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Abstract— Trajectory planning of the knee joint plays
an essential role in controlling the lower limb prosthesis.
Nowadays, the idea of mapping the trajectory of the healthy
limb to the motion trajectory of the prosthetic joint has
begun to emerge. However, establishing a simple and intu-
itive coordination mapping is still challenging. This paper
employs the method of experimental data mining to explore
such a coordination mapping. The coordination indexes,
i.e., the mean absolute relative phase (MARP) and the
deviation phase (DP), are obtained from experimental data.
Statistical results covering different subjects indicate that
the hip motion possesses a stable phase difference with the
knee, inspiring us to construct a hip-knee Motion-Lagged
Coordination Mapping (MLCM). The MLCM first introduces
a time lag to the hip motion to avoid conventional integral
or differential calculations.The model in polynomials,which
is proved more efficient than Gaussian process regression
and neural network learning, is then constructed to repre-
sent the mapping from the lagged hip motion to the knee
motion. In addition, a strong linear correlation between hip-
knee MARP and hip-knee motion lag is discovered for the
first time. By using the MLCM, one can generate the knee
trajectory for the prosthesis control only via the hip motion
of the healthy limb, indicating less sensing and better
robustness.Numerical simulations show that the prosthesis
can achieve normal gaits at different walking speeds.
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I. INTRODUCTION

FOR the transfemoral amputees, wearing a lower-limb
prosthesis is crucial to regain their walking capability.

The powered knee prosthesis aims to move in a way that
a healthy knee moves. There are mainly two methods for
controlling a powered knee prosthesis for this aim. One
is the impedance control based on a finite state machine
(FSM) [1], [2]. The FSM-based impedance control divides
the entire gait cycle into several gait phases (usually 4 or
5) and sets different impedance parameters in each gait
phase. This control method is mainly used in commercial
and prototypic prostheses. However, the number of control
parameters is usually 10∼20, making parameter adjustments
cost a considerable workload [3]. To address this challenge,
Wen et al. [4], [5] design reinforcement learning (RL) supple-
mentary control, which can synchronously tune 12 impedance
control parameters and generate variant control parameter
settings. In another way, Shorter and Rouse [6] estimate the
ankle impedance in each gait phase by experiments and use the
estimated impedance to control an ankle prosthesis. The other
method for prosthesis control is the position control based
on a reference trajectory. The position control framework
generates a reference trajectory and then uses a low-level
controller to minimize the error between the actual trajectory
and the reference trajectory. This method does not need to
divide the gait cycle into several phases, significantly reducing
the number of control parameters. For the position control
framework, the key problem lies in the trajectory planning of
the knee joint.

The reference trajectory for position control is obtained
through the gait experiments of healthy subjects in
advance [7]. However, the experiments cannot cover all gait
parameters (walking speed, step length, etc.) and body parame-
ters (height, weight, etc.). This fact implies that the reference
trajectory suitable for individualized gait and body parameters
should be planned. Focusing on this issue, researchers employ
many curve fitting methods (such as spline fitting [8], Gaussian
process regression (GPR) [9], Fourier series fitting [10], etc.)
to generate the reference trajectory. They further use the
generated trajectory for gait treatment of severely affected
patients (such as hemiplegic patients and stroke patients) and
achieve effective results [11]. However, when the case comes
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to the position control of the lower-limb prosthesis, forcing the
prosthesis to move according to the reference trajectory seems
unreasonable because it ignores the role of the amputees’
healthy limbs in co-realizing the gait. Other research further
reveals that the lower limbs show good coordination in a
comfortable and efficient walking mode [12]. Thus, the coor-
dination between the healthy limb and the prosthesis should
be considered in trajectory planning.

In modeling the coordination relationship between the
healthy and prosthetic limbs, the trajectory of the healthy
limb is often treated as input, and the reference trajectory of
the prosthesis is the output. One commonly used method to
establish this mapping is the data-driven method (such as Ran-
dom Forest Model [13] and Recurrent Neural Network [14])
due to its good performance in finding the non-empirical
relationship between several related physical quantities. How-
ever, the mappings established by the conventional data-driven
method may have two drawbacks. First, the mappings include
trajectories of nearly all healthy limb joints as inputs, which
means quite a lot of sensors need to be attached to the healthy
limb. Second, the mappings need to train a large number of
parameters. The calculation burden will be a big problem
for the online deployment of prosthesis control. Thus, for
the real-time trajectory planning of the prosthesis, a simple
and intuitive mapping with a minimum number of sensors is
required.

