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Adaptive Reference Inverse Optimal Control for
Natural Walking With Musculoskeletal Models

Jiacheng Weng, Ehsan Hashemi , Member, IEEE, and Arash Arami , Member, IEEE

Abstract— An efficient inverse optimal control method
named Adaptive Reference IOC is introduced to study nat-
ural walking with musculoskeletal models. Adaptive Refer-
ence IOC utilizes efficient inner-loop direct collocation for
optimal trajectory prediction along with a gradient-based
weight update inspired by structured classification in the
outer-loop to achieve about 7 times faster convergence than
existing derivative-free methods while maintaining similar
outcomes in terms of gait trajectory matching. The proposed
method adequately reconstructed the reference data when
applied to experimental walking data from ten participants
walking at various speeds and stride lengths. The proposed
framework can facilitate efficient personalized cost func-
tion optimization for specific walking tasks, and provide
guidance to personalized reference trajectory design for
assistive robotic systems such as lower-limb exoskeletons.

Index Terms— Direct collocation, gait, inverse opti-
mal control, musculoskeletal model, predictive simulation,
structured prediction.

I. INTRODUCTION

HUMAN locomotion is the result of a complex interaction
between the central nervous system (CNS), peripheral

nervous system, musculoskeletal system, and the environ-
ment. The recent development of open-source software tools
with detailed and accurate musculoskeletal models allows
researchers to simulate human natural walking with ease [1],
[2]. Assuming the natural walking behaviour results from
some optimization done by our CNS in interaction with the
environment [3], researchers have generated realistic dynamic
walking by formulating it as an optimal control problem
with a set of neuromechanically sound cost terms [1], [4].
The optimal control problem is then solved using trajectory
optimization techniques such as direct collocation (DC) or
learning-based methods such as reinforcement learning (RL).
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One common challenge of the optimal control problems
for human locomotion is to find the optimal cost function.
Researchers often used a linear combination of multiple cost
terms that captures energy expenditure, muscle activation,
motion smoothness, and stability [1], [4]–[9], but the weights
associated with the cost terms were often manually tuned,
which is slow and labour-intensive. Recently, Weng et al.
developed a strategic weight update using curriculum learn-
ing [9] for cost function adaptation. Their cost weight update
method was implemented in a deep RL agent that efficiently
learns the muscle excitations needed for walking [9]. Some
studies utilized global optimization techniques for weight
tuning but were computationally intensive. For example, the
genetic algorithm (GA) from Nguyen et al. [7] took 139 hours
on a 10-core i9 CPU to optimize the cost function weights.
This limitation is the main reason why these studies solve only
the cost function tuning problem for one specific setup without
analysis of the cost function generalization over different body
shapes and locomotion task parameters.

Inverse optimal control (IOC) is a class of methods
that aim to recover optimal cost functions given observed
state trajectories. Common methods include inverse Karush–
Kuhn–Tucker (KKT) [10], [11], structured classification
(SC) [12], [13], hyperparameter tuning [14], and inverse
reinforcement learning (IRL) [15], [16]. Some of these
methods utilize gradient-based updates providing higher effi-
ciency than derivative-free optimization techniques. However,
these methods have not yet been closely examined in
challenging locomotion studies considering musculoskeletal
models.

Herein, we propose our algorithm called Adaptive
Reference IOC to discover the optimal cost function of walk-
ing in detailed musculoskeletal models. The Adaptive Refer-
ence IOC utilizes DC as the inner-loop optimal controller, and
gradient-based weight updates in the outer loop to achieve
high efficiency during the weight update process. The main
contributions of the paper are summarized as:
• formulate an efficient IOC framework for natural walking

in detailed musculoskeletal models with a signifi-
cant computational efficiency improvement compared to
the GA

• demonstrate the success of the proposed method in recov-
ering cost functions based on multiple participant-specific
reference data

II. RELATED WORK

In this section, we discuss various cost function tun-
ing methods, including KKT conditions, derivative-free
optimization methods, SC, hyperparameter tuning techniques,
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and IRL. Their use cases and limitations for locomotion are
also discussed.

