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Patient-Specific Seizure Prediction via Adder
Network and Supervised Contrastive Learning
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Abstract— Deep learning (DL) methods have been widely
used in the field of seizure prediction from electroen-
cephalogram (EEG) in recent years. However, DL methods
usually have numerous multiplication operations resulting
in high computational complexity. In addtion, most of the
current approaches in this field focus on designing models
with special architectures to learn representations, ignoring
the use of intrinsic patterns in the data. In this study,
we propose a simple and effective end-to-end adder net-
work and supervised contrastive learning (AddNet-SCL).
The method uses addition instead of the massive multi-
plication in the convolution process to reduce the com-
putational cost. Besides, contrastive learning is employed
to effectively use label information, points of the same
class are clustered together in the projection space, and
points of different class are pushed apart at the same time.
Moreover, the proposed model is trained by combining
the supervised contrastive loss from the projection layer
and the cross-entropy loss from the classification layer.
Since the adder networks uses the �1-norm distance as the
similarity measure between the input feature and the filters,
the gradient function of the network changes, an adaptive
learning rate strategy is employed to ensure the conver-
gence of AddNet-SCL. Experimental results show that the
proposed method achieves 94.9% sensitivity, an area under
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curve (AUC) of 94.2%, and a false positive rate of (FPR)
0.077/h on 19 patients in the CHB-MIT database and 89.1%
sensitivity, an AUC of 83.1%, and an FPR of 0.120/h in the
Kaggle database. Competitive results show that this method
has broad prospects in clinical practice.

Index Terms— Deep learning, seizure prediction, elec-
troencephalogram (EEG), adder network, contrastive learn-
ing, adaptive learning rate.

I. INTRODUCTION

EPILEPSY is one of the most common non-communicable
diseases of the nervous system. It is caused by discharges

of brain neurons. There are about 70 million people with
epilepsy in the world, and about one-third of them cannot be
controlled by drugs since they are resistant to anti-epileptic
drugs [1], [2]. Generally speaking, intervention and protection
before the arrival of epilepsy activities can greatly reduce the
suffering of patients and have a positive effect on treatment.

Electroencephalogram (EEG) is a device that records the
electrical activity of neurons in the brain cortex and contains
various information related to brain electrical functions [3].
Studies have shown that there are EEG signals of preictal
activity before the onset of epilepsy, which are the key infor-
mation for predicting seizure [4], [5]. In traditional machine
learning methods, a series of manually extracted linear and
nonlinear features were used to predict seizures, such as
absolute and relative spectral band power [6], Kolmogorov
entropy [7]. Then, the classifier distinguished between preictal
and interictal states by these features, SVM [8], [9] and
k-nearest neighbor classifier [10] were widely used in seizure
prediction. However, massive expert experience and profes-
sional knowledge are required to extract features manually.
The performance of classification depends on the discrimina-
tion of the designed features and the learning ability of the
classifier. These algorithms usually generalize poorly to new
patients and data [11].

With the advent of Graphics Processing Units (GPUs) and
growth of computing power, the speed of multiplication has
been greatly improved. Deep learning (DL) methods with
more floating number multiplications could be implemented,
which are widely used in the field of seizure prediction
and make important progress [5], [12]–[16]. However, these
methods with billions of calculations can bring high energy
consumption and need to be deployed on high-end GPUs.
Recently, several energy-efficient methods have been used for
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seizure prediction. Zhao et al. [17] binarized all parameters
except the first layer, thereby reducing the calculation and
storage. Four models were proposed in [14], the best of
which has only 18345 trainable parameters. Quantization and
pruning were employed to compress the network in [18].
Although operations such as binarization and pruning signifi-
cantly reduce the computational cost, they tend to reduce the
original performance. Moreover, the binary network is more
difficult to train and usually requires a smaller learning rate
and slower convergence rate [19].

In addition, seizure prediction distinguishes preictal and
interictal signals, which are different from the data during ictal.
Usually, these two types of data contain some hard samples,
which cannot be distinguished well by the cross-entropy loss.
Most seizure prediction techniques used the cross-entropy loss
as supervised classification loss function. The model is trained
by projecting the samples into the feature space, then the
features go through the classifier to output the probability
distribution, and finally the network parameters are updated by
reducing the difference between the outputs and the one-hot
encoded labels. Many works have explored the drawbacks
of this loss, for example, the cross-entropy loss may lead to
poor margins between different classes [20], lack of robustness
to noisy labels [21], and cause generalization performance
degradation. Several hard positive and negative samples may
be generated when defining preictal and interictal, resulting in
poor classification margins.