To achieve this goal, Valley et al. [15] propose a comple-
mentary limb motion estimation method (CLME) based on
statistical regression to establish the mapping from the hip
and knee motion of the healthy limb to the knee motion of the
prosthesis. Later, an amputee subject successfully walks at dif-
ferent speeds and climbs stairs with the CLME-controlled knee
prosthesis [16]. It is worth noting that only the healthy limb’s
hip and knee sensor signals are used in the CLME method.
Some research further decreases the number of sensor inputs.
Eslamy et al. [17] only use the hip angle and angular velocity
to obtain the knee angle by Gaussian Process Regression
(GPR), making the RMSE lower than 5◦. Quintero et al. [18]
use the hip angle and angular velocity (or angular integral)
to build a phase variable for characterizing the reference knee
angle, allowing three transfemoral amputees to walk naturally
at different speeds and slope conditions. However, time-
differentiating the joint angle to obtain angular velocity often
amplifies the noise sensitivity of mapping. In fact, constructing
coordination mapping may not require the velocity term or
the integral term. For example, the coordination relationship
between the left and right knee motion can be described only
by introducing a phase difference of 180◦. It enlightens us to
construct a mapping without the velocity term by introducing
a coordination phase difference parameter.

The phase difference is always a vital index in joint coor-
dination research. The most commonly used index to describe
the lower limb coordination is the continuous relative phase
(CRP). CRP is derived from the difference between two joints’
phase angles [19]. Furthermore, the mean absolute relative
phase (MARP) and deviation phase (DP) can be derived based
on CRP to evaluate joint coordination better. MARP [20] is

defined by calculating the mean value of CRP over the entire
gait cycle, and DP [21] is determined by calculating the mean
value of the CRP’s standard deviation to measure the stability
of joint coordination. The smaller DP is, the more stable
the joint coordination exists. Based on these two indexes,
researchers compare the lower limb coordination of subjects
of different ages [19], body shapes [22], walking speeds [23],
and walking situations [20] (level-ground walking, up and
downstairs, up and down slopes, etc.). However, few studies
use these indexes to establish coordination mapping.

In general, a simple and intuitive coordination mapping
is necessary for the online deployment of prosthesis control.
Lack of comprehension of lower-limb coordination affects the
establishment of a simple and intuitive coordination mapping.
Meanwhile, the existing coordination research on the quan-
titative description of MARP and DP indexes is not used to
establish a coordination mapping. Thus, there is a knowledge
gap between the study of lower-limb coordination and the
establishment of coordination mapping. This paper aims to
fill this knowledge gap and apply coordination mapping to the
position control of the knee prosthesis.

The established coordination mapping has three highlights.
a) It only needs hip motion sensing and does not require
integral or differential calculations. This feature saves the
burden of information collection and processing in prosthesis
control. b) The parameter introduced in this mapping, namely
motion lag, can be directly estimated from the gait period
and the walking speed. This feature simplifies the lower-
limb prosthesis control. c) The established mapping can adapt
to different individuals and walking speeds to some extent.
This feature implies broad adaptability to various working
conditions.

The structure of this paper is arranged as follows.
In Section II, the gait experiments are conducted to get the
coordination indexes. Then, the law of the lower limb coor-
dination is analyzed. In Section III the hip-knee MLCM is
established and analyzed. In Section IV, a specific method
of applying the hip-knee MLCM to the real-time trajectory
generation of the knee prosthesis is given and verified on
the simulation platform. Finally, in Section V, we discuss the
results of our method.

II. PRELIMINARIES AND MOTIVATION

This section mainly clarifies the motivation for hip-knee
coordination mapping based on the following hypothesis:

Hypothesis:There is a stable coordination phase difference
between hip and knee over the entire gait cycle when walking
at uniform speeds.

A. Experimental Protocol

Five males and five females (mean±std. age:
24.3±1.8 years, height: 1.71±0.07 m, weight: 58.15±6.33kg,
BMI: 20.28±1.87) were invited to participate in this
experiment. They all have good sports abilities and do not
have any musculoskeletal injuries. This study was approved
by the Ethics Committee at the Fudan University, China (No.
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TABLE I
SUBJECT CHARACTERISTICS OF THE EXPERIMENT

FE21124) on 16 Aug 2021. The aims and details of the
protocol were fully explained to the subjects with the signing
of written informed consent. Subject characteristics are given
in Table I.

Each participant performed five walking tests on a treadmill
at five walking speeds (2.5, 3.5, 4.5, 5.5, 6.5 km/h, denoted as
WS1, WS2, WS3, WS4, WS5). The data was recorded for two
minutes after the participant reported adapting to the current
walking speed for each test. Then, the participant rested for
another two minutes between tests. Nineteen markers were
stuck on the subject based on the rule of the Helen-Hayes
Model [24]. Markers’ movement was recorded at a sampling
rate of 120 Hz via the OptiTrack motion capture system.
According to Helen Hayes Model, the hip, knee, and ankle
joint trajectories in the sagittal plane were extracted.

B. Data Processing

For a time-discrete curve θ (ti ), where ti ∈ [0, T ] and T is
the gait period, its phase angle can be extracted by the Hilbert
transform [25], i.e.