A. Inverse Optimal Control
IOC addresses the problem of recovering the underlying

cost function given the desired state trajectories such as human
demonstrations. IOC problems are often formulated as bilevel
optimization problems with a parametric cost function given a
priori. The inner-loop problems find optimal state trajectories
given the cost function, whereas the outer-loop problems tune
the parameters of the cost function so that the inner-loop
solutions resemble the desired state trajectories. For problems
that involve only kinematics such as motion path prediction
(e.g., obstacle avoidance during motion), KKT conditions have
been imposed to optimize the weights with high computational
efficiency (e.g., the inverse KKT method in [10] optimized
cost function weights 144 times faster than derivative-free
optimization for robotic arm manipulation; [11] used KKT
conditions to optimize cost functions for locomotion path
with sub-second run time). However, for more complex cost
functions that involve system dynamics (e.g., joint torques),
derivative-free optimization techniques such as COBYLA (for
humanoid [17]) and CMA-ES (for robotic arms [18]) are used.
These techniques are based on strategic cost weight sampling
coupled with evaluations (i.e., solving optimization problems)
of all sampled cost functions. However, for locomotion prob-
lems that utilize musculoskeletal models, the internal optimiza-
tion problems (usually in the form of trajectory optimization
problems) are more challenging to solve than torque-driven
humanoid and robotic arms due to redundant muscle actuators
and complex muscle dynamics. In the existing locomotion
studies with musculoskeletal models, the cost function weights
are often manually tuned based on the researcher’s domain
knowledge [1], [4], [8]. With a reasonable simplification
of the musculoskeletal models by constraining sagittal-plane
motion and reducing the number of muscles, researchers
formulated the IOC problem for natural walking using GA
for optimal cost weight search [7], however it still requires
a long computational time (139 hours on a 10-core i9 CPU).
On the other hand, SC treats the IOC problem as a structured
prediction problem (i.e., a multi-class classification problem
with an extremely large number of classes) and allows for
a gradient-based update to the cost function weights, which
can be more efficient than derivative-free methods [12], [13].
Direct loss minimization (DLM), which is the successor to the
vanilla structured prediction, achieves better performance by
using a loss-adjusted cost function for lower-level optimiza-
tion (i.e., adding the domain-specific loss term to push the
optimized trajectories towards the preferred region of search)
during weight update [19]. DLM’s performance marks it as a
good candidate for solving the IOC for complex locomotion
problems.

B. Inverse Reinforcement Learning
IRL is a specific branch of IOC that solves expert policies

(i.e., a closed-loop controller capable of sampling all optimal
trajectories given initial conditions) in the inner-loop optimiza-
tion instead of specific trajectories. Maximum margin IRL

solves the optimal cost function by increasing the distance
between expert policies and all other policies [13], [20], [21].
Maximum entropy IRL [15], [16], on the other hand, finds
the optimal cost function that matches the expectation of the
expert behaviour while maximizing the entropy of the policy.
All of these IRL approaches require solving a forward RL
problem (i.e., learning an expert policy through the agent’s
interaction with the environment) either fully or partially
which is non-trivial by itself. This makes the extension of
these methods to continuous and high-dimensional settings
(e.g., muscle actuated human locomotion) difficult [22], [23].

In some applications (e.g., computer graphics) where the
control policy is the primary need, imitation learning methods
are used to solve the IRL problem where the cost function
tuning is absorbed into the policy optimization [24], [25].
These methods provide little insight into important factors that
shape human locomotion and therefore are unsuitable for this
study.

C. Hyperparameter Optimization
IOC problems with parametric cost functions can also be

seen as a hyperparameter tuning problem [26] commonly
found in the machine learning field [14]. While naive optimiza-
tion methods, including grid search and random search [27],
can be used for IOC with easy parallelization, they are rarely
applied to problems with many parameters (weights). This is
due to an exponential increase in the number of weight sam-
ples required to be evaluated in order to find close-to-optimal
weights. Sequential model-based optimization (SMBO) is an
alternative approach that utilizes a surrogate model (i.e.,
an approximation model that mimics the observed input-output
relationship; often obtained through data-driven approaches) to
estimate the relationship between the total cost values and the
cost function weights [28]. Bayesian optimization is a common
SMBO method that uses probabilistic models (e.g., Gaussian
processes) to locate the good weight candidates during the
weight search [29]. Similar to other derivative-free methods
mentioned in II-A, SMBO may be slow for human locomotion
study as the inner-loop optimization problem is difficult to
solve.

III. METHODS

We first discuss the customization of the subject-specific
musculoskeletal models, followed by the formulation of the
inner-loop optimization using DC, and last the outer-loop
Adaptive Reference IOC algorithm inspired by SC and
DLM [12], [19]. In this study, a publicly available dataset
for treadmill walking [30] is used for the IOC analysis. The
dataset includes ten healthy participants walking at various
speeds and stride lengths.

A. Musculoskeletal Models
Natural gait patterns vary across individuals due to their

diverse body geometries, muscle fibre type proportions,
strength, and possible variations in neural control. When per-
forming cost function optimization for individual participants,
a personalized musculoskeletal model is required to better
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Fig. 1. The musculoskeletal model has 11 DoFs and 18 muscles.

represent the physical characteristics. Here, we first construct
a baseline musculoskeletal model, then scale it to match the
anthropometric parameters of each participant.

