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Abstract— In this study, we propose a graph sequence
neural network (GSNN) to accurately decode patterns of
motor imagery from electroencephalograms (EEGs) in the
presence of distractions. GSNN aims to build subgraphs
by exploiting biological topologies among brain regions to
capture local and global relationships across characteristic
channels. Specifically, we model the similarity between
pairwise EEG channels by the adjacency matrix of the
graph sequence neural network. In addition, we propose
a node domain attention selection network in which the
connection and sparsity of the adjacency matrix can be
adjusted dynamically according to the EEG signals acquired
from different subjects.Extensive experiments on the public
Berlin-distraction dataset show that in most experimental
settings, our model performs considerably better than the
state-of-the-artmodels. Moreover,comparative experiments
indicate that our proposed node domain attention selection
network plays a crucial role in improving the sensibility and
adaptability of the GSNN model. The results show that the
GSNN algorithm obtained superior classification accuracy
(The average value of Recall, Precision, and F-score were
80.44%, 81.07% and 80.54%) compared to the state-of-the-
art models. Finally, in the process of extracting the inter-
mediate results, the relationships between important brain
regions and channels were revealed to different influences
in distraction themes.
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I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is an important
way for the decoding of brain signals that reflect the

dynamic activity of neurons originating in the central nervous
system and respond quickly to different brain states [1]. Motor
imagery (MI) is a commonly used noninvasive brain–computer
interface (BCI) paradigm [2], [3]. When a person imagines
or mentally rehearses body movements, the corresponding MI
response is evoked in the brain, and a large number of neuronal
activities occur in the motor cortex [4]. People with disabil-
ities can control auxiliary robots [5], [6] or wheelchairs [7]
and perform daily activities by implementing MI-based BCI
system, which has been shown to contribute to stroke rehabil-
itation [3], [8], [9]. However, recent studies found that the
performance of the MI-based BCI system depends heavily
on the behaviors of subjects, such as the case of performing
kinesthetic MI as visual MI. Precisely, the expected EEG
response for kinesthetic MI requires participants to focus on
imagining motion feedback, not just imagining the picture of
the action [10]. According to Friedrichetal et al. [11], passive
auditory distraction improves the subjects’ performance in
MI. By contrast, Alvarsson et al. proposed that both positive
and negative auditory interferences can lead to the extension
of imagery time, and found that there is a slight difference
between positive distraction and negative distraction, thus indi-
cating that different forms of auditory interferences (natural
and noisy environments) have different effects on individual
well-beings and arousal levels [12]. Studies have examined
the differences in brain activation patterns when eyes were
open and closed by considering the effects of distraction
themes. Even if these studies were conducted under the same
conditions, different brain activation patterns could be found
in both cases [13]. In the open state of eyes, an increase in the
level of awakening and increased eye movements are observed
when the attention load increases [14]. Compared with the
closed state, the “external sensory” network in the open state,
including the attention, eye movement, and arousal systems,
are more activated. In contrast, the “endosensory” network,
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including the visual, auditory, and sensory systems, along with
some default mode networks, is more active when eyes are
closed than when eyes are open [15]. Therefore, subject to the
influence of different distraction paradigms, accurate decoding
of MI-associated EEG patterns becomes highly challenging,
and thus require more sophisticated algorithms that are robust
to noise disturbances caused by distraction [16].

So far, many traditional machine learning algorithms have
been used for MI EEG classification, such as linear discrimi-
nant analysis (LDA), random forest (RF), and support vector
machine (SVM). However, owing to the low signal-to-noise
ratio (SNR) values of the EEG signals, the original EEG data
are usually contaminated by noise. Therefore, the distribution
of the original EEG samples is chaotic. In particular, this
situation is more evident in the case of the MI task in the
presence of distraction. To solve this problem, numerous
research efforts have been devoted to the development of
feature extraction methods to uncover MI-driven EEG features
before classification. Common spatial pattern (CSP) [3] is a
popular feature extraction method for MI BCI tasks. In the
past decade, many CSP variants have been proposed to opti-
mize EEG features for improved MI decoding. For exam-
ple, Ang et al. [5] proposed the filter bank common space
pattern (FBCSP), which uses bandpass filters and the CSP
algorithm to extract optimal spatial features, while maintaining
high-subject sensitivity. Inspired by the idea of multisubband
input, Jing et al. [17] proposed the Correlation-based channel
selection CSP (CCS-CSP) method, to select the channels
that contained more correlated information in the MI tasks.
However, this algorithm depends on frequency band selection
and time window selection, which can not extract the ideal
spatial features from the feature space lack diversity [18], [19].
Although these approaches showed strengths in improving MI
decoding, all of them have been studied under a distraction-
free experimental paradigm, wherein the SNR of the EEG
was guaranteed by the full engagement of subjects. However,
in natural and complex environments with various distractions,
use of these traditional algorithms for EEG-based MI decoding
may face the following challenges:

1. Given that subjects are affected differently by the same
independent distraction theme, the EEG signals of different
subjects vary greatly, which hinders the generality of classifiers
in specific distraction themes.