ϕ (ti ) = arctan ( [θc (ti )] /θc (ti )) , (1)

where [·] means the Hilbert transform of a signal. θc (ti )
is the zero-centered signal defined as

θc (ti ) = θ (ti ) − (max (θ) + min (θ)) /2, (2)

where max (θ) and min (θ) indicate the maximum and the
minimum of θ (ti ) over one gait cycle.

Based on Eq. (1), this study defines the CRP between
two joint motions as the phase angle of the proximal joint
subtracting that of the distal joint. According to the distance
from the joints to the main body, the hip joint is the most
proximal, followed by the knee joint, and the ankle joint is
the most distal. For example, the hip-knee CRP, denoted by
φhip-knee, is calculated by subtracting the knee phase angle
from the hip phase angle.

φhip-knee (ti ) = ϕhip (ti ) − ϕknee (ti ) . (3)

Eq. (3) indicates the continuous relative phase between the
hip and knee angles. Especially, a 0◦ or 360◦ CRP means
completely in-phase motion between the hip and knee joints,
and a 180◦ CRP represents completely out-of-phase. By refer-
ring to Eq. (3), φknee-ankle and φhip-ankle can be calculated and
explained in the same way. Furthermore, averaging the CRP

in n gait cycles yields the averaged CRP �:

� (ti ) = 1

n

n∑
j=1

φ
(
ti, j

)
, (4)

where j indicates the j th gait cycle and ti, j = ti + ( j − 1) T .
By calculating the standard deviation of the CRP at each time
point, the CRP variability � can be obtained:

� (ti ) =
√√√√ 1

n − 1

n∑
j=1

(
φ

(
ti, j

) − � (ti )
)2

. (5)

Averaging � and � over the gait cycle further yields MARP
and DP:

MARP = �̄ (ti ) ,

DP = �̄ (ti ) ,
(6)

MARP indicates the phase difference between two joints and
has a similar physical meaning to CRP. When MARP equals
0◦ or 360◦, the joints’ motions are in phase on average over
the entire gait cycle. When MARP equals 180◦, the joints’
motions are out-of-phase on average over the entire gait cycle.
DP indicates the variability of joint coordination. A smaller DP
means more stable coordination between the joints.

This study employs MATLAB (version 2020b, MathWorks,
Natick, MA, USA) to process the detailed calculations defined
by Eqs. (1)-(6). MARP and DP values of hip-knee, knee-
ankle, and hip-ankle are calculated for the lower limb motion
of all ten subjects at five walking speeds. To figure out the
effects of the gait phase on MARP and DP, we also calculate
MARP and DP values over the stance phase, swing phase,
and entire gait cycle, respectively. So, there are 450 MARP
values and 450 DP values (10 subjects ∗5 speeds ∗3 gait
phases ∗3 coordinations). The calculated data is grouped in
speed for joint coordination evaluation. The angle of the thigh
relative to the gravitational direction (anticlockwise +) is used
to describe the hip motion, and the angle between the thigh
and the shank (flexion +) is adopted to represent the knee
motion. Besides, the angle of dorsiflexion or plantar flexion
(dorsiflexion +) indicates the ankle motion.

The MARP and DP results calculated by MATLAB are
then given into SPSS (version 20, IBM Corp, Armonk, NY,
USA) for further statistical analysis. Firstly, the outliers of
the calculated MARP (15 out of 450) and DP (42 out of 450)
values are removed because outliers may mislead the statistical
results. Secondly, the normality of the data is tested. If the
data obey the normal distribution, the homogeneity test of
variance will be further carried out. If the data variance is
homogeneous, analysis of variance (ANOVA) will be used to
detect the effects of speed on MARP and DP. Otherwise, the
Games-Howell test will be used. If the data does not obey the
normal distribution, a non-parametric test (Kruskal-Wallis H
test) will be carried out to detect the effects of speed and gait
phase on MARP and DP. The significance level of the results
is set at p < 0.05.

C. Statistical Results

Table II indicates that the p-values of MARP with respect
to different walking speeds are all smaller than 0.05. This
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Fig. 1. Hip-knee, knee-ankle, hip-ankle MARPs and DPs, where the
error bar indicates standard deviation between subjects. (a) Hip-knee
MARP; (b) Hip-knee DP; (c) Knee-ankle MARP; (d) Knee-ankle DP;
(e) Hip-ankle MARP; (f) Hip-ankle DP.

TABLE II
EFFECTS OF WALKING SPEED ON MARP AND DP

(EVALUATED BY P-VALUE)

feature illustrates that walking speed has a significant effect
on interlimb MARP. In Fig.1a, c, and e, one can find that
except for knee-ankle MARP at WS1, the MARP values of
arbitrary two joints decrease with the walking speed increase.
Besides, hip-knee, knee-ankle, and hip-ankle MARP values
decrease at different ranges. Fig. 1a shows that the range
of hip-knee MARP is 18.01◦, which is significantly smaller
than that of knee-ankle (41.01◦, Fig.1c) and hip-ankle MARP
(60.94◦, Fig.1e).

