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Abstract— The hybrid brain-computer interface (hBCI)
combining motor imagery (MI) and steady-state visual
evoked potential (SSVEP) has been proven to have bet-
ter performance than a pure MI- or SSVEP-based brain-
computer interface (BCI). In most studies on hBCIs, subjects
have been required to focus their attention on flickering
light-emitting diodes (LEDs) or blocks while imagining body
movements. However, these two classical tasks performed
concurrently have a poor correlation. Therefore, it is nec-
essary to reduce the task complexity of such a system
and improve its user-friendliness. Aiming to achieve this
goal, this study proposes a novel hybrid BCI that combines
MI and intermodulation SSVEPs. In the proposed system,
images of both hands flicker at the same frequency (i.e.,
30 Hz) but at different grasp frequencies (i.e., 1 Hz for
the left hand, and 1.5 Hz for the right hand), resulting in
different intermodulation frequencies for encoding targets.
Additionally, movement observation for subjects can help to
perform the MI task better. In this study, two types of brain
signals are classified independently and then fused by a
scoring mechanism based on the probability distribution of
relevant parameters. The online verification results showed
that the average accuracies of 12 healthy subjects and
11 stroke patients were 92.40 ± 7.45% and 73.07 ± 9.07%,
respectively. The average accuracies of 10 healthy subjects
in the MI, SSVEP, and hybrid tasks were 84.00 ± 12.81%,
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80.75 ± 8.08%, and 89.00 ± 9.94%, respectively. The high
recognition accuracy verifies the feasibility and robustness
of the proposed system. This study provides a novel and
natural paradigm for a hybrid BCI based on MI and SSVEP.

Index Terms— Brain-computer interface, motor imagery,
steady-state visual evoked potential, intermodulation
frequency.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI), which can estab-
lish a communication and control pathway between the

brain and an external environment independent of peripheral
nerves or muscles, has been one of the most active research
directions in the field of neural engineering [1]. The BCI
can help to restore the self-care ability of individuals with
movement disorders. Electroencephalography (EEG) has been
a common brain imaging technique for building a BCI system
because it has the advantages of high time resolution and
being non-invasive and portable. Currently, steady-state visual
evoked potential (SSVEP) and motor imagery (MI) have been
widely studied in EEG-based BCIs [2], [3].

A hybrid BCI, which incorporates multiple signals contain-
ing at least one cerebral signal into a BCI system to improve
its practicality and performance, has been another popular
research direction in the field of neural engineering [4]. In the
existing studies on a hybrid BCI, the SSVEP has been one
of the most commonly used brain signals. The SSVEP is
an evoked EEG response generated over the occipital area
focusing on the periodic visual stimulus at a specific frequency
[5]. It has characteristics of time-locking and phase-locking
and can be evoked stably in most people under high signal-
to-noise ratio (SNR) and information transfer rate (ITR)[6].
Significant progress has been made in the development of stim-
ulation methods [7]–[10], classification algorithms [11]–[13],
and applications [14], [15] of the SSVEP-BCI, providing a
great potential to construct hybrid BCIs using different signals.
The MI has been another classical paradigm used in the
research on hybrid BCIs. The MI activates distinct patterns in
the corresponding areas of the sensorimotor cortex by mentally
simulating the movement of different body parts. [16]. The
commands in the MI-BCI share a strong correlation with the
movement intention [17]–[19]. However, due to the low spatial
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resolution of the EEG and physiological mechanism of the
MI, it is challenging to extend the command set size of a pure
MI-BCI under the premise of reliable performance. The MI
illiteracy has the highest proportion of BCI illiteracy. Most
people could not perform a MI task well for the first time [6].

In recent years, a hybrid MI+SSVEP-BCI based on the
asynchronous and synchronous modes has been proposed.
In the asynchronous mode, the MI and SSVEP tasks are
performed sequentially. The superiority of this mode reflects
in the diversity of commands and simplicity of operation in
the application. Hence, a command set based on the serial
fusion of MI and SSVEP has been commonly used for external
devices to achieve more complex operations [20]–[24]. In con-
trast, in the synchronous mode, the MI and SSVEP tasks are
performed simultaneously. Allison et al. [25], [26] introduced
a MI+SSVEP hybrid BCI paradigm that subjects performed
the left- or right-hand motion imagery while focusing on the
ipsilateral LED. They proved that the hybrid BCI could help
to improve accuracy and reduce the number of BCIs-- illiteracy.
Yu et al. [27] emphasized the auxiliary effect of the SSVEP
on the MI. They expected merging SSVEP into MI-BCI could
provide feedback that could reflect subjects’ intentions more
accurately. Ko et al. [28] believed that the addition of SSVEP
features could compensate for the performance decline caused
by the reduction in the number of electrodes used in the
system. Yang et al. [29] proposed a synchronized hybrid BCI
system to recognize a total of 10 mental tasks, i.e., an idle
state, a single MI mode, four single SSVEP modes, and four
hybrid MI+SSVEP modes, via two EEG channels. In these
studies, frequencies of visual stimuli were all below 20 Hz
for strong SSVEPs. However, this might cause visual fatigue
and even photosensitive epileptic seizures [30]. A higher-
frequency stimulus (above 25 Hz) induces a weaker SSVEP,
whereas the signal-to-noise rate (SNR) might not decrease
significantly [31]. Additionally, a higher stimulus frequency is
considered to provide better comfort and security. Moreover,
flickering blocks with uniform brightness or LEDs were used
as stimuli and therefore a weak correlation between MI and
SSVEP tasks in these studies. Also, obvious flashes might
distract subjects, thus bringing difficulties in performing the
movement imagery.