2. The topological structure of EEG channels may not be
effectively utilized to learn specific EEG representations.

3. Participants may not always produce the expected
imagery under certain distraction themes [20]. Consequently,
the distribution of the original EEG in the collected data may
be noisy, thus making it impossible to extract valid features.

To overcome these problems, researchers have proposed
many end-to-end MI EEG decoding methods based on deep
learning techniques. For example, Li et al. [21] proposed
an end-to-end framework called channel projection mixed
scale convolution neural network (CPMixedNet) to improve
the performance of MI EEG decoding. Long- and short-term
memory (LSTM) model is suitable for time series feature
learning, although it ignores spatial information that is impor-
tant for neural pattern decoding [22]. Wang et al. [23] pro-
posed long- and short-term memory based EEG classification

(Em-LSTM) to solve the problem of gradient disappearance
or gradient explosion in the training process of convolution
neural networks. Generally, the method based on deep learn-
ing can achieve better performance than traditional methods
because of the advantages provided by learning and embedding
of feature separation and classification in a single network.
However, existing EEG coding methods based on deep learn-
ing do not consider the graph structure of EEG signals. Based
on the research of graph theory, there are some related work to
analyze brain signals, including topological structures informa-
tion in cognitive tasks and rehabilitation engineering [24], [25].
The spectral method based on the redefinition of the Fourier
convolution operation on the graph can effectively extract
feature information. Kipf et al. [26] proposed a hierarchical
propagation rule, which uses the Chebyshev expansion method
to simplify the approximation of the graph Laplacian [27].
The graphical attention network [28] may be used to calculate
the representation of nodes in an entire community based on
the attention mechanism [29]. Wu et al. proposed a active
framework named Simplifying Graph Convolutional Networks
(SGC) [30]. These methods improve the performance of graph-
related tasks, while ignoring the some characteristics of low
frequency in graph structures [31]. Nevertheless, none of these
studies can ensure that the found input features can be recon-
structed reasonably in the MI research, that is, the provided
important input features are guaranteed to ensure realization of
MI task in the presence of distraction. Conclusively, the pre-
vious graph convolutional networks unable to adapt to the MI
task well and can not have good generalization ability. In this
work, we aim to reconstruct features and interpret distracted
MI pattern from the channel standpoint. Simultaneously, the
fact that the subjects behave differently from each other is
rooted in individual differences in brain connectivity [32]. The
domain-invariant feature learning method may be used to align
the features of the source and target domains to the com-
mon feature space. This alignment can be achieved by min-
imizing bifurcation [33] or maximizing reconstruction [34],
or by adversarial training [35]. The node-wise domain adap-
tation (NodeDAT) regularizer proposed by Miao et al. [36]
extends domain adversarial training into graph neural net-
works. By minimizing the difference between the features
in the source and target domains of each node, NodeDAT
achieves finer-grained regularization. In this study, we propose
a novel graph sequence neural network adapted a nodal
domain attention selection network for the MI task subject
to the influences of various distractions. With nodal domain
confrontation training, our proposed model achieves a stronger
generalization ability and can effectively solve the problems
of BCI blindness and poor goal realization of MI subjects. The
primary contributions of this study are as follows:

1. A preprocessing regularization map algorithm is pro-
posed, which is suitable for preprocessing EEG signals in
the presence of distraction and improves the robustness of the
model against noisy data.

2. A gated graph convolutional network is proposed for
task related EEG decoding, which can effectively capture the
essential patterns of MI subjects in distraction and decode
brain regions and interchannel structures in motor imagery
tasks.
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Fig. 1. Sequence of task paradigms. The participants performed left- and right-hand motor imagery tasks to the influences of different secondary
distraction themes (none, clean, eye closure, flicker, news, and number).