Table II also indicates that walking speed significantly
affects interlimb DP values. For example, in Fig.1b, d, and f,
one can find that the DP values of arbitrary two joints at
WS3 are significantly smaller than those at other walking
speeds, which implies the coordination stability is the best
at WS3. In fact, WS3 (4.5 km/h) is the closest to the normal
walking speed of human adults (1.26 m/s≈4.5 km/h according
to [23]). In other words, one can achieve the best coordination
stability at normal walking speed. In addition, the hip-knee DP
(2.96◦ ∼ 5.07 ◦) is generally smaller than the knee-ankle DP
(5.13◦ ∼ 8.79 ◦) and hip-ankle DP (4.02◦ ∼ 7.47 ◦). Thus,

Fig. 2. Standard deviations of (a) MARP and (b) DP through entire gait
cycle between different subjects.

the hip-knee phase difference is the most stable in lower-limb
coordination.

Table III indicates that the gait phase does not significantly
affect interlimb MARP and DP values, suggesting that the
coordination phase difference is consistent in the stance and
swing phases. Thus, the coordination mapping can be realized
time-continuously over the entire gait cycle.

D. Motivation for Hip-Knee Coordination Mapping

Fig.2 shows the standard deviations of MARP and DP
between different subjects. As can be seen, the standard
deviation of hip-knee MARP is much smaller than that of
the knee-ankle and hip-ankle MARPs. This feature means the
hip-knee coordination phase difference has strong consistency
and regularity between different subjects. Unlike the MARP
results, the standard deviation of hip-knee DP is not always
the smallest, e.g., WS1 and WS3, but maintains at a low
level (0.83±0.17◦). Thus, hip-knee coordination variability is
also consistent among different subjects. The above analysis
reveals that the hip-knee coordination relationship, especially
the coordination phase difference represented by MARP, is not
easily affected by individual differences. Combined with the
analysis in the previous subsection, the hypothesis is validated.
Hence, a hip-knee coordination mapping may be established
by considering the coordination phase difference.

III. HIP-KNEE MOTION-LAGGED

COORDINATION MAPPING

According to the analysis in subsection II.D, there is a stable
phase difference between the hip and knee joint motions. This
phase difference causes the hip joint and the knee joint to move
with a constant time interval, called the hip-knee motion lag,
from the perspective of time history. If the hip motion can be
shifted backward with the hip-knee motion lag, it will be easier
to establish the coordination mapping because the shifted hip
motion and the knee motion are completely in-phase or out-
of-phase. This section is carried out by developing such a
mapping and analyzing it.

A. MLCM: Motion-Lagged Coordination Mapping

We introduce three candidates for the form of MLCM. The
first is an n-order (n = 2,3,4,5) polynomial.

ỹ (t) =
n∑

i=0

Ci x i (t − τ ), (7)
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TABLE III
EFFECTS OF GAIT PHASE ON MARP AND DP, THE P-VALUES ARE OBTAINED BY COMPARING THE MARP AND DP RESULTS

OVER STANCE PHASE AND SWING PHASE WITH THOSE OVER ENTIRE GAIT CYCLE

where ỹ (t) is the normalized mapped knee motion, x (t − τ )
the normalized shifted hip motion, τ the hip-knee motion lag,
and Ci the polynomial coefficient to the i th order.

The second candidate is an RBF neural network[26], which
uses the Gaussian function[27] as its activation function.
The number of neurons is set to be 5. The third candidate
is a GPR model, which is identical to that in [17] except
for a different input (inputs in [17]: hip angle and angular
velocity, our input: normalized shifted hip angle). These two
candidates are chosen as the state of the art because they are
widely used to fit curves and achieve good results in recent
years.

The three candidates mentioned above will use the same
experimental data to construct our MLCM. Their performances
will be evaluated based on prediction accuracy and time, and
the best-performing candidate will be used as the final form
of MLCM.

The entire process of constructing the MLCM is shown in
Fig.3(a). First, the normalized hip motion is shifted backward
with a given lag τ . Then, parameter regression is conducted to
map the normalized shifted backward hip motion to the nor-
malized experimental knee motion. The regression strategies
for polynomial, RBF, and GPR are the least square method,
gradient descent method, and Bayesian Optimization, respec-
tively. Finally, the k-means clustering algorithm is employed
to find the center points and standard variances of the RBF
network.