The baseline musculoskeletal model is customized based
on the gait10dof18musc model from OpenSim [31] which is
shown in Fig. 1. The model allows sagittal-plane (2D) motion
with 11 degrees of freedom (DoF), including 8 DoF at the
hip, knee, ankle, and metatarsophalangeal (toe) joints, and 3
DoF for global translation and rotation at the pelvis. The full
system configuration is described using a 40-dimensional state
vector, including the position and velocity of all 11 DoFs
and 18 muscle activation signals. The 18-dimensional control
signals specify muscle excitation, which is linked to muscle
activation using first-order activation dynamics [31]. Lower
limb muscles include hamstrings (HAM), biceps femoris short
head (BFsh), gluteus maximus (GM), iliopsoas (IL), rectus
femoris (RF), vastus (VA), gastrocnemius (GC), soleus (SOL),
and tibialis anterior (TA). The hip, knee, and ankle joints
are softly constrained using passive joint torque actuators
with double exponent formulation [32] to simulate the effect
of ligaments. The metatarsophalangeal joints are passively
actuated using linear passive spring-damper actuators. The
default muscle fibre lengths and pennation angles are obtained
from [33]. The default tendon slack lengths are obtained
from [34]. Six Hunt Crossley contact spheres at the heel, first
metatarsal head (MH), third MH, fifth MH, hallux, and middle
toe are added for each foot to cover all high-pressure zones
during walking [35].

The subject-specific musculoskeletal models are obtained
by scaling the baseline model. The body geometries, contact
sphere locations, and optimal muscle fibre lengths are scaled
based on the marker tracking data. The model mass is also
scaled to the reported subject’s body mass while maintaining
the same mass distribution as the baseline model. The max-
imum isometric muscle force is calculated using the method
explained in [34]. First, the subject’s body mass and height
are taken as input to estimate the individual muscle volumes
using the experimental results from [36]. The muscle volumes
are then used along with the scaled optimal muscle fibre
lengths and the muscle-specific tension from [37] to estimate
the maximum muscle isometric forces.

B. Inner-Loop Optimization

The inner-loop trajectory optimization assumes a given cost
function and finds the optimal trajectory that minimizes the
given cost using DC. We used OpenSim Moco [2] to formulate
the DC problem with musculoskeletal models. The inner-loop
cost function for generating the walking motion consists of six
terms with four variable weights:

Jinner = 1
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which can be seen as the integral of a dot product of the weight
vector ω and the cost vector C . As experimental data from
multiple participants is used in our study, non-dimensionless
quantities including torque, acceleration, force, position, and
velocity exhibit different ranges across the participants due
to factors such as segment length and body mass (can be
seen in Table II). These quantities are scaled to the equivalent
dimensionless forms [38] using the following equations:

τ̂ = τ

mglleg
, F̂ = F

mg
, v̂ = v√

lleg g
, p̂ = p

lleg
, (2)

where m is the subject mass, lleg is the leg length, g is
9.81m/s2. Such scaling improves the cost function general-
ization across different body sizes. The first term penalizes
the cubed muscle excitation u where i is the muscle index,
and n is the total number of muscles. This term has been
widely used in previous studies to capture the CNS effort
to minimize energy expenditure and muscle fatigue [1], [4],
[5], [7], [8]. The second term penalizes the use of scaled
passive ligament torque τ̂ j similar to [1], [4], [8] to keep
joint angles within the limits of the physiological range of
motion, where j is the index of the passive joint actuators
at hip, knee, and ankle joints. The third term penalizes the
deviation of torso angle θtorso from the upright position similar
to [7] as an approximation of trunk energy expenditure. The
fourth term penalizes the scaled acceleration of the center of
mass (CoM) inspired by [1] to encourage motion smoothness.
The fifth term penalizes the foot sliding similar to [6] to
ensure proper foot clearance. This is evaluated based on the
scaled vertical ground reaction force (GRF) F̂ y and the scaled
horizontal foot velocity v̂ f x , where l f, r f represent left and
right feet. The last term encourages the stability (similar to [7])
by penalizing deviation of the scaled forward CoM position
p̂CoMx from the center of the extended base of support (BoS)
p̂mid BoS (i.e., the mid-point between the toes of the leading
foot and the heel of the back foot projected onto the ground
plane). Coefficients of the cost terms scale the cost values
to the same order of magnitude given the desired motion
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Fig. 2. Block diagram of the Adaptive Reference IOC algorithm. The tracking DC problem outside of the outer-loop IOC module generates feasible
trajectories sref. The inner-loop predictive DC problem generates state trajectories s, control trajectories u, and the cost vector C subject to stride
time and average speed constraints, as well as state and control bounds. The tracking DC problem inside the outer-loop IOC module provides
adaptive reference trajectories for the weight update. All DC problems are solved with the scaled musculoskeletal models using methods described
in III-A.

trajectories from the experiment. After integration, the final
cost is divided by the total forward distance d measured
at the CoM. The first two terms in the cost function are
designed with fixed constant weights due to two reasons. First,
uniformly scaling the multipliers of all cost terms does not
change the optimal solution. To prevent uniform scaling, the
muscle activation multiplier is set to a constant so that the
weight updates ensure relative weight changes between cost
terms and, consequently, changes in the solution. Second, the
passive joint torque term is fixed to improve the stability of
the optimization. During natural walking, the lower-limb joints
rarely reach extreme angles resulting in small cost values (i.e.,
close to zero). This can cause the weight update to the passive
joint torque term to be unreliable due to poor numerical
precision. In some cases, the weight may converge to zero,
which may cause the inner-loop optimization to generate
abnormal walking with knee hyperextension and subsequently
lead to a large rebound of the cost weight. Therefore, the
weight of passive joint torque term is fixed to prevent its
convergence to zero and ensure the stability of the optimization
program.