Fig. 2. Schematic showing the working principle of channel-to-graph processing conversion. (a). Baseline correction and bandpass filtering
processing of the original signal. (b) Extraction of node features in wavelet domain. (c) Construction of a feature map framework.

3. A node domain adversarial training method for different
independent distraction themes is proposed to improve the
self adaptability and classification accuracy of graph sequence
neural network (GSNN).

On Berlin Institute of Technology public datasets, our
proposed model was validated with extensive experiments
in comparison with benchmark models. The remainder of
this paper is organized as follows. In section 2, we intro-
duce the datasets and the baseline methods commonly used
for graph representation learning and our designed GSNN
network. Section 3 presents the experimental results of the
GSNN. Section 4 discusses some detail analysis and potential
applications.

II. MATERIALS AND METHODS

A. Dataset

A public dataset collected by the Technical University of
Berlin from 16 healthy subjects between the ages of 24 and
28 was used for our study [37]. These participants were
assigned to exercise imagery experiments in the presence of
different independent distraction themes. For each subject, the
main experiment was divided into seven runs for 10 min, and
72 secondary experiments were run each time; one experiment

trial lasted 4.5 s (as shown in Fig. 1). The participants were
asked to choose a tactile hand movement subject to the
influence of six secondary tasks (clean, eye-closed, news,
numbers, flicker, stimulation). There are several MI strategies
for participants to choose from. For example, squeezing a
soft ball, turning on the faucet, playing the piano, and using
a saltshaker. The experiment used the Fast EasyCap (Easy-
CapGmbH) system, which consisted of 63 wet Ag/AgCl
electrodes placed in a symmetrical position according to the
International 10-20 system [38], with reference to the nose.
Moreover, two 32-channel amplifiers were used to amplify
the signal at a sampling rate of 100 Hz. The original EEG
signal of the subjects was recorded in detail in the dataset
and was applied to the main task tag of each subject to
record whether the task was left-handed or right-handed. This
study was conducted according to the declaration of Helsinki
and was approved by the Ethics Committee of the Charite-
Universitätsmedizin Berlin (approval number: EA4/012/12).

To cross-compare outcomes with other models, we adopted
the same preprocessing method as the original dataset, sam-
pled the EEG data at 100 Hz (as shown in Fig. 2 (a)),
calculated the Laplace filter of C3 and C4, and used the fifth-
order Butterworth filter to filter the data in the range of 9-13
and 18-26 Hz [37].
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Fig. 3. Architectural design of the proposed graph sequence neural
network (GSNN). The structure is a shrinking form, that is, the GSNN
network inputs 63 × 128 node attribute features, and 63 × 63 node
connection features. Finally, GSNN network outputs a class label through
softmax to evaluate the model.

B. Overall Structure of Framework

In this study, we propose a novel framework, known as
the graph sequence neural network (GSNN), which adapts
the graph convolution network with self-attention mechanism
and node domain adversarial, to predict the downstream task
results of MI in the presence of distractions. The overall
structure of our proposed framework is illustrated in Fig. 3.
Specifically, the framework consists of three modules:

1. Graph reconstruction module for establishing a brain
channel based graph (cf. Section II-C).

2. Gated graph convolutional network module for task-
related EEG decoding which captures the essential patterns
of MI subjects in distraction (cf. Section II-D).

3. Node domain adversarial training method for improving
the classification accuracy in each task which provides the
self adaptability of GSNN from a brain channel perspective
(cf. Section II-E).

C. Graph Reconstruction

We use the notch filter to filter power frequency interfer-
ence [38], and use wavelet entropy reconstruction as the node
attribute feature. (as shown in Fig. 2) The dynamic distance
ratio is reconstructed as the node connection parameter to
construct the adjacency matrix of the edge connection.

1) Node Attribute Characteristics:
We reconstruct the signal based on the time-domain

sequence signal after preprocessing. According to
Rosso et al. [39], wavelet entropy can measure the degree
of order and disorder of the signal and provide potential
dynamic process information related to the signal. It selects
the appropriate wavelet basis based on the wavelet transform
with multiple scales and directions and expands the original
signal at different scales [22]. Therefore, we used wavelet
entropy reconstruction in each channel as the nodal attribute
feature of the EEG channel. The relative wavelet energy of
j th signal at each scale is defined as follows:

phj = Eh

Etotal
=

�Lh
k=1 |Ch(k)|2

�
h
�Lh

k=1 |Ch(k)|2
(1)

where Ch(k) is the decomposition coefficient of each scale h,
Lh denotes the number of coefficients at each decomposition
scale, Eh is the wavelet energy, and Etotal is the total energy.
The wavelet entropy is calculated by the following formula:

X j = −phjlog(phj ) (2)

where X j ∈ R
1×128 is one of the element of X ∈ R

N×F ,
which is the input features of the graph with 63 nodes and
128-dimensional features of wavelet entropy (as shown in
Fig. 2 (b)). Additional details are provided in [22].