After parameter regression, the normalized mapped knee
motion is obtained. Then, we come to the most important step
of finding the best-fitted motion lag. The following reward
function, denoted as r , is defined to evaluate the motion lag
fitness.

r (ỹ, y) =
∣∣∣Cov (ỹ, y)

/(√
D (ỹ)

√
D (y)

)∣∣∣ ∈ [0, 1] , (8)

where

Cov (ỹ, y) = 1

T

∫ T

0
ỹ ydt −

(
1

T

∫ T

0
ỹdt

) (
1

T

∫ T

0
ydt

)
,

D (ỹ) = 1

T

∫ T

0
ỹ2dt −

(
1

T

∫ T

0
ỹdt

)2

,

D (y) = 1

T

∫ T

0
y2dt −

(
1

T

∫ T

0
ydt

)2

,

here y is the measured signal of knee motion, and T represents
the gait period time. The larger the value of r (ỹ, y), the

Fig. 3. (a) Flowchart of hip-knee MLCM construction. In the left-side
figure, experimental hip-knee angle phase diagram is shown. In the
right-side figure, shifted hip-knee angle phase diagram and the fitting
curve of f

(
xτ

)
is shown. The form of f

(
xτ

)
can be a polynomial,

a RBF neural network or a GPR model, as introduced in subsection III.A.
(b) Time histories of experimental knee angle and mapped knee angle
using different candidates for subject 8 at WS3 (4.5km/h). The black solid
line is the experimental data. The red, green, blue solid line is the motion-
lagged GPR model, RBF network, 2-order polynomial. The red, green,
blue dashed line is the corresponding candidate without motion lag.

stronger the consistency between the two signals, and the
better the motion lag fitness is. To determine the optimal
motion lag, τ is traversed from 0 to T, and then the largest
r (ỹ, y) is selected. The corresponding τ is determined to be
the motion lag used in the mapping, and the corresponding
regression results determine the mapping parameters.

Fig.3(b) shows the time histories of mapped knee angles
with or without motion lag. One can find that the motion-
lagged models all achieve good fitness for the experimental
data. On the contrary, corresponding models without motion
lag barely fit the experimental data. This feature can be
explained by referring to the phase diagram in Fig.3(a). Before
shifting the hip motion, each hip angle maps to two different
knee angles, so knee angle cannot be determined only by hip
angle. After shifting the hip motion with motion lag, each hip
angle can map to two similar knee angles, so the mapping
from hip angle to knee angle can be realized with a small
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error. Therefore, motion lag is necessary for our coordina-
tion mapping. So far, the effectiveness of MLCM has been
verified.

B. Comparisons With the SOTA

In this subsection, the prediction accuracy and prediction
time will be evaluated for three candidates to determine the
MLCM form. In addition, the MLCM will also be compared
with the mapping used in [17] (as state of the art). All the
calculations are completed on the computer with a CPU of
Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz.

The MLCM will be applied to predict knee motion
at any walking speed in the real-time prosthesis con-
troller. We hence perform leave-one-out-cross-validation
(LOOCV)[14] to present our results. For the data at five
walking speeds of each subject, one of the walking speeds
is taken as the test set, and the other four walking speeds are
used as training sets. Thus, four groups of mapping parameters
can be obtained from training sets and then be averaged to act
as the mapping parameters of the test set. In this way, the
prediction accuracy for every walking speed of ten subjects
is obtained by calculating the RMSEs between the mapped
and experimental data. The average prediction RMSEs and
prediction time for each walking speed are plotted in Fig.4.

Fig.4(a) shows that the MLCM shows higher accuracy
(smaller RMSE) than SOTA, and the accuracy is almost
the same between the GPR and polynomial candidates. The
prediction accuracy slightly increases with the polynomial
order, except for WS1. In terms of prediction time (Fig.4(b)),
the GPR candidate costs the most, which is not conducive to
the online deployment of the algorithm. Because the polyno-
mial candidate is more straightforward and faster than other
candidates, and the prediction accuracy is not sensitive to the
polynomial order, we choose the polynomial of order four as
the final MLCM form.

C. Relationship Between Motion Lag and MARP

For two sinusoidal signals at the same frequency with a cer-
tain phase difference, e.g.,y = sin (ωt) and y = sin (ωt + ϕ),
the conversion between the phase difference ϕ in the frequency
domain and the time lag τ in the time domain can be
represented as τ = ϕ/ω or

τ = ϕT/ (2π) , (9)

where T = 2π/ω is the period of the sinusoidal signal.
This equation inspires us to inspect the intrinsic relationship
between the identified hip-knee motion lag τ and the widely
used MARP.

Table S.I in Supplementary lists all the hip-knee MARPs
and motion lags of all subjects at different walking speeds.
By referring to Eq. (9), Fig.5 takes the independent and
responding variables as MARP · T (T is the period time) and
the motion lag τ , respectively. One can find that these points
show obvious linear correlations, except for the data point of
Subject 7 at Speed 1. This data will be discarded in subsequent
analysis. The explanation for this outlier will be discussed in

Fig. 4. (a) The RMSEs for each walking speed using different mappings,
where the error bar represents the standard deviation between subjects.
(b) Prediction time for each walking speed using different mappings.
Polyn represents an n-order polynomial. GPR SOTA represents the
model used in [17], where hip angle and angular velocity are used as
inputs.

Fig. 5. Linear relationship between hip-knee phase difference and
motion lag.