To reduce the complexity of the DC problem, the opti-
mized walking trajectory is limited to half a gait cycle with
gait symmetry constraints. These symmetry constraints ensure
mirrored state values (i.e., position and velocity of all DoFs
except the global forward distance, and all muscle activation
signals) about the sagittal plane at the trajectory start and
end. After solving the DC problem, the full gait cycle is
reconstructed by concatenating the trajectories from the left
and the right leg. Several equality and inequality constraints
are imposed on the state and control variables. Muscle exci-
tation and activation are constrained to [0, 1]. Joint angles
and global body positions are constrained to feasible ranges
(i.e., [−15◦, 60◦], [−70◦, 5◦], [−15◦, 25◦], for hip, knee, and
ankle angles respectively; [0m, 1m], [0.75m, 1.25m], [−20◦,
20◦] for global forward distance, height, and orientation at
pelvis respectively). The average walking speed and the final
trajectory time are constrained to the experimental values to
maintain the same walking task. Last, the trajectories are
discretized to only 15 nodes which are shown to be sufficient
by [7] and our investigations.

Algorithm 1 Adaptive Reference IOC

Initialize: desired trajectories sre f
k , sre f

f from solving DC
problems using Jt ; initial weight vector ω;
learning rate η

while max iter. not reached do
ŝre f , ûre f = argmin

s,u
Ĵt (ω);

compute cost vector Ĉre f = C(ŝre f , ûre f ) ;
s�, u� = argmin

s,u
Jinner (ω) ;

compute cost vector C � = C(s�, u�) ;
ω← ω + η(C � − Ĉre f ) ;

end

C. Outer-Loop Optimization
The outer-loop optimization aims to optimize ω in the

cost function Jinner such that the inner-loop solution matches
the reference trajectories from the experiments. With the
inspiration from SC [12] and DLM [19], we formulate the
Adaptive Reference IOC for the outer-loop optimization shown
in Alg. 1 and Fig. 2. Adaptive Reference IOC consists of
three main steps. First, the experimental gait data is collected
and pre-processed to ensure dynamic feasibility. Next, two
DC problems are solved in parallel with one generating
predictive gait trajectories given the current cost weights,
and the other one generating adaptive reference trajectories
by adding experimental data tracking to the current cost
function. Last, the converged trajectories from these two
DC problems are compared to update the cost weights.
Steps 2 and 3 are repeated until the convergence criteria are
satisfied.

We first represent the walking task-related parameters (e.g.,
walking speed and stride time) as x, and the walking trajecto-
ries (including both states and controls) as y. If the cost weight
ω is optimal (i.e., ω = ω∗), then the cost of yre f as the dot
product of ω and cost vector C is smaller than all other choices
of y ∈ Y , where Y is the superset of all possible trajectories.
such a relationship can be represented as:

ωT C(x, yre f (x)) ≤ ωT C(x, y(x))+ ζ, (3)
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where ζ ≥ 0 deals with possible violation of the inequality
when ω is sub-optimal. Intuitively, we want ζ to be small
to ensure the optimality of ω. In addition, the following
inequality holds for any arbitrary ω:

ωT C(x, yre f (x)) ≥ min
y∈Y

ωT C(x, y(x)). (4)

The inequality in (4) reduces to equality when ω is optimal
(i.e., ω = ω∗). As (3) holds for all y, we can substitute
ωT C(x, y(x)) in (3) by its minimum over y. We then obtain:

ζ ≥ ωT C(x, yre f (x))−min
y∈Y

ωT C(x, y(x)) ≥ 0. (5)

Since we want small ζ , we have to minimize its lower bound.
Therefore, the problem becomes:
min

ω
Jouter=min

ω
[(ωT C(x, yre f (x))−min

y∈Y
ωT C(x, y(x))]. (6)

The gradient of the objective function with respect to ω can
then be calculated as follows:

∇ Jouter = C(x, yre f )− C(x, y�) (7)

y� = argmin
y∈Y

ωT C(x, y(x)), (8)

where yre f is the reference trajectory from experiments, y� is
the optimal inner-loop DC solution given ω. As C(x, yre f )
relies on clean control signals (muscle excitation) which are
nearly impossible to collect during experiments, we estimate
the control signals by solving a tracking DC problem using
the cost function Ĵt :