In this work, we propose a simple and effective end-to-end
adder network and supervised contrastive learning (AddNet-
SCL), On the one hand, the adder network (AddNet) uses
cheap addition instead of multiplication to reduce compu-
tational complexity. Since addition and subtraction can be
converted to each other through complements, the �1 distance
with only addition and subtraction is used instead of the
cosine similarity of multiplication in traditional convolution,
which is a hardware-friendly similarity measure. Importantly,
it can speed up the network without losing accuracy. In order
to ensure better training and convergence of the network,
a back-propagation scheme suitable for addition convolution is
also used. On the other hand, supervised constrastive learning
is used to make full use of the label information and the
intrinsic pattern of the data, clustering samples of the same
class together while pushing them away from samples of
different classes. The contrastive loss provides an intrinsic
mechanism for hard positive and negative mining, which can
better learn the potential information of difficult samples, and
better optimize the classification margin. Then, the represen-
tations in the projection space are further separated by the
cross-entropy loss. By using a hybrid function of contrastive
loss and the cross-entropy loss to train the network, better
seizure prediction performance can be obtained than using the
cross-entropy or contrastive loss alone. Finally, the input of
the network is the original EEG signal without any feature
preprocessing. Automatically extracting features from data is
more beneficial to DL methods and more in line with data-
driven principles.

Experimental was conducted on two public databases
the Boston Children’s Hospital (CHB)-MIT [22] and

The American Epilepsy Society Seizure Prediction Challenge
(Kaggle) [23]. The experimental results show that the proposed
method can not only reduce the computational cost better, but
also obtain competitive performance. Our main contributions
are as follows:

1) We propose a new framework AddNet-SCL for seizure
prediction, using addition instead of multiplication to
reduce computational cost, while using a new back
propagation scheme and adaptive learning rate to ensure
the convergence of the network. To the best of our
knowledge, this is first time to use adder network for
seizure prediction.

2) We use a loss function that is a mixture of super-
vised contrastive loss and the cross-entropy loss. The
supervised contrastive loss is used in the projection
space to separate the samples, and the cross-entropy loss
is used on the classification layer to further map the
representation to the corresponding labels. This study is
the first to report supervised contrastive learning used
for seizure prediction.

3) The experimental results of the proposed method are
significantly better than the baseline model, and the
energy consumption and latency are much lower than
the baseline model. The method has no feature pre-
processing and special structure design, achieves 94.2%
sensitivity, an area under curve (AUC) of 94.9%, and a
false positive rate of (FPR) 0.077/h on 19 patients in the
CHB-MIT database and 89.1% sensitivity, an AUC of
0.831, and an FPR of 0.120/h in the Kaggle database.

The rest of paper is composed as follows. In Section II,
we present the databases used in this paper and the details of
the proposed method. In Section III, we show the experimental
results of this method. In Section IV, we discuss the experi-
mental results and compare them with related work. Finally,
summary of this work in Section V.

II. DATABASES AND METHODS

A. Databases

The databases used in this work include CHB-MIT [22]
and Kaggle [23]. The CHB-MIT database contains the scalp
EEG (sEEG) data of 23 children, with a total of 844 hours con-
tinuous EEG recordings and 182 seizure events, each seizure
event is annotated by clinical experts. These EEG signals
are collected using 22 electrodes with 256 Hz sampling rate.
Kaggle database includes intracranial EEG (iEEG) data from
five dogs and two patients, with a total of 627.7 hours interictal
records and 48 seizure events. Dogs 1-4 iEEG data were
collected though 16 implanted electrodes at a sampling rate
of 400 Hz, and the number of electrodes for Dog 5 were 15.
The iEEG records of the two patients were collected from
15 depth electrodes (Patient 1) and 24 subdural electrodes
(Patient 2) at 5000 Hz sampling rates, respectively.

B. Preprocessing

In seizure prediction task, data preprocessing could have
a large effect on the results. Most previous works performed
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Fig. 1. Interictal, preictal, ictal and postictal states of seizures (from the
file chb01 03.edf).

TABLE I
DATA DURATION (IN HOUR) OF CHB-MIT DATABASE

feature preprocessing of EEG signals. In order to make the
network automatically learn the optimal features, we used the
raw data as input. First, we defined interictal period, preictal
period, postictal period, seizure prediction horizon (SPH) and
seizure occurrence period (SOP). The interictal period was
defined as between at least 4 hours before seizure onset and
4 hours after seizure end. The preictal period was generally
15 to 60 minutes before seizure onset [5], [12]–[15]. In this
paper, we chose 30 minutes and 60 minutes for the experiment.
The 10 minutes after seizure end was defined as the postictal
period [5]. SOP is the period when seizure is expected to
occur, which is equal to preictal period. The period from the
alarm to the start of SOP is SPH [24], as shown in Fig. 1.
When an alarm is triggered, there will be a period of time
for doctors to intervene in the clinic. Therefore, SPH is also
called intervention time [25]. In the CHB-MIT database we
set SPH to one minute [5], [16], and in the Kaggle database,
SPH is set to five minutes by the organizer. For cases with
more than one seizure event, if the preictal period is less
than 15 minutes, we combine it with the leading seizure
into one seizure. For patients with more than ten seizures,
seizure prediction becomes less critical, so we exclude these
patients from the data. With these definitions and limitations,
105 seizure events in 19 patients in CHB-MIT database and
five dogs in Kaggle database were used to evaluate. The EEG
signal duration information of the selected patients is shown
in Table I and Table II.