Section V. Using the LSM to fit these data points yields the
following linear expression.

τ = 0.0482MARP · T + 0.006,

R2 = 0.9412. (10)

It is not difficult to find that the curve fitting result, shown
as the black dashed line in Fig.5, indicates a satisfying linear
relationship between the motion lag and the hip-knee MARP.
However, it is worth noting that in the sinusoidal signal,
the slope of the curve should be 1/2π ≈ 0.16, which is
distinct from our result of 0.0482. This difference remains
to be studied in our follow-up research work.

This linear relationship fills the knowledge gap between
the research of lower-limb coordination and the establishment
of coordination mapping. It tells us the motion lag parame-
ter introduced in the mapping is meaningful in lower-limb
coordination. Instead of traversing from 0 to T to find the
optimal motion lag (the method used in subsection III.A),
we can obtain the motion lag by calculating the MARP and
the period time. In this way, the MLCM will be practicable
for the real-time control of the prosthesis.
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Fig. 6. Prosthesis-healthy limb heterogenous coupled model.
(a) Prosthesis-healthy limb coupled system. (b) Model of the prosthesis.

IV. APPLICATION TO PROSTHESIS CONTROL:
A SIMULATION EXAMPLE

The MLCM established in Section IV can be used for the
trajectory planning of the knee prosthesis. This section gives a
control strategy for applying the mapping to generate the ref-
erence knee trajectory in real-time. To verify the effectiveness
of our control strategy, we apply it to the prosthesis-healthy
limb heterogenous coupled model established in our previous
research [28]. The results show the potential of this control
strategy in the motion of the knee prosthesis under different
walking speeds.

A. Dynamic Model

As shown in Fig.6, the transfemoral amputee wearing a
prosthesis is a multi-link system composed of eight segments.
This system can be divided into two parts, i.e., the prosthesis
and the human body. The prosthetic subsystem consists of the
prosthetic thigh, the prosthetic shank, and the prosthetic foot.
The human body subsystem includes the trunk, the healthy
thigh, the healthy shank, the healthy foot, and the residual
thigh. The prosthetic thigh and residual thigh are rigidly
connected through the socket. Each foot is supposed to be
triangular. The knee prosthesis and ankle prosthesis are all
driven by motors. The ground reaction force governs the heel
and toe of each foot. Based on the Lagrange equation of the
second kind, the dynamic model of prosthesis-healthy limb
coupled system can be derived as

M (q) q̈ + C (q, q̇) q̇ + N (q) = Fe (q, q̇) + Fq (q, q̇) , (11)

where q = (x, y, α1, α2, α3, α11, α22, β1, β2)
T , x and y are the

horizontal and vertical displacement of the hip joint, α1 and
α11 are the angles of the prosthesis thigh and shank relative
to the vertical direction, α2 and α22 are the angles of the
healthy thigh and shank relative to the vertical direction, α3
are the trunk angle relative to the vertical direction, β1 and
β2 are the angles of prosthesis foot and healthy foot relative
to the horizontal direction. All the above angles are in the
counterclockwise direction. M (q) is the mass matrix, C (q, q̇)
is the Coriolis force or centrifugal force term, N (q) is the grav-
ity term, Fe (q, q̇) is the generalized force term generated by

the foot-ground interaction force and the unilateral constraint
force of the knee joint, Fq (q, q̇) is the generalized force term
caused by the healthy limb and residual limb joints, knee and
ankle prosthesis motors. The form of Fe (q, q̇) can be referred
to [28]. The forms of M (q), C (q, q̇), N (q), and Fq (q, q̇) are
given in Supplementary.

The knee motor and ankle motor are generated by PD
control. The form of τknee andτankle will be given in subsec-
tion IV.C when it comes to the control architecture of the
prosthesis. After the above derivation, we have obtained the
prosthesis-healthy limb heterogenous coupled dynamic model.

B. Real-Time Estimation of Motion Lag

Based on the hip-knee MLCM, we can generate the pre-
dicted knee trajectory of the prosthesis just from the hip
trajectory of the healthy limb and then apply this trajectory
to the position control of the knee prosthesis. In this way,
only one hip motion sensor will be mounted on the residual
limb for prosthesis control.

Notice that the motion lag τ in the MLCM should be
estimated in real-time. According to Eq. (10), MARP and T
must be obtained to calculate the motion lag in real-time.
According to Eqs. (3)-(6), the calculation of MARP uses
the motion data of the hip and knee, which requires the
placement of sensors on the thigh and shank of the healthy
limb. In addition, the calculation of MARP involves the Hilbert
transform, which requires at least one cycle of gait data in
advance. To avoid placing extra sensors on the healthy limb
and reduce the calculation complexity of MARP, we need to
establish the relationship between easily obtained real-time
gait parameters and MARP. Observing Fig.1a, we consider a
linear correlation between MARP and walking speed, denoted
as v.

