reduction
in motor ability [45]. We believe that this may account
for the obtaining of this result. Pearson correlation analyses
showed significant correlations between FC, motor ability,
cognitive level and age, validating the multimodal approach
to combining data.

The current study has several limitations. The population
included in this study was selected based only on age and
cognitive differences and generally represented a relatively
healthy group of people. Regarding EEG data pre-processing,
the strong subjectivity of identifying artefacts might have had
some impact on the results.

V. CONCLUSION

In this study, the subjects’ brain signals in the resting and
task states were monitored using EEG, and VR was utilised
for the experimental design. Drawing on the multimodal data,
brain function was assessed more fully from multiple perspec-
tives, including subjective and objective. The results show that
VR stimulation of the brain leads to changes in FC. When
comparing the younger and elderly groups, it was found that
a significant decline in sensorimotor ability along with ageing
and declining cognitive levels leads to changes in functional
brain connectivity. These findings contribute to a new and
valid assessment method that could be useful in the field of
rehabilitation medicine. The multimodal data–based rehabil-
itation assessment method proposed in this paper combines
measures of VR, behavioural indicators, subjective scales and
EEG activity, fully combining their strengths. The use of data
from multiple sources allows for a more accurate identification
of a patient’s condition and facilitates timely adjustment of
rehabilitation training programmes, which offer assistance in
the field of rehabilitation medicine.

In future research schemes, based on the consideration of
the application of this method in rehabilitation medicine, the
selection of subjects could be expanded to include those with
neurological disorders such as AD and stroke. Meanwhile,
other signal processing methods to improve data accuracy
could be used, such as canonical correlation analysis and
short-time Fourier transform.
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