Through the above method, we obtain the interictal and
preictal records. Samples are obtained by using moving win-
dow analysis on the continuous interictal and preictal records.
Notably, seizure prediction task also has data imbalance
challenges. For most patients’ data, the interictal data is far
more than the preictal data, and the unbalanced data could

TABLE II
DATA DURATION (IN HOUR) OF KAGGLE DATABASE

affect final performance. Therefore, in the process of moving
window analysis, a four seconds window was employed to
perform non-overlapping sampling in the interictal period and
half-overlapping sampling in the preictal period during training
phase. In the testing phase, non-overlapping sampling was
used for both interictal and preictal data, and the continuity of
the samples in the temporal dimension is maintained. Finally,
in the training phase, if the interictal data in the training set
is still more than the preictal data, we randomly discard part
of the interictal data so that the ratio of interictal to preictal
is equal [5], [12], [13].

C. AddNet-SCL

In this paper, a novel network structure AddNet-SCL
was used for seizure prediction. To reflect the innovative
advantages of additive convolution and supervised contrastive
learning, we used CNN as the backbone and added residual
connections to the network (ResCNN). We replaced the tradi-
tional convolution in the network with additive convolution to
get the AddNet, and added supervised contrastive loss in the
projection space. The specific structure is shown in Fig. 2.

First, the temporal dimension of the original EEG data
is much larger than the channel dimension, and the data
did not undergone any denoising and feature preprocessing.
Therefore, we used one-dimensional convolution to extract
features in the temporal dimension of the data, remove noise
information, and reduce the dimensionality of the data. Then,
additive convolution was used to perform feature learning
on the input features, and combined residual connections to
make the network learning representation more stable. The
first additive convolution layer contains convolution kernel
sizes of 11 × 1 and 3 × 3 with a stride of 1, and then skip
connections though 1 × 1 convolution, finally go through a
4×1 maximum pooling layer. The second additive convolution
layer consists of convolution size of 5 × 5 with a stride of 2,
and a 3 × 3 convolution with a stride of 1, finally a skip
connection with 1 × 1 convolution with a stride of 2. The
structure of the third additive convolution layer is the same as
the second layer. A 64-dimensional feature vector is obtained
through adaptive average pooling. Finally, the obtained vector
is updated and classified by contrastive loss and the cross-
entropy loss. Next, we describe the implementation process of
AddNet and supervised contrastive loss in detail.

D. AddNet

It is well known that the complexity, energy consumption,
and proportion of the computational unit for multiplication
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Fig. 2. The structure graph of the proposed AddNet-SCL.

Fig. 3. Energy consumption of addition and multiplication, and the area
of the calculation cell occupied. The data in the figure comes from [35].

of floating number are much higher than these of addition,
as shown in Fig. 3. To speed up the network and reduce the
amount of calculation, researchers have proposed various work
based on different principles. The pruning method reduces
network complexity by removing redundant weights [26], [27].
Different from the theory of pruning, many works are devoted
to designing new convolution modules or operations to replace
typical convolution. A series of lightweight network have
been proposed, such as SqueezeNet [28], MobileNet [29],
ShuffleNet [30], Xception [31], GhostNet [32]. The knowledge
distillation scheme [33] obtains a lighter netwrok by transfer-
ring useful information from complex teacher networks to a
lightweight student network. However, these lightweight mod-
els or technologies suffer from substantial multiplication, and
still consume massive computational resources. BinaryCon-
nect [34] forces the network weight to be binary, which can
make many multiply-accumulate operations become accumu-
lations, thereby reducing computational complexity. However,
binarized networks are often hard to train and difficult to
preserve accuracy. In this work, we applied the principle
of additive convolution to seizure prediction, and used this
method to reduce the computational complexity. The detailed
introduction is as follows.

Typical convolution measures similarity by multiplying and
accumulating between filters and input features, as shown in
Fig. 4. Given that F ∈ R

m×n×cin ×cout is a filter in one layer
of the network, where kernel size is m × n, cin and cout

Fig. 4. Typical convolution calculation method.

represent the number of input channels and output channels,
respectively. I ∈ R

H×W×cin is the input feature, where
H and W denote the height and width of the input feature,
respectively. The output feature O is obtained by computing
the similarity between the filter and input feature.