MARP = a1v + a2, (12)

where a1 and a2 are coefficients. Substituting Eq. (12) into
Eq. (10) yields

τ = 0.0482a1 · vT + 0.0482a2 · T + 0.006

= A1 · vT + A2 · T+A3, (13)

where v is the walking speed (m/s), and T is the time period
(s). Using the LSM and the data of 10 subjects at five walking
speeds (the data of Subject 7 at Speed 1 is discarded) for
identification, we can obtain

A1 = −0.0094, A2 = 0.2547, A3 = −0.0020.

It is found that the RMSE of the identified motion lag and the
actual motion lag is 0.0124s, which is acceptable compared
to the average motion lag (0.2570s, relative error percentage
4.82%).

So far, the motion lag will be estimated by Eq. (13) if we
can obtain the walking speed and period time in real-time.
The research shows that period time can be obtained according
to the time interval between two heel strike moments, which
are easily detected by the pressure sensor on the sole of
the foot [29]. Meanwhile, A model-based method to estimate
walking speed with only a shank-embedded IMU is proposed
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Fig. 7. Control flow chart.

TABLE IV
RMSES BETWEEN PROSTHESIS TRAJECTORY AND EXPERIMENTAL

TRAJECTORY FOR EACH WALKING SPEED

in [30]. Thus, the walking speed and period time estimation
can be realized by installing a pressure sensor on the sole of
the prosthesis foot and an IMU on the shank of the prosthesis.
Further, the motion lag can be estimated in real-time.

C. Control Architecture Based on MLCM

The control strategy flow chart is shown in Fig.7. First,
the IMU sensor attached to the thigh records the hip motion
signal. Then, the motion lag is calculated in real-time by Eq.
(13), and the reference trajectory of the knee prosthesis θd

knee is
generated by using the hip-knee MLCM. The real trajectory
and angular velocity of the knee joint are measured for the
feedback term of control. At last, a PD control strategy is
applied to generate the knee torque, which is expressed as

τknee = K p,knee ·
(
θd

knee − θknee

)
+ Kd,knee ·

(
θ̇d

knee − θ̇knee

)
,

(14)

where θ̃knee and ˙̃θknee are the reference angle and angular
velocity of knee prosthesis, θknee and θ̇knee are the angle
and angular velocity of the knee prosthesis in the simulation.
K p,knee and Kd,knee are set as 1275 and 60.

The ankle torque is also generated by the PD control
strategy.

τankle = K p,ankle

(
θ̃d

ankle − θankle

)
+ Kd,ankle

( ˙̃θd
ankle − θ̇ankle

)
,

(15)

where θ̃ankle and ˙̃θankle are the reference angle and angular
velocity of ankle prosthesis obtained in subsection II.A, θankle
and θ̇ankle are the angle and angular velocity of ankle prosthesis
in the simulation, K p,ankle and Kd,ankle are set as 170 and 17.

D. Control Results

Table IV shows the RMSEs between prosthetic and exper-
imental trajectories for each walking speed. The standard
deviation represents the difference across subjects. Compared
with the prediction RMSE in Fig.4(a), the controlled prosthesis
RMSE is more significant. This error increase is mainly caused

Fig. 8. The control results of knee angle (Subject 4) with changing
speeds. Red dashed line for experimental knee angle, blue solid line for
prosthesis knee angle obtained by PD control, gray solid line for walking
speed. (a) WS1-WS2; (b) WS2-WS3. Because of the human weight and
other factors, the walking speed is obtained from the speed of the heel
marker during stance phase. Due to human weight and other factors,
there is a certain difference between the real walking speed and the
walking speed displayed by the treadmill.

by the contact between the prosthesis and the ground. Except
for WS1, the RMSE increases with the growth of walking
speed. Basically, the RMSEs maintain below 10◦. The results
verify the feasibility of our control strategy in simulation. Real
prosthesis experiments also need to be carried out in the future.

Fig.8 shows the simulation results with changing speeds of
Subject 4 (randomly selected). The mapping parameters take
the average of five walking speeds and do not change during
the simulation. Assuming that the sensor has obtained the
walking speed and period time, the motion lag can be easily
estimated by Eq. (13). The maximum knee angle increases
significantly after speed change, which may be caused by the
increase of the range of hip angle. The results show that our
method is suitable for changing speed motion.

V. DISCUSSION

A. Hip-Ankle and Knee-Ankle Coordination

In Section II, the existence of a hip-knee coordination
mapping is pointed out through statistical analysis. It can
be found that the performance of hip-ankle and knee-ankle
coordination (MARP and DP values) is quite different among
different individuals compared to that of hip-knee coordi-
nation. A reasonable explanation is that because the foot
connected to the ankle joint directly contact the ground, the
ankle angle is greatly affected by the foot-ground contact,
making its coordination with other joints (knee-ankle and hip-
ankle) relatively unstable. Thus, the coordination mappings of
hip-ankle and knee-ankle are more difficult to establish than
that of hip-knee. If further study wants to explore knee-ankle
and hip-ankle coordination, the factor of foot-ground contact
should be considered.