Ĵt = Jinner + 1

d

∫ t f

0
ct dt (9)

ct = ωk
sk − sre f
k 
22 + ω f 
(s f − sre f

f )
22, (10)

where sk , s f are the kinematic and GRF trajectories to be
optimized in this tracking DC problem, and sre f

k , sre f
f are the

reference trajectories from experiment. Weights ωk and ω f

control the trade-off between the kinematic and the kinetic
tracking. As Jinner is a function of ω, Ĵt varies during the
weight optimization. This requires the tracking DC problem to
be re-solved after each weight update. Intuitively, we allow the
estimated reference trajectory yre f to adapt to the optimized
weight vector while moving towards the reference motion.
This modification nicely results in the DLM for structured pre-
diction which was originally proposed in [19]. Consequently,
we replace C(x, yre f ) in (7) with C(x, ŷre f ) where ŷre f
is the adaptive reference generated by the tracking DC problem
using (9). Then gradient descent is used for the weight update.
Comparing to using a static reference yre f (further away from
y�), the adaptive reference ŷre f (closer to y�) also reduces the
inaccuracy in calculating the cost value differences in (7) due
to numerical errors from the direct collocation problem (e.g.,
trajectory reconstruction errors), and improve the stability of
the cost update. The resulting algorithm for learning optimal
weights (that indicates the optimal cost function) for natural
walking, called Adaptive Reference IOC, is summarized in
Alg. 1, and Fig. 2 shows the connection among different
components of this algorithm.

In actual experiments, the experimental data sre f
k , sre f

f
in (10) is pre-processed by solving a tracking DC problem
with the cost function Jt :

Jt = 1

d

∫ t f

0

(
ct + 
u
22

)
dt . (11)

This is to convert treadmill walking to level ground walking
in simulation and ensure dynamic feasibility of the reference
trajectory. The simple gradient descent update rule is replaced
with the momentum update to accelerate convergence. The
learning rate η is tuned using grid search during the experiment
with synthetic data (explained in section IV-A) to achieve
stable and efficient convergence. The tuned η is then applied
to all other experiments. A dynamically adjusted weight lower
bound (set to 1/10 of the initial weights, and reduced by half if
the bound is activated for more than 5 consecutive iterations)
and gradient clipping are also used to avoid the weight speedy
drop to zero due to the momentum update which can cause
significantly different inner-loop DC solutions and outer-loop
weight oscillations.

IV. RESULTS AND DISCUSSION

In this section, we first test the convergence of the Adaptive
Reference IOC algorithm using synthetic data generated from
DC with known weight compositions. Then, the algorithm
is applied to treadmill walking data of ten subjects. The
performance and limitations of the IOC method are also
discussed. Last, we compare the performance of the Adaptive
Reference IOC with GA over all ten participants. The ωk and
ω f in (10) are set to 0.01 and 0.005 for all experiments to
allow deviations from the tracking data. Such deviation allows
the adaptive reference trajectory to be closer to the trajectories
obtained using the current cost weights, which avoids large
gradient updates and smooths out the gradient history. The
difference between ωk and ω f ensures an approximately
similar magnitude of the kinematic tracking cost and the
ground reaction tracking cost for subjects.

A. IOC Performance on Synthetic Data

To test the convergence of the proposed algorithm, we used
a synthetic reference trajectory by solving a DC problem with
known weights in (1). The DC problem used the scaled mus-
culoskeletal model for the first participant in the dataset [30].
The walking task is configured to be at 1.2m/s with a stride
frequency of 1Hz. The synthetic known weights in (1) are
all configured to 0.5 for demonstration. To test the robustness
of the Adaptive Reference IOC algorithm against the weight
initialization, we used three different sets of initial weights
to represent different initialization conditions (i.e., smaller /
larger than the known weights, and mix of both) as shown
in table I. All three trials were run in parallel and converged
after 100 weight updates which took about 3 hours of total
computation using AMD Ryzen 7 3700X CPU at 3.6GHz.
The final converged weights and the weight errors are shown
in Table I and Fig. 3, respectively. The final converged weights
are similar to the desired values for all three trials, and
the weight error progress showed a nice reduction over the
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TABLE I
WEIGHT COMPARISON AFTER SOLVING THE

SYNTHETIC IOC PROBLEM

Fig. 3. Weight vector error reduction plot using synthetic reference
trajectories. Initial and final weights for all three trials are listed in Table I.

Fig. 4. Comparison of gait kinematics and GRFs between the IOC
solution and the synthetic reference gait.

inner-loop evaluations. Trial 1 and 2 required more inner-loop
updates as the initial weights are further away from the refer-
ence weights. Some oscillations exist in the weight error plot
which are primarily caused by the weight overshoot from the
momentum update. The final weight errors stabilized slightly
above 0 after iteration 80 for all three trials. This is because the
adaptive reference trajectories ŝre f , ûre f in Fig. 2 allows small
deviation from the reference trajectories in exchange for a
slightly easier outer-loop optimization problem. This deviation
is small and can be neglected as shown in Fig. 4.