2) Node Topology Reconfiguration: The topological struc-
ture of EEG channels is necessary for graphic representation
learning. The adjacency matrix A represents the topological
pattern, where f represents the number of channels in EEG
signals. The weight between channels m and n is indicated by
each learnable entry Amn . According to Salvador et al. [20],
the strength of connections between brain regions attenuates
as an inverse square function of physical distance. Therefore,
we initialized the relationship between local channels in the
adjacency matrix as follows,

Amn = min(1,
δ

q2
mn

), (3)

where δ > 0 denotes a calibration constant, qmn , m, n =
1, 2, . . . , f , denotes the physical distance between channels
m and n, which is computed from their three-dimensional
coordinates obtained from the data sheet of the recording
device. Achard et al. [40] observed that sparse functional
magnetic resonance imaging networks (˜20% of all possible
connections) can typically maximize the efficiency of network
topology. Therefore, Setting δ to 5 implies that ˜20% of the
entries in A are non-negligible. Finally, to reduce overfitting,
we set Amn as a symmetric matrix.
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D. Gated Graph Convolutional Network

1) Graph Filter Neural Network: We consider a graph G =
(X ,A), where X denotes a set of nodes and A denotes a
set of edges between nodes in X . If the graph convolution
network (GCN) formula [26] is used, the form of score
G ∈ R

N×1 is as follows.

G = σ(D̃−
1
2 AD̃−

1
2 X�at t) (4)

where σ is the activation function (e.g. sigmoid), A ∈
R

N×N is the adjacency matrix with self-connections,which
can represented the edge set A. D̃ ∈ R

N×N is the degree
matrix of A after renormalization trick, X ∈ R

N×F is the
input features of the graph with N nodes and F-dimensional
features, which can represent data on X . �at t ∈ R

F×1 is
the only parameter of the convolution-layer. In general, GCNs
learn a feature transformation function for X and produces
the output G ∈ R

N×F � , where F � denotes the output feature
dimension. However, when the noise is so large that GCN
cannot be reduced by the first-order low-pass filter, it has a
risk of overfitting to the noise. In particular, the inner weight
�at t1 and A may be trained using high noisy features.

According to Hoang et al. [31], graph filter neural net-
work (gfNN) is a faster structure compared with GCN after
the correction of the convolution layer, which is more suitable
for the filtering of noisy signals. The form of multilayer
(two-layer) perceptrons is as follows,

Gg f N N = hMLP(X |�at t1,�at t2)

= σ2(σ1(H�at t1)�at t2) (5)

where σ1 is the entry-wise rectifier linear unit function, and
σ2 is the softmax function. Note that both σ1 and σ2 are
contraction maps. By using the graph convolution kernel,
H = D̃− 1

2 AD̃− 1
2 X .

2) Self-Attention Pooling: Pooling layer enables the gfNN
model to lessen the number of parameters by reducing the
scale of representation, thus avoiding overfitting. According
to Zhang et al. [41], SortPool sorts the embedding of nodes
and feeds the sorted embedding to the next layer. Conversely,
Ying et al. [42] proposed DiffPool, which is a hierarchical
graph pooling method for end-to-end learning of allocation
matrices.

Inspired by these studies, self-attention pooling is divided in
two parts: global and hierarchical pooling methods [43]. The
global pooling method considers the graphic function and uses
neural networks to aggregate all representations of nodes in
each layer. Diagrams with different structures can be processed
because the global pool method collects all representations.
The hierarchical pooling method is used to construct a model
with node assignments based on features or topologies that
can be learnt in each layer. P(l) ∈ R

Nl×Nl+1 contains the
probability values of nodes in layer l, which is assigned to
clusters in the next layer l+1. A denotes an assignment matrix
which updates in layer l + 1 based on P(l). Nl denotes the
number of nodes in layer l. Specifically, the form of assigned
nodes is as follows:

P(l) = Gl
g f N N (A(l), X (l)) (6)

A(l+1) = P(l)�A(l) P(l) (7)