O(a, b, c) =
m−1∑

i=0

n−1∑

j=0

cin∑

k=1

S(I (a + i, b + j, k), F(i, j, k, c)),

(1)

where S(·, ·) is the algorithm of similarity measurement, and c
represents one of the output channels. When S(x, y) = x × y,
Eq. 1 is typical convolution operation. If the kernel size is
1 × 1, then Eq. 1 can represent the calculation of fully-
connected layer. There are other metrics that can express
the distance between two vectors, but most of them involve
complex multiplications. The �1 distance calculates the sum of
the absolute value of the difference between the two vectors.
Therefor, using �1 distance to measure the similarity, Eq. 1
can be expressed as:
O(a, b, c)

= −
m−1∑

i=0

n−1∑

j=0

cin∑

k=1

|I (a + i, b + j, k) − F(i, j, k, c)|, (2)

Eq. 2 only contains addition and subtraction, as shown in
Fig. 5, and subtraction can easily be simplified to addition. It is
worth noting that the output of the addition filter of Eq. 2 is
always negative. The output of typical convolution corresponds
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Fig. 5. Additive convolution calculation method.

TABLE III
THE �2-NORM OF THE GRADIENT OF EACH CONVOLUTIONAL LAYER

AFTER THE FIRST ITERATION OF DIFFERENT MODELS

to the weighted sum of the values in the input feature map,
and the result can be positive or negative. Therefore, to bet-
ter use the traditional convolution activation function, batch
normalization is used to normalize the output of the addition
filter to an appropriate range. Although batch normalization
contains multiplications, it can be ignored compared to typical
convolution. Assuming that one of the convolution layer
has a filter F ∈ R

m×n×cin ×cout , an input I ∈ R
H×W×cin ,

and an output O ∈ R
H �×W �×cout , the typical convolution

and batch normalization multiplication calculation amount are
Oconv−mul(mncincout H W ) and OB N−mul (cout H �W �), respec-
tively. In practice, given cin = 64 and kernel size of 5 × 5,
it can be calculated that the complexity of typical convolution
is mncin cout H W

cout H �W � ≈ 1600 times the complexity of batch normal-
ization. The number of addition calculations for typical convo-
lution and additive convolution is Oconv−add(mncincout H W )
and Oaddconv−add(2mncincout H W ), respectively, while the
number of multiplications for additive convolution is 0. Addi-
tive convolution reduces computational cost by converting all
multiplications in typical convolutions into additions.

According to the calculation of the partial derivative of the
input of the loss, it is clear that the gradient of the filters
in AddNet is much smaller than that of ResCNN, which
makes the parameter update very slow. We report the gradient
of AddNet and ResCNN in the first iteration in Table III.
A straightforward way to solve this problem is to use a larger
learning rate. Since the large difference in gradient between
each layer of the network, we employed a more effective
adaptive learning rate. The specific calculation method is as
follows:

�Fl = η × θl × �L(Fl), (3)

where η is the global learning rate, θl is the local learning rate
of the l-th layer, and �L(Fl) is the gradient of the filter at
l-th layer. The calculation method of θl is as follows:

θl = λ
√

z

||�L(Fl)||2 , (4)

Fig. 6. The effect of the cross-entropy loss and contrastive loss on clas-
sification. Assuming that the hypersphere is a sphere with a radius of 1.
(a) is the effect of the cross-entropy loss on the classification boundary,
(b) is the effect of contrastive loss on the classification boundary.

where λ is the hyperparameter that controls the local learning
rate and is set to 1

5 , and z is the number of elements of the
filter Fl .

E. Supervised Contrastive Learning

In the previous DL-based seizure prediction methods, most
of them used the cross-entropy loss as the loss function.
Cross-entropy measures the Kullback-Leibler (KL) divergence
between two distributions (label distribution and empirial
regression distribution). However, the cross-entropy loss has
some shortcomings, such as lack of robustness to noisy labels,
and poor classification margins between samples of different
classes. Recently, Khosla et al. [36] inspired by self-supervised
contrastive loss and metric learning, proposed supervised
contrastive loss, which completely removes the reference dis-
tribution, clusters the embeddings of samples from the same
class, and pushes away samples that are different from their
own. It achieves better performance than the cross-entropy
in the classification task of ImageNet. Nasiri et al. [37] used
supervised contrastive loss and the cross-entropy loss in envi-
ronmental sound classification tasks to achieve the state-of-
the-art performance. In seizure prediction, since the ictal,
interictal, and preictal period are artificially defined, there
may be hard samples, and use of the cross-entropy loss may
be affected by these samples. In this work, we combine the
cross-entropy loss and supervised contrastive loss to further
distinguish between interictal and preictal.