1) Individual Differences of MLCM: According to subsec-
tion II.D, individual differences do not easily affect the
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Fig. 9. The prediction RMSEs using the mapping of different subjects,
where the error bar represents the standard deviation between the
RMSEs obtained from the mapping of different subjects.

hip-knee coordination relationship. Thus, the hip-knee MLCM
is expected to be applied to different individuals. To explore
the feasibility of this idea, We apply the mapping of all other
subjects to the subject’s motion that need to be predicted
(e.g., use the mapping of Subjects 2∼10 to predict the knee
angle of Subject 1). The prediction RMSEs are shown in
Fig.9. As shown in the figure, in addition to WS1 and
WS5, the middle three walking speeds can achieve RMSE
below 5◦. This feature indicates that the mapping has a
certain universality among subjects. Further research should
deeply explore the relationship between the MLCM and the
subject physical parameters (body segments’ weight, length,
etc.).

2) Relationship Between the Hip-Knee MARP and the Motion
Lag: The relationship between the hip-knee MARP and the
motion lag is further revealed. In sinusoidal signals, the
relationship between phase difference and time lag is definite
and intuitive. However, for non-harmonic signals such as hip
and knee motions, the relationship between the two has never
been studied. Using MARP to characterize the hip-knee phase
difference and the method in subsection III.A to calculate the
motion lag, we established the linear relationship between
the two for the first time. Furthermore, we learned that
this relationship is stable and does not change with walking
speed and individual subjects. Thus, instead of qualitatively
analyzing the coordination between the hip and the knee
through MARP, we reveal the vital role of MARP in hip-
knee coordination. Nevertheless, the deeper physical meaning
of the linear relationship between the hip-knee MARP and the
motion lag needs to be explored in the future.

B. An Explanation for the Excluded Data Point

In Fig.5, the data point of Subject 7 at WS1 is excluded
because the motion lag is 1.0363s (see Table S.I in Supplemen-
tary material), which is distinct from other data points of the
motion lag. This outlier can be explained by the relationship
of reward function with motion lag shown in Fig.10. As can
be seen, the reward function has two local maximal values,
and these two maximal values are very close. The motion lag
of Subject 7 at WS1 is obtained at the maximal value near

Fig. 10. Relationship of reward function r with motion lag τ for Subject 7
at WS1.

the right end, whereas the other motion lags are picked at
the maximal values near the left end. By observing the knee
motion and shifted hip motion in Fig.3(a), we can find that
if the motion lag is obtained at the maximal value near the
left end, the hip motion translates to a state where the motion
trends between the hip and the knee are basically opposite.
Therefore, we can reasonably speculate that if the motion lag is
obtained at the maximal value near the left end, the hip motion
will translate to a state where the hip and knee motion trend
is the same. This speculation can be verified in subsequent
studies. For consistency of the results, when calculating the
MLCM of Subject 7 at WS1, we directly take its motion lag
as 0.33s.

C. Limitations and Future Work

This study also has some limitations. First, gait experiments
with more subjects need to be carried out. At present, the
MLCM is not strictly universal among subjects (e.g., at WS1
and WS5), partly because the number of subjects for training is
small. After sufficient gait experiments are conducted, the sub-
ject physical parameters (body segments’ weight, length, etc.)
can be considered to establish a more universal mapping. Sec-
ond, this paper only studies level-ground walking. We believe
that gait coordination also exists when going up/downstairs
and up/down slopes. Third, gait experiments with the real
prosthesis should be carried out to verify the effectiveness
of our control method. The simulation in Section IV shows
the potential of MLCM for the prosthesis position control
with only one IMU sensor attached to the thigh. It is verified
in [31] that the IMU-based hip angle estimation can typically
achieve an RMSE smaller than 5◦, which is acceptable for
most common clinical situations according to [32]. But the
actual estimation effect and control effect still need to be
demonstrated through experiments.

VI. CONCLUSION

This study contributed to the lower-limb prosthesis con-
trol by proposing a simple and intuitive trajectory plan-
ning method, i.e., the Motion-Lagged Coordination Mapping
(MLCM). The MLCM revealed a linear correlation between
the MARP and the motion lag, which built a solid link
from the biomechanical index to the control coefficient. Three
highlighted features of the established mapping model indicate
a bright prospect of employing it to control the lower-limb
prosthesis. First, this model only needs hip motion sensing and
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does not require integral or differential calculations. This fea-
ture saves the burden of information collection and processing.
Second, the motion lag in this mapping model can be directly
estimated from the period time and the walking speed. Third,
the established model is suitable for different individuals and
walking speeds, so far as we know. This feature implies broad
adaptability to various working conditions. Therefore, it will
simplify subsequent control of the lower-limb prosthesis.
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