Top [k N] nodes are selected based on the value of Gg f N N . The
pool ratio k ∈ (0, 1] is a super parameter used to determine the
number of nodes to be retained. The select score is calculated
as follows

idx = top − rank(G, [k N]), Gmask = Gidx (8)

where idx is an indexing operation and Gmask is the feature
attention mask. The listing top-rank is the function that returns
the indices of the top [k N] values. The select module form is
as follows

Xmask = X idx

Com-pool(Xout) = Xmask � Gmask

Com-pool(Aout) = Aidx,idx (9)

where Xidx is the nodes matrix by node-wise indexing.
For node pooling, indexed nodes are embeded into graph
convolution mask in the sparse space. Aidx,idx is adjacency
matrix which is pooled by row-wise and col-wise indexing.
Finally, where X denotes the node feature matrix. The output
probability of class Yi can be computed based on passing each
feature matrix Xi into model.The form is as follows

p(Yi |Xi , θ) = softmaxYi (Com-pool(σ (Gi ))�
O
att) (10)

where Com-pool denotes the combined pooling across all
nodes on the graph, Yi ∈ {0, 1, . . . , L − 1} denotes the
label class index, L denotes the number of classes, and
�O

att ∈ R
F �×L denotes the output weight matrix.

E. Node Domain Adversarial Training

When participants conduct the main task of prompting,
owing to the influence of distraction, they may not always
produce the expected MI, which may have a negative impact
on the performance of the model [38]. Inspired by the node-
wise domain distributed learning method (NodeDAT) [36], it is
possible to learn the distribution of classes, which can solve the
influence of different subjects to a certain extent. Specifically,
the model converts each training label Yi ∈ {0, 1, . . . , L − 1}
into a prior probability distribution of all classes Ŷi ∈ R

L ,
where Ŷi L denotes the probability of class L in Ŷi . We have
migrated this method to make it suitable for the task of motor
imagery under distraction. Label has two classes: left and right
class indices 0, 1,respectively. We convert Y as follows

Ŷi =
⎧⎨
⎩

(1−�

2
,
�

2
), Yi = 0

(
�

2
, 1−�

2
), Yi = 1

(11)

Subsequently, the model establishes two domains, which are
labeled as source/training data X O ∈ R

B×N×F (in this sub-
section, we denote X by X O for better clarity) and unlabelled
target/testing data X E ∈ R

B×N×F , where in practice X E

can be either oversampled or downsampled to have the same
number of samples as X O [9], B denotes the number of
training samples. The domain classifier aims to minimize the
sum of the two binary cross-entropy losses,

�D = −
B�

i=1

N�
j=1

(log(p j (0|X O
i , θD))+ log(p j (1|X E

i , θD))),

(12)
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where 0 and 1 denote source and target domains respectively,
θD denotes the parameters of the domain classifier. Intuitively,
the domain classifier learns to classify source data as 0 and
target data as 1. O is the labelled target, E is the unlabelled
target. p j is the domain probability of the j th node calculated
by Eq.(5). To make the domain classifier less sensitive to
noise input in the early stage of the training process. Zhong
et al. implemented gradient reversal layer (GRL) in domain
training. With the training, the scaling factor β gradually
increases from 0 to 1, thus further scaling the inverse gradient.
Additional details are provided in [36].

F. Dynamics of GSNN

The characteristics of the reconstructed EEG data from pre-
processing regularization map algorithm are used to train the
GSNN network (as shown in Fig. 2 (c)). Firstly, gfNN realizes
the denoising of node features in a high-dimensional space.
After 63-dimensional gfNN convolution, the self-attention
parameter G of node selection is obtained. According to
the node selection method [44], even when inputting graphs
of different sizes and structures, part of the nodes of the
input graph are retained. Therefore, we used self-attention
pooling structures to preserve graphic features and topologies.
Respectively, the global pooling and hierarchical merging were
executed. The label output of the sparse node domain was used
as the input of nodeDAT. That is, the source domain label and
the target domain label are separated as much as possible in the
node domain classifier. Graph convolutional feature extractor
is combined with a domain classifier for adversarial training
(using gradient reversal layer (GRL)). Finally, the model fuses
the testing data features to achieve generalization of feature
extraction. Through the regularization of the smooth node
label, the embedding is conducted by using 63 nodes, and
the subsequent round is executed after supervised evaluation
(as shown in Fig. 3). The optimization of the model is deter-
mined by the following loss function, including graph network
and nodeDAT.