Fig. 6 shows simple schematic of the cross-entropy loss and
the supervised contrastive loss. The embedding feature vectors
in the projection space was normalized so that they all fall
on a hypersphere with a radius of 1. As shown in Fig. 6 (a),
using the cross-entropy loss to directly classify may produce
a poor margin, and even classify some samples incorrectly.
In Fig. 6 (b), by using contrastive loss to increase the cosine
similarity between samples of the same class, while reducing
the cosine similarity between different classes (to make the



ZHAO et al.: PATIENT-SPECIFIC SEIZURE PREDICTION VIA AddNet-SCL 1541

Fig. 7. Loss convergence and accuracy graph. (a), (b), (c) are the loss curve and accuracy curve of additive convolution in the training phase.
(d), (e), (f) are the loss curve and accuracy curve of multiplicative convolution in the training phase.

angle α between the same class smaller, and at the same time
to make the angle β between different classes larger). In this
way, samples are separated from the projection space, and then
the cross-entropy loss classification can be used to obtain a
better classification effect.

Given that the input samples X = {x1, x2, . . . , xN }, the
corresponding labels are Y = {y1, y2, . . . , yN }, N represents
batch size. The supervised contrastive loss is calculated by the
following formula:

Lsup
i = − 1

Nyi

log

∑N
j=1 1[y j=yi , j �=i]exp(zi · z j/τ)
∑N

k=1 1[k �=i]exp(zi · zk/τ)
, (5)

where zi , (i ∈ {1, 2, . . . , N}) is the embedding vector of input
xi in the projection space, Nyi denotes those samples that have
the same label as yi in a batch. 1[y j =yi , j �=i] ∈ {0, 1}, if y j = yi

and j �= i , the value is 1, otherwise it is 0. zi · z j represents
the inner product of zi and z j . Since zi , (i ∈ {1, 2, . . . , N})
is normalized, it is also equivalent to calculating the cosine
similarity of these vectors. τ is the temperature and set to
0.08, which controls the smoothness of training and the effect
of hard samples.

F. Training and Loss

In this study, patient-specific method was used to conduct
separate model training for each subject. Convergence was
achieved by optimizing the hybrid loss function that combined
the supervised contrastive loss and the cross-entropy loss. The
hybrid loss function is as follows:

L = αLsup + (1 − α)Lcross , (6)

where α is hyperparameter and we set α = 0.5, Lcross

represents the cross-entropy loss, the calculation formula is

as follows:
Lcross = − 1

N

∑

i

[yi log(pi) + (1 − yi )log(1 − pi )], (7)

where yi is the label and pi is the probability of the preictal
sample.

Although the balance of preictal and interictal data in train-
ing stage was maintained, the length of preictal and interictal
records for each seizure event is different, which could also
lead to overfitting. The early stopping was employed to further
reduce the overfitting of the network. When the loss in the
validation set no longer decreases in 10 consecutive iterations,
the training stops early.

The AddNet-SCL model was implemented by Python
3.7 and based on the Pytorch 1.8 framework. The training
process used Adam optimizer [38] to optimize the hybrid
loss through an adaptive learning rate scheme to achieve
convergence. The batch size is set to 32, and the initial
learning rate is 0.003 during training. The graphs of the
loss convergence and accuracy were shown in Fig. 7, which
includes the loss and accuracy of the training set and the
validation set. Fig. 7 (a), (b), (c) show the loss convergence
and accuracy curves of additive convolution on training and
validation set during training; Fig. 7 (d), (e), (f) show the loss
convergence and accuracy curves of multiplicative convolution
on training and validation set during training. From the graphs,
we can see that the additive convolution can also fit the data
well using the �1-norm distance as the similarity measure.

G. Postprocessing

To obtain a continuous warning device, an event-based
post-processing method was used to convert AddNet-SCL
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Fig. 8. Strategies for experimental training and testing.

into a practical seizure predictor through a persistent
warning scheme [39]. Some works used k of n [12],
Kalman filtering [13] and moving average filtering scheme
[5], [16], [40]. In this work, we refer to the previous works,
such as [5], [16], [40], adopt similar postprocessing methods
and moving average filtering to predict seizure event, and
the length of the moving average filter was set to 1 minute.
Specifically, we input continuous test data from a seizure
event to obtain the conditional probability pi of each sample.
The probability of the i -th sample represents the conditional
probability that the predictor judges that it belongs to preictal
period. Then, a moving average filter was used to smooth pi

in the time dimension and removed outliers to obtain a more
reliable probability ps(i). When ps(i) exceeds the thresh-
old w, it counts as one alarm, where w is trade-off threshold
parameter for sensitivity and FPR, and we experimentally set
w = 0.5. However, continuous alarms in a short period of
time could increase the false alarm rate. Therefore, as in the
literature based on event prediction, we defined a 30 minutes
refractory period, which indicated that other alarms will be
ignored for a period of time after the alarm is triggered [5].

III. RESULTS

In this section, some details about the experimental setup
were first added, and then the results were shown compared
with those of baseline method. Finally, the effect of experi-
mental conditions on performance was described.