B. IOC Performance on Experimental Data

In this section, treadmill walking data of ten healthy
participants [30] were used. The initial weight vector
[ω1, ω2, ω3, ω4] is set to [1, 1, 1, 1] for all subjects. The

TABLE II
SUBJECT MASS, HEIGHT, LEG LENGTH, SPEED, STRIDE TIME AND

OPTIMAL WEIGHTS BY SOLVING IOC PROBLEMS

IOC problems were solved with 193 weight updates on
average (i.e., about 10 hours of computation per problem
using AMD Ryzen 7 3700X CPU at 3.6GHz). Comparing to
other derivative-free methods for cost function determination
with similar setup which solved 5600 inner-loop optimiza-
tion problems [7], the Adaptive Reference IOC significantly
reduces the number of inner-loop evaluations (385 problems
on average shown in Table IV). The subject information,
walking configurations, and the optimized weights are sum-
marized in Table II. The converged CoM acceleration weights
ω2 (0.605± 0.325, mean±standard deviation (SD) computed
across subjects), foot sliding weights ω3 (1.175± 0.460), and
stability weights ω4 (0.337 ± 0.175) are considerably larger
than zero for all participants. This behaviour can indicate the
significance of these cost terms in capturing natural walking
behaviour. In contrast, the torso orientation weights ω1 for
five participants (participant 2, 4, 5, 9, and 10) converge
to small values (either 0.001, 0.01, or 0.027). This may be
due to poor estimation of the desired torso orientation in
the reference trajectories. As the motion tracking data only
includes lower limbs, the estimation of the torso orientation
solely depends on reconstructed pelvis orientation, which can
have excessive forward tilt due to marker placement errors.
Such inaccuracy leads to a large torso orientation cost for
the reference trajectories, which essentially pushes ω1 to zero.
In addition, potential redundancy in the cost function may also
cause some cost weights to converge to zero.

Given the optimized weights in Table II, the optimal joint
kinematic and GRF trajectories are computed and compared to
the reference trajectories. Fig. 5 shows the gait comparison of
a typical participant (participant 1 in [30]). Overall, the joint
angles and GRFs from IOC match closely with the tracking
solution. The ankle joint angles from IOC have a smoother
profile than the reference during the stance phase.

Fig. 6 shows the muscle activation plots obtained from the
optimal cost function (through IOC) of the same participant.
The EMG signals of four lower-limb muscles, which were
measured and available in [30], are overlaid in Fig. 6. The
EMG signals are scaled to best match the magnitude of
the muscle activation from the optimal cost function for
visualization. The EMG signals of HAM, GC, and TA showed
good alignment to the obtained muscle activation trajectories.
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Fig. 5. Comparison of joint angles and GRFs between the IOC solution
and the experimental reference gait from the first participant in [30]; GRFx
and GRFy are along the forward and vertical directions respectively.

Fig. 6. Comparison of muscle activations from IOC and average EMG
signals of four measured muscles of the first participant in [30]. EMG
signals for the other five muscles were not measured in [30].

The EMG signal of RF shows good alignment to the combined
muscle activation from two knee extensors (i.e., RF and
VA). There may be two explanations for the aforementioned
observations. First, surface EMG sensors only measure lumped
muscle action potential at the location of measurement which
can cause inaccuracies in individual muscle measurement
when sensor placement is sub-optimal. Second, the individual
muscle weights in the muscle activation penalty term may not
be optimal, which may favour activating VA over RF. The
obtained GC activation is slightly delayed compared to the
EMG signal similar to [7]. This may be caused by the problem
reduction from 3D to the sagittal plane where delayed toe
push-off is required to facilitate the delayed knee extension
for proper foot clearance.

To analyze the gait pattern quality, gait errors are com-
puted with respect to the subject-specific reference trajec-
tories using root mean square errors (RMSE). After IOC
weight optimization, hip, knee and ankle RMSEs of 0.041±
0.007, 0.122 ± 0.017, 0.054 ± 0.009 in radians, and GRFx

Fig. 7. RMSE of the joint angles and GRFs before and after solving
the IOC problems; GRFx and GRFy are along the forward and vertical
directions respectively.

and GRFy RMSEs of 0.020 ± 0.004, 0.064± 0.013 in terms
of body weight ratio (i.e., GRF error [N] / body weight
[N]) were obtained, respectively. The hip and ankle joint
angles generally align well with the reference after weight
optimization. The knee angles have relatively larger errors due
to the delayed knee extension (visible in Fig. 5). The ground
reaction forces also align well with the reference. RMSEs
of the trajectories obtained from the initial weights are also
computed to confirm the gait improvement from the weight
optimization, which is summarized in Fig. 7. Such comparison
indicates that the improvement mainly happens in kinematics
features, especially hip and knee angles. GRF profiles start
with small errors and show mild improvement from the
weight modification. The small initial errors for the GRF are
potentially due to the constraints on the task parameters (i.e.,
walking speed and stride length) during the IOC experiments
(walking speed and stride length can impact GRF features like
peak height and stance duration). In addition, the optimized
gait patterns have Pearson correlations of 0.992 ± 0.004,
0.917± 0.024, 0.843± 0.077 for hip, knee, ankle angles, and
0.957±0.024, 0.990±0.003 for GRFx and GRFy respectively.