�� =
B�

i=1

KL(p(Y|Xi , θ), Ŷi )+ α�A�1, (13)

where θ denotes the model parameters that need to be opti-
mized, and α denotes the weight of L1 sparse regulariza-
tion for adjacency matrix A. p(Y|Xi , θ) denotes the output
probability distribution computed via Eq.(10). By combining
both NodeDAT and graph sequence network, the overall loss
function ��� of GSNN is as follows,

��� = ��+�D . (14)

The detailed algorithm for training GSNN is presented in
Algorithm.1. The entire neural network is fine-tuned after
GSNN training.

III. EXPERIMENTAL RESULTS

A. Experiment Protocols

According to Glorot et al. [45], even if the evaluation is
conducted on the same database, different evaluation schemes

Algorithm 1 The Training Process of Graph Sequence Neural
Network (GSNN )

Input: Number of epochs E , training samples X and Ŷ,
learning rate η, batch size B , unlabelled testing samples
X E , other super-parameters;

Output: The parameters in learned GSNN model;
1: Randomly initialize parameters in GSNN model;
2: Initialize adjacency matrix A based on Eq.(3);
3: for i = 1: T do
4: repeat
5: Select training samples X B and ŶB in one batch

from X and Ŷ
6: Select testing samples X E

B in one batch from X E ;
7: Compute degree matrix D based on Eq.(4)
8: Compute normalized adjacency matrix A based on

Eq.(7);
9: Compute output representation G based on Eq.(5);

10: Select top-nodes to represent the graph sparsely G
based on Eq.(9);

11: Use X B and ŶB to compute KL loss �� based on
Eq.(13);

12: Use X E and X E
B to compute domain loss �D

based on Eq.(12);
13: Compute gradient reversal layer scaling factor β;
14: Update �D

att ← �D
att − η ∂�D

∂�D
att

;

15: Update �O
att ← �O

att − η ∂��
∂�O

att
;

16: Update �at t ← �at t − η( ∂��
∂�att
− β ∂�D

∂�att
);

17: Update A← A − η( ∂��
∂ A − β ∂�D

∂ A );
18: until all samples in X have been drawn;

can lead to significant differences in results. Generally, the
influence of verification methods on test results proceeds
as follows: (1) compared with theme-independent evaluation
methods, subject-independent evaluation methods are more
objective because subjects rely on evaluation methods that
disregard individual differences. (2) Subject-level k-fold cross-
validation (CV) can evaluate better the sensitivity of the model
among different subjects. (3) Independent distraction theme-
level k-fold CV can evaluate better the adaptive adjustment
ability of the model at different secondary tasks.

Therefore, to avoid data leakage in the evaluation process,
we conducted six-fold CV topic independent evaluation pro-
tocol under the independent distraction theme of the database.
The training and test data used to evaluate the individual
difference sensitivity of the model were produced from the
same subjects, and there is no information overlap between the
subjects. Specifically, at each independent distraction theme,
we cross-validated 16 subjects at six-fold CV, and repeated the
verification process until each secondary task of subjects was
treated as a test dataset. In other words, for each independent
distraction theme, we repeated it 16 times and calculated the
final CV performance as the average of all the test results
obtained. This verification method provides a fair evaluation of
the performance of the cross-object model and can accurately
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TABLE I
MOTOR IMAGERY PERFORMANCE (%) COMPARISON WITH DIFFERENT NETWORK CONFIGURATIONS USING ALL INDEPENDENT DISTRACTION

THEMES ON THE BERLIN-MOTOR IMAGERY DATABASE. THE STATISTICAL SIGNIFICANCE OF PERFORMANCE DIFFERENCE

BETWEEN OUR METHOD AND OTHER APPROACHES WERE EXAMINED USING PAIRED SAMPLE T-TEST

estimate the possible recognition accuracy of new data from
new objects. To compare findings with the results of previous
studies, we used four indicators, namely accuracy (Pacc), recall
(Pre), precision (Ppre), and F1-score (Pf ), to evaluate the
performance of the model. The F1-score was introduced as a
comprehensive index to balance the influence of accuracy and
recall and to evaluate the classifier in a more comprehensive
manner.