A. Experimental Settings

To better distinguish the data of each seizure event,
we choose LOOCV strategy, which tests the data of each
seizure event separately to ensure the reliability of the results.
The specific plan is shown in Fig 8. Given a patient’s data
contains N seizure events and t hours interictal period, all t
hour data is divided into N parts, each with approximately t/N
hours data. Then, N tests are performed based on N seizure
events. In each test, one of the N events is selected as the test
data, in which the preictal data and the corresponding interictal
data maintain temporal continuity, respectively. The remaining
N−1 pairs of data are used as training data. Since there may be
an overfitting problem in training stage, a part of the training

Fig. 9. Performance comparison of different lengths of preictal period.
(a) is the comparison of AUC, (b) is the comparison of FPR, (c) is the
comparison of sensitivity.

data needs to be used as validation data to monitor whether
the model is overfitting. In this work, 25% of the preictal
and interictal samples in the training set were selected as the
validation set, respectively. Finally, the average of N results
were calculated to obtain the prediction performance.

In the selection of evaluation metrics, we used four com-
monly used event-based metrics in seizure prediction, namely
sensitivity (Sn), AUC, FPR, and p-value. Sensitivity typically
indicates the probability of correctly predicting seizures in a
given time period [39]. In a macro event-based sense, it is
defined as the proportion of correctly predicted seizures to
the total number of seizures. AUC is a metric for eval-
uating the classification performance. Assuming that each
class has the same prior probability, the random classification
method can obtain an AUC of 0.5, while a perfect classifier can
reach 1.0. FPR represents the number of false alarms per hour.
According to feedback from clinicians, when the sensitivity
is higher than 75%, FPR may be the single most important
measurement metric [41]. p-value is to judge whether the
prediction system is statistically superior to the random pre-
dictor. Suppose the algorithm identifies n of N seizures for a
single patient, the one-sided p-value is used to evaluate the
significance of an improvement over chance.

B. Overall Performance

Several end-to-end technologies are used as baseline mod-
els, and experiments were conducted under the same con-
ditions to evaluate the performance of AddNet-SCL. Then,
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TABLE IV
SEIZURE PREDICTION PERFORMANCE OF EACH MODEL ON CHB-MIT DATABASE

TABLE V
SEIZURE PREDICTION PERFORMANCE OF EACH MODEL ON KAGGLE DATABASE

TABLE VI
COMPUTATIONAL COMPLEXITY COMPARISON OF BASELINE MODELS

we made extensive comparison with the several state-of-the-
art methods.

1) 1D+CNN [42] first used one-dimensional convolution to
perform dimensionality reduction and feature extraction
from the data, and then used CNN for classification.

2) DCNN+Bi-LSTM [14] used deeper CNN to extract
information from complex original EEG signals, and
then employed a bi-directional long short-term memory
(Bi-LSTM) as a classifier.

3) ResCNN added residual connection to CNN and have
the same network structure as the proposed method,
which allows for more intuitive comparison.

The performance comparison between the proposed method
and the baseline models in the two databases are shown

in Table IV and Table V. In the CHB-MIT database, the
proposed model achieves an AUC of 0.929, a sensitivity of
93.0%, and an FPR of 0.094/h. In addition, under the 95%
confidence interval, the improvement over chance of the pre-
diction model in 19 patients is statistically significant. In the
Kaggle database, the proposed method obtains 0.831 AUC,
89.1% sensitivity, and 0.120/h FPR. Moreover, we also show
the parameter amount and computational complexity of each
model. As shown in Table VI, the proposed model has roughly
0.12 × 106 parameters, and the use of addition instead of
massive multiplication greatly reduces the computational cost.
Ignoring a small number of multiplications in the normal-
ization layer, our model has 7.57 × 106 multiplications and
54.3 × 106 additions. Compared with the previous end-to-end
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TABLE VII
THE TIME COST OF MULTIPLICATIVE AND ADDITIVE

CONVOLUTIONAL NETWORKS

model, the amount of parameters and calculations have been
greatly reduced. ResCNN and the proposed model have same
network structure and the same amount of parameters. The
difference is that additive convolution is used instead of
multiplicative convolution. Through the energy consumption
in Fig. 3 and the different delays in instruction tables.1 it
is calculated that the proposed method is superior to the
typical convolution operation under the same structure in terms
of energy consumption and speed. For example, the latency
of floating point addition and multiplication in VIA Nano
3000 series is 2 CPU clock cycles and 4 CPU clock cycles
respectively. AddNet-SCL with 7.57×106 multiplications and
54.3×106 additions will produce 138.6M clock cycles latency,
while ResCNN with 30.9 × 106 additions and 30.9 × 106

multiplications will produce 185.4M clock cycles latency in
this CPU. Although existing deep learning frameworks do
not yet support additive convolution, we show the time cost
of adder network and multiplicative convolution network in
Table VII. From the training time cost, it can be seen that
the time cost of additive convolution is not obvious compared
with the typical multiplicative convolution. This is because
the gradient calculation method has changed and has not been
perfectly optimized in CUDA and CUDNN, and pytorch does
not currently support additive convolution. There is no need for
gradient propagation during testing, thus the speed of additive
convolution is significantly better than that of multiplicative
convolution, and the time consumption is reduced by about
20%, further optimization of additive convolution can achieve
better improvement.