Last, a correlation analysis is performed between the opti-
mized weights and parameters, including body mass, walking
speed, and stride time (raw data available in Table II). As the
CNS weighting of different cost terms may vary for different
participants (e.g. mass, height, muscle properties) and walking
tasks (e.g. speed, stride time), this correlation analysis could
bring insights into how the cost weights vary as a function
of those parameters. This is valuable particularly when we
need to infer an optimal cost function for a walking task
when we do not have access to its specific reference data.
As the correlation is calculated across participants that have
various body geometries, the walking speed and the stride time
are scaled to their dimensionless forms using the following
equations from [38]:

v̂ = v√
lleg g

, t̂s = ts√
lleg/g

(12)

where lleg is the leg length, g is 9.81m/s2. The Pearson
correlation coefficients are summarized in Table III. In terms
of participant parameters, the body mass is negatively cor-
related to the scaled walking speed meaning slower walking
for participants with larger body mass. The stride time is also
negatively correlated to the scaled walking speed. In terms
of weights, the torso orientation weights ω1 and the foot
sliding weights ω3 show low correlations to the resultant



1574 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

TABLE III
PEARSON CORRELATION COEFFICIENTS BETWEEN SCALED WALKING

PARAMETERS AND WEIGHTS

scaled walking speed and stride time. The CoM acceleration
weight ω2 has a negative correlation with the scaled walking
speed suggesting less demand on the smooth motion at higher
speeds. The stability weight has a positive correlation with the
scaled walking speed, indicating more penalty to stability with
faster walking. However, such an observation is not sufficient
to draw a concrete conclusion as the correlation is computed
based on only ten participants walking with limited gait speed
and stride length variations. Extending this study to include
variable gait data of each participant, considered as future
work, would allow probing the existence of such speed-cost
relationships.

One main challenge in using the proposed IOC framework
to solve optimal locomotion cost weights is the stability
of the inner-loop DC problems. DC transcripts the trajec-
tory optimization problem (i.e., in the form of differential
equations) into constrained parameter optimization problems
with algebraic equations by discretizing the trajectories and
reconstructing them using function approximations. The dis-
cretized optimization program is then solved by a non-linear
solver such as IPOPT [39]. Such an optimization technique
does not guarantee convergence to the global optima and is
often sensitive to the initial trajectory guesses, especially for
high-dimensional complex systems such as musculoskeletal
models. We found that DC problems sometimes converge
poorly if the initial trajectory guesses are infeasible (e.g. the
musculoskeletal model sinks into the solid ground) or far
off from the walking motion (e.g. jumping motion is given
with two legs moving together which also satisfies symmetry
constraints). We also observed that the optimized trajectories
alternate between two configurations during IOC (e.g. with
and without extensive knee extension during the stance phase).
This indicates that the slightly changing weights cause the
DC problem to converge to different local optima, which
can cause oscillations in the outer-loop weight updates. This
issue was mitigated by imposing proper coordinate constraints
as explained in III-B, fixing the weight to the passive joint
torque term in Jinner , and using initial trajectories with feasible
walking motion. However, it is impossible to consider all edge
cases that can lead to inner-loop DC instability. In addition,
improving the expressive capacity of the defined cost function
may improve the inner-loop DC stability. This improvement
essentially worsens the other local optima and expand the
convex region around the desired motion.

C. IOC-GA Performance Comparison
To compare the Adaptive Reference IOC algorithm with

derivative-free optimization methods in optimizing cost
weights for natural walking, we solve the IOC problems for
all ten participants using the GA implementation in MATLAB

TABLE IV
COMPARISON BETWEEN ADAPTIVE REFERENCE IOC AND GA

R2021a and compare the performance in Table IV. The bounds
for weight sampling are set to [0, 4]. A population with a
size of 40 is generated with random initial weights uniformly
sampled within the weight bounds. The fitness function for
the GA explicitly minimizes the sum of tracking errors for
hip angle, knee angle, ankle angle, GRFx and GRFy. The
converged weights from GA are generally larger than the
ones from Adaptive Reference IOC except for ω1 (Adaptive
Reference IOC exhibits significantly larger ω1 for subjects 6,
7, and 8). When excluding these three subjects, the Pearson
correlation between the obtained weight vectors is 0.930 ±
0.058 (0.731± 0.329 when including all subjects). The high
Pearson correlation coefficients for seven subjects indicate
that the ratio between the four cost weights contributes more
to the final converged gait than the weight magnitudes. The
small differences in joint angle errors and Pearson correlations
between the Adaptive Reference IOC and GA for subjects 6,
7, 8 suggest that our cost function formulation may have
redundancy which allows similar converged gait with different
cost weights.