B. Network Training

In the process of training, according to Shchur et al. [46],
different data segmentations affect the model performance
of graph neural network (GNN). In our experiment, the
weight parameters in the convolution layer were initialized
with 20 random seeds and six-fold CV. In a round of
cross-validation in the distraction database, samples from
16 subjects × 12 secondary experiments were randomly used
as test data (a total of 16 subjects × 12 secondary tasks ×
63 nodes × 1953 edges), and samples from other 16 sub-
jects × 60 secondary experiments were used as training data
(16 subjects × 60 secondary tasks × 63 nodes × 3969 edges).
To reduce the time complexity of the computation, the momen-
tum of the ADAM optimizer was 0.9. If the verification loss
was not improved after 50 epoch intervals under the epoch
termination condition (up to 100 k epochs), we stopped train-
ing. The model weight that generated the lowest loss of the
validation set was saved as the final parameter. A small batch

random gradient descent method was adopted with a fixed
learning generator rate of 0.001 and a discriminator of 0.0002.
Herein, the small batch size was equal to 12. All models were
trained on NVIDIA GeForce RTX 2080 graphics processing
unit (GPU), and CUDA 11.0 used Pytorch API.

C. Evaluation on Database

Table I presents a comparison of the results of the proposed
method with those of the previous studies. The corresponding
verification methods are elucidated. The experimental results
show that, compared with other supervised methods, the self-
attention framework (based on GSNN) yields a better perfor-
mance of MI recognition. For the supervised method proposed
in [21], the initial evaluation scheme is based on the CV of
the subjects under all independent distraction themes, and the
performance of the cross-subjects is separated. There is a fair
comparison between our proposed model and other methods.
Based on [21], we used six-fold CV to evaluate their work
conducted at each distraction theme (the same method we pro-
posed) and report the results in Table I. The compared results
show that the proposed method is better than that reported by
Darvish et al. [19]. In the case of the theme “calibration ”, the
valence of Recall increases from 70.31% to 78.31%,Precision
from 71.80% to 78.81%, F-score from 71.36% to 79.24%;
In the case of the theme “clean”, the valence of Recall
increases from 77.37% to 82.14%,Precision from 77.37% to
82.14%, F-score from 77.50% to 82.89%. In the cases of the



CAI et al.: MI DECODING IN PRESENCE OF DISTRACTION USING GSNNs 1723

Fig. 4. Results show that our proposed method achieves a performance comparable to the other supervised methods, whereby the recognition
accuracies (ACC) of calibration, clean, eye close, flicker, news number, and stimulation are 78.53 %, 82.41 %, 79.79%, 81.91%, 79.69%, 79.32%,
and 78.35%, respectively. Each point represents the accuracy of a subject performing a motor imagery task at an independent distraction theme.

TABLE II
PERFORMANCES (%) OF GRAPH SEQUENCE NEURAL NETWORK AT INDEPENDENT CONDITIONS

remaining six distraction themes, the accuracy of the model
was improved to a certain extent. The average value of Recall,
Precision, and F-score were 80.44%, 81.07% and 80.54%.
The standard deviation of each independent motion imagery
task was also calculated. As shown in Table I, compared
with other methods, the proposed method achieves a lower
standard deviation. This indicates that the proposed method
can alleviate overfitting to a great extent and help achieve
improved and more stable performances than other state-of-
the-art models (paired t-test, p < 0.05, with seven degrees of
freedom). Fig. 4 shows the accuracy assessment of our model
and other algorithms. The average growth rates of Pacc and Pf

were 8.35% and 14.09%, respectively, The results also showed
that, compared with the manual features used in [5], the deep
topology and node features characterized by GSNN were less
sensitive to individual differences.

D. Evaluation on Different Subjects

Table II shows the classification effect of the GSNN model
for different subjects. On the basis of 16 subjects participating
in each distraction experiment, we conducted independent

model training and evaluation for each subject. It can be seen
that in subjects 1, 3, 6, 12, 14 and 16, the model has good
classification accuracy under each distraction theme. In the
rest of the subjects, it also showed good performance.

IV. DISCUSSION

In this section, we conduct ablation experiment and analyze
the sensitivity of the GSNN model based on the distraction
effect. The relationship between the important brain regions
and MI channels is analyzed. Finally, we determine the poten-
tial prospects of GSNN.

A. Ablation Analysis

To evaluate the sensitivity of the proposed GSNN method
proposed, we conducted experiments on datasets with different
data enhancement methods. First, we conducted a controlled
experiment with no data extension for each distraction theme.
Subsequently, considering the same conditions, after the node
domain adversarial enhancement method, the accuracy of each
independent motion imagery task was calculated. As shown
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Fig. 5. (a) Top 17 edges between channels in the adjacency matrix A of right imagery, excluding global connections for better clarity. (b) Top 17 edges
between channels in the adjacency matrix A of left imagery in subject-dependent classification on the Berlin-motor imagery at the distraction database.