We compared with several lightweight models with few
parameters (such as DeepConvNet [43], EEGNet [44], DCNN-
BiLSTM [14]) under the same experimental conditions in
Table VI. Although EEGNet has a small number of para-
meters, the number of floating-point operations is relatively
high, and it is accompanied by a high FPR and performance
degradation. DCNN+Bi-LSTM uses Bi-LSTM instead of lin-
ear fully connected layer as a classifier, which greatly reduces
the number of parameter. However, DCNN still has a large
computational cost, and the iterative operation of LSTM makes
the classification process more complicated. DeepConvNet and
the proposed method have similar parameters, and our method
outperforms DeepConvNet in both computational cost and
performance. From the experimental results, it can be seen
that these models with few parameters are less effective in
some patients and cannot distinguish between preictal and
interictal period, which proves that direct reduction of network
parameters is often accompanied by performance degradation.
Our method outperforms both models in terms of results,

1Available at: https://www.agner.org/optimize/instruction_tables.pdf

which indicates that the proposed method achieves better
balance in the amount of parameters, computational cost and
model performance.

C. Ablation Study

The proposed method used additive convolution and super-
vised contrastive loss. In order to further verify the effec-
tiveness of additive convolution and contrastive loss, we use
three models for ablation study. The first model is ResCNN,
which uses the cross-entropy as the loss function. The second
model changes the multiplicative convolution of the first model
to additive convolution, and also uses the cross-entropy as
the loss function. The third model is the proposed AddNet-
SCL, which has the same structure as the second model and
uses a hybrid function of supervised contrastive loss and the
cross-entropy loss. The experimental results are shown in
Fig. 10. In the CHB-MIT database, the average performance
of ResCNN is 0.911 AUC, 0.140/h FPR, and 89.9% sen-
sitivity; the average performance of AddNet is 0.908 AUC,
0.146/h FPR, and 90.5% sensitivity; the average performance
of AddNet-SCL is 0.929 AUC, 0.094/h FPR and 93.0%
sensitivity. In the Kaggle database, the average performance
of ResCNN is 0.829 AUC, 0.161/h FPR, and 81.2% sen-
sitivity; the average performance of AddNet is 0.825 AUC,
0.161/h FPR, and 82.9% sensitivity; the average performance
of AddNet-SCL is 0.831 AUC, 0.120/h FPR and 89.1% sen-
sitivity. Comparing the results of ResCNN and AddNet, it can
be seen that the performance of additive convolution is similar
to that of typical convolution. Compared with AddNet, the
overall performance improvement of AddNet-SCL indicates
the effectiveness of the contrastive loss on the task. The higher
sensitivity and lower FPR suggest that samples in preictal and
interictal periods can be better distinguished.

We visualized the features of the projection space through
t-SNE visualization technique and compared the effect before
and after using the contrastive loss. As can be seen from the
comparison of Fig. 11 (a), (b), the contrastive loss can provide
a better classification boundary, gather the features of the same
class, and push the features of different classes away; similarly,
from the comparison of Fig. 11 (c), (d), it can also be seen
that the contrastive loss can make the features of the same
class close and the features of different classes stay away.

D. Effects of Preictal Interval

Previous work proposed that seizures may have symptoms
several hours ago, and different lengths of preictal periods
may have a greater effect on the performance. A too short
preictal length makes preictal training data seriously insuffi-
cient, thereby affecting performance. Too long preictal period
greatly increase training time and reduces efficiency. To obtain
a more adequate comparison, we conducted experiments using
the commonly used preictal lengths of 30 and 60 minutes. The
experimental results are shown in Fig. 9. The AUC, sensitivity,
and FPR reached 0.942, 94.9%, and 0.077/h, respectively, at a
preictal period length of 60 minutes. The increase in the length
of the preictal period brings more preictal data, which enables
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Fig. 10. Performance comparison of ResCNN, AddNets, and AddNet-
SCL. (a) is the result of the ablation experiment in the CHB-MIT database,
(b) is the result of the ablation experiment in the Kaggle database.

the network to learn more distinguishing features, thereby
achieving performance improvements in most patients.