Despite the differences in weights, both methods produce
gait patterns similar to the reference trajectories with no
statistical differences for most errors and correlation measures
between the Adaptive Reference IOC and GA ( p > 0.05 using
the Wilcoxon Signed Rank test) except rknee (GA outper-
forms Adaptive Reference IOC with p = 0.006) and rankle

(Adaptive Reference IOC outperforms GA with p = 0.012).
Although eG RF x and rG RF x showed statistical differences
(p = 0.001 for both cases), such differences can be neglected
as the mean difference is small (i.e., less than 1%). The
subtle differences in converged gait between GA and the
Adaptive Reference IOC can be caused by their different
ways of gait evaluation as GA considers joint angle and GRF
errors directly, whereas the Adaptive Reference IOC considers
the cost values which is the abstraction of the original gait.
The Adaptive Reference IOC only requires about 12% of the
internal DC evaluations and 14% of the computing time
compared to the GA. Besides the computational improvement,
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the proposed algorithm, unlike GA, has no requirement on the
initial bounds for weight vector sampling.

V. CONCLUSION

An efficient IOC algorithm named Adaptive Reference IOC
is proposed for the natural walking problem with detailed
musculoskeletal models. We showcased the efficiency of the
proposed algorithm in tuning cost functions and matching gait
trajectories using both synthetic data and experimental data.
The optimized cost weights and the corresponding optimal
gait trajectories from our algorithm were also compared with
the solutions from GA. With the Adaptive Reference IOC,
preliminary findings about the correlation between optimal
weights and walking task parameters (i.e., walking speed and
stride time) were reported. We also discussed the limitation of
the proposed algorithm in terms of stability of the inner-loop
DC problems and limitation of the experimental data. In future
studies, we plan to enhance the existing cost function analysis
by enriching the experimental data (i.e., including various
walking speeds, various stride lengths, upper body kinematic
tracking, and more muscles and EMG measurement sites). The
proposed method can be used to assist exoskeleton controller
design by providing personalized cost function and reference
trajectory tuning.
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[22] Ł. Kidziński et al., “Learning to run challenge solutions: Adapting rein-
forcement learning methods for neuromusculoskeletal environments,”
in The NIPS’17 Competition: Building Intelligent Systems. Cham,
Switzerland: Springer, 2018, pp. 121–153.

[23] Ł. Kidzinski et al., “Artificial intelligence for prosthetics: Challenge
solutions,” in The NeurIPS’18 Competition: From Machine Learn-
ing to Intelligent Conversations. Cham, Switzerland: Springer, 2019,
pp. 69–128.

[24] J. Ho and S. Ermon, “Generative adversarial imitation learning,” 2016,
arXiv:1606.03476.

[25] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse rein-
forcement learning,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011,
pp. 182–189.

[26] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Proc. 25th Adv. Neural Inf. Process. Syst.,
vol. 24, 2011, pp. 1–9.

[27] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, no. 2, pp. 1–25, 2012.

[28] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Proc. Int. Conf.
Learn. Intell. Optim. Cham, Switzerland: Springer, 2011, pp. 507–523.

[29] J. T. Wilson, F. Hutter, and M. P. Deisenroth, “Maximizing acquisition
functions for Bayesian optimization,” 2018, arXiv:1805.10196.

[30] R. Macaluso, K. Embry, D. Villarreal, and R. Gregg. (2020). Human Leg
Kinematics, Kinetics, and EMG During Phase-Shifting Perturbations at
Varying Inclines. [Online]. Available: https://dx.doi.org/10.21227/12hp-
e249

[31] S. L. Delp et al., “OpenSim: Open-source software to create and analyze
dynamic simulations of movement,” IEEE Trans. Biomed. Eng., vol. 54,
no. 11, pp. 1940–1950, Nov. 2007.

[32] F. C. Anderson and M. G. Pandy, “Dynamic optimization of human
walking,” J. Biomech. Eng., vol. 123, no. 5, pp. 381–390, Oct. 2001.

[33] S. R. Ward, C. M. Eng, L. H. Smallwood, and R. L. Lieber, “Are current
measurements of lower extremity muscle architecture accurate?” Clin.
Orthopaedics Rel. Res., vol. 467, no. 4, pp. 1074–1082, 2009.

[34] V. Nguyen, “Predictive simulation of human movement and applications
to assistive device design and control,” Ph.D. dissertation, Mech. Eng.,
Univ. Massachusetts Amherst, Amherst, MA, USA, 2019.

[35] T. C. Pataky and J. Y. Goulermas, “Pedobarographic statistical para-
metric mapping (pSPM): A pixel-level approach to foot pressure image
analysis,” J. Biomech., vol. 41, no. 10, pp. 2136–2143, Jul. 2008.

[36] G. Handsfield, C. H. Meyer, J. Hart, M. Abel, and S. S. Blemker,
“Relationships of 35 lower limb muscles to height and body mass
quantified using MRI,” J. Biomech., vol. 47, no. 3, pp. 631–638, 2014.

[37] A. Rajagopal, C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks,
and S. L. Delp, “Full-body musculoskeletal model for muscle-driven
simulation of human gait,” IEEE Trans. Biomed. Eng., vol. 63, no. 10,
pp. 2068–2079, Oct. 2016.

[38] A. L. Hof, “Scaling gait data to body size,” Gait, Posture, vol. 3, no. 4,
pp. 222–223, 1996.

[39] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Program., vol. 106, no. 1, pp. 25–57, May 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