TABLE III
ACCURACY (%) OF MOTOR IMAGERY RECOGNITION COMPARISON AT DIFFERENT NETWORK CONFIGURATIONS USING ALL

INDEPENDENT DISTRACTION THEMES ON THE BERLIN-MOTOR IMAGERY DATABASE

TABLE IV
ACCURACY (%) COMPARISON OF THE GSNN WITH

DIFFERENT COV-KERNEL TYPES

in Table III, compared with each part of data enhancement
method, the proposed method achieves a higher accuracy rate.
This indicates that properly extracting regularization map is
beneficial to model performance. Node domain adversarial
training also proves to be useful in reducing overfitting and
improving accuracy.

B. Experiments Using Different Structures of GSNN

By constructing convolution kernels with different types,
it can be found that gfNN is more suitable for the classification
of motor imagery tasks under independent distraction than
other convolution kernels. The accuracy is shown in Table IV,

TABLE V
ACCURACY (%) COMPARISON OF THE GSNN

WITH DIFFERENT BLOCK NUMBERS

where it can be seen that higher performance can be achieved
when gfNN blocks is applied.

By constructing different blocks, the optimal number of con-
volutional channels can be filtered out. The accuracy is shown
in Table V, in which it can be seen that higher performance
can be achieved when four gfNN blocks are applied. It can
therefore be concluded that selecting appropriate parameters
is conducive to improving classification performance.

C. Analysis of Important Brain Regions and
Interchannel Structures

We identified important brain regions of MI based on inde-
pendent distraction themes. Fig. 5 presents a heat map of the
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diagonal elements in the adjacency matrix we learned, where
each subgraph depends on the classification of independent
distraction themes. These values were scaled to the [0, 1] range
for better visualization. Intuitively, diagonal values represent
the contribution of each channel to the calculation of the
final EEG representation. Fig. 5 depicts that there is strong
activation in the prefrontal, parietal, and temporal lobes of all
frequency bands, suggesting that these areas may be closely
related to MI in the brain. Our findings are consistent with
existing research. Fig. 5 demonstrates the first 17 connections
between the channels with the largest edge weight in the
adjacency matrix. After A is learnt and sparse selection is
completed based on the selection parameter G value, global
link-ages remain the strongest, confirming that the relationship
between global channels is essential for MI. Additionally,
Fig. 5(a) shows that the connection between the channel pairs
(C3, C5) is the strongest when imagining the right side at
the independent distraction theme, followed by (CCP3, C5)
and (CCP1, CP3). The connection between the channel pairs
(CCP4, C6) is the strongest when imagining the left side of
the task [10], in the case of the independent distraction theme,
followed by (C2,C4) and (CCP2, CP4). We also found that the
topological connection strength of (F5, FC3) and (F4, FC5)
on the prefrontal lobe are related to the distraction on the left
and right side imagery [47], indicating that the relationship
between channels in the local frontal region may be important
for MI.

D. Other Prospects of the Model

In the process of representation learning with atlas, a better
pooling method is needed for learning and selecting impor-
tant topological features. Because pooling is not a decisive
factor, it is difficult to determine whether a global pooled
architecture or a hierarchical pooled architecture is beneficial
to graph classification in MI. The global pool architecture
minimizes information loss, making this architecture perform
better than the hierarchical pool architecture on datasets with
fewer nodes. However, layering is more effective on datasets
with numerous nodes because it can effectively extract useful
information from large-scale graphs. Therefore, for the data set
of distracted MI, the pooling weight super-parameter setting
of the two parts still requires a more precise model.

E. Conclusion

In this study, we trained the sample datasets specific to
each subjects at each independent distraction theme. The
model adaptively adjusted the subjects’ influence at differ-
ent distraction themes. The problem of noise samples was
solved by using the feature standard of regularization and
network method in the node domain to solve the influence
difference of subjects. The sensitivity of the model to dif-
ferent subjects was reduced. Finally, the results showed that
pertaining to the task of MI during distraction, our model per-
formances were significantly better than those of the state-of-
the-art models. Moreover, the interchannel structures of active
brain regions were revealed at different distraction themes,

to a certain extent, which provides basic knowledge for
additional research.
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