E. Compared With Existing Methods

Table VIII shows several of state-of-the-art prediction tech-
niques in recent years. Due to the complexity of the raw EEG
data and the large amount of calculation, many works first
use feature preprocessing methods convert the raw data into

Fig. 11. t-SNE plot showing the effect of contrastive loss in feature
leaning, where (a), (b) are a comparison group from patient 2 in the
CHB-MIT database, (a) uses cross-entropy loss, (b) uses contrastive
loss; (c), (d) are a comparison group from patient 11 in the CHB-MIT
database, (c) uses cross-entropy loss, (d) uses contrastive loss.

various feature representations, thereby simplifying network
design and reducing calculations. Although these works obtain
a relatively lightweight networks, they ignore the large compu-
tational cost that preprocessing would entail, and the network
also contains a large number of multiplication operations.
Some end-to-end efficient networks was used in [14], [18],
[42] to achieved good performance. Although these methods
achieved superior performance, they are not event-based pre-
diction methods and fewer patients are tested, and the valida-
tion strategy is different, thus we cannot directly compare with
them. Some works performed feature engineering on the raw
data, and then used CNN or MLP for classification [5], [13],
[15], [45]. Buyukccakir et al. [45] chose to use the 10-fold
cross-validation method instead of LOOCV validation method
in seizure prediction. Li et al. [16] first used fast independent
component analysis to process EEG data, and then designed a
spatio-temporal hierarchical graph convolutional network with
active learning scheme to obtain state-of-the-art performance
for event-based seizure prediction. However, these methods
involve substantial multiplication operations, and they use
the cross-entropy as loss function resulting in poor classi-
fication margin. The proposed method uses addition instead
of multiplication, combined with supervised contrastive loss,
to reduce computational complexity while maintaining high
performance.

IV. DISCUSSIONS

In recent years, many researchers in seizure prediction tasks
devoted themselves to using DL methods to learn different
representations in EEG signals. However, the huge compu-
tational complexity, hardware requirements, and insufficient
evaluation metrics make it not well used in clinical practice.
The model in [5], [12], [13] have fewer parameters to reduce
the computational cost, but they ignore the large number
of operations brought by feature preprocessing. An end-to-
end lightweight network was used in [18], which can greatly



1546 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

TABLE VIII
PERFORMANCE OF EXISTING METHODS ON THE CHB-MIT DATABASE

reduce the complexity of the network by using advanced quan-
titative methods and pruning operations. These operations are
usually accompanied by performance degradation, and CNN
compressed by other methods [44] usually suffer from the
same problem. Moreover, DL-based methods generally include
massive floating number multiplications, which require GPUs
acceleration. GPUs needs a lot of support from other hardware,
which cannot meet the requirements of device implantability
and wearability.

Therefore, we use another method to reduce computational
complexity, which uses additive convolution instead of mul-
tiplicative convolution. Addition consumes much less energy
and time than multiplication, and it also runs fast on the CPUs.
In addition, AddNet-SCL can achieve performance similar to
that of the traditional CNN, and has broad prospects in the
clinical application of seizure predictors. Moreover, unlike
most work, we did not design a special network or manually
extract features, but used supervised contrastive loss to explore
intrinsic patterns of the data. The classification boundary was
improved by contrastive loss, and the classification perfor-
mance is further improved.

Since the �1 distance was used as the similarity measure, the
backpropagation gradient function changes and we showed the
gradient size of different layers. An adaptive learning rate was
employed in the training process to ensure the convergence of
the model, it could be seen from the loss convergence and
accuracy curves in Fig. 7 that model can fit the data well, and
the effectiveness of the proposed method was demonstrated
by comparison with the baseline model. We calculated the
computational complexity of popular end-to-end networks.
In contrast, our method could achieve lower energy con-
sumption and delay under the same parameters. We explored
the effect of additive convolution and contrastive loss on
performance through ablation studies, and the improvement
effect of the contrastive loss on the classification boundary

was further illustrated by feature visualization. By comparing
with existing methods, the proposed method has advantages
in energy consumption while maintaining high performance.

V. CONCLUSION

In this paper, a novel end-to-end model AddNet-SCL was
proposed for seizure prediction based on EEG signals. This
model used cheap addition instead of multiplication in convo-
lution to make the network more lightweight while maintain-
ing the accuracy of the network. The model combined with
supervised comtrastive learning to learn the intrinsic pattern of
the data, there is no special structure design and feature extrac-
tion, it has better robustness to hard samples, and improves the
poor classification margin caused by the cross-entropy loss.
The proposed method obtained better performance than the
baseline model in two public databases, 0.942 AUC, 94.9%
sensitivity and 0.077/h FPR on 19 patients in the CHB-MIT
database, and 0.831 AUC, 89.1% sensitivity and 0.120/h FPR
on 5 dogs in the Kaggle database. The experimental results
verify the effectiveness of the proposed method in seizure
prediction. In addition, additive convolution and supervised
contrastive loss are still suitable for other network structures
and could be easily combined with other technologies.
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