In this study, an innovative hybrid BCI paradigm based on
the intermodulation frequency coding approach [32], which
combines the MI and SSVEP synchronously, is proposed.
The flickering images of hand grasping are used instead of
flickering blocks or arrows with uniform brightness. This
latter approach has been widely used in the SSVEP-related
research. Furthermore, a high-frequency stimulation is selected
for improving system comfort. In the stimulation, both hands
grasped at different speeds to evoke distinguishable inter-
modulation SSVEPs. Subjects were instructed to focus their
attention on a specific target hand image while imagining the
corresponding hand movement. The proposed system provided
movement observation to help the subjects to perform a MI
task [33], [34]. The MI and SSVEP signals extracted from
their dominant brain regions were classified separately, and a
fusion decision was made by the proposed scoring mechanism.
Considering the potential of the MI-BCI in rehabilitation [35],

the feasibility of the proposed system is verified by online
experiments with not only healthy individuals but stroke
patients. In addition, an online comparative experiment con-
taining a movement imagery task under the MI condition, a
visual task under the SSVEP condition, and a fusion task
under the hybrid condition, was conducted to compare the
performance between the proposed hybrid paradigm and two
single modality paradigms. The objective results have been
presented via the classification accuracy and the subjective
results have been obtained via questionnaires.

The rest of this paper is organized as follows. In Section II,
materials and methods are described. The results are presented
in Section III. The performances of the proposed hybrid BCI
are discussed in Section IV. Finally, the conclusions are drawn
in Section V.

II. METHODS AND MATERIALS

A. Experimental Environment

1) Subjects: This study involved an offline experiment for
parameter optimization, an online verification experiment, and
an online comparative experiment. Fourteen healthy subjects
(three males and 11 females, aged from 20 years to 27 years,
with a mean age of 24 years) participated in the offline
experiments. None of the subjects had prior experience with
a MI- or SSVEP-based BCI. Twelve healthy subjects (three
males and nine females, aged from 21 years to 28 years,
with a mean age of 24 years) participated in the online
verification experiments. Eight of them also participated in
the offline experiments. Eleven stroke patients (nine males
and two females, aged from 34 years to 85 years, with a
mean age of 62 years) also took part in the online verification
experiment. Furthermore, ten healthy subjects (two males and
eight females, aged from 22 years to 30 years, with a mean age
of 25 years) participated in the online comparative experiment.
Four of them joined the online verification experiment, while
the others were inexperienced in using the proposed hybrid
BCI or even had no prior experience with any BCI-related
experiment. All subjects had normal or corrected-to-normal
vision. The subjects were neither suffering from neurological
or psychiatric disorders nor taking medications known to
adversely affect the EEG recording. All subjects read and
signed a written informed consent before the experiment and
were paid for their participation. The ethical committee of
Tianjin Medical University General Hospital approved this
study.

2) Stimulus Design: The visual stimulus was presented on
an LCD monitor of 24 inches, with a 60-Hz refresh rate
and a screen resolution of 1,920 ×1,080. The user inter-
face contained two images of both hands with a size of
716 × 597 pixels. During the experiment, the left- and
right-hand images switched between the closed and open
states at different rates, providing an impression that the
hands were grasping. Meanwhile, pictures changed between
the hand images and a black image to provide a visual flicker
stimulation. The stimulus program was developed using the
Psychophysics Toolbox Version 3 of MATLAB (MathWorks,
Inc.) software [36].
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Fig. 1. The offline and online experimental procedures. A complete trial of the offline experiment included three phases: cue phase (3 s), mission
phase (4 s), and resting phase (3 s). A complete trial of the online experiment included three phases: cue phase (2 s), mission phase (2 s), and
resting or feedback phase (1.5 s).

3) Data Acquisition: The subjects were seated comfortably
in front of the monitor at a viewing distance of approxi-
mately 70 cm. A Synamps2 system (Neuroscan, Inc.) was
used to non-invasively record the scalp EEG signals. Sixty
electrodes in the 64-channel modified international 10-20
system excluding M1, M2, CB1, and CB2 were used in the
offline experiment. According to the offline analysis, only
30 electrodes were used in the online experiment, of which
22 electrodes, including FC3, FC1, FCz, FC2, FC4, C3, C1,
Cz, C2, C4, CP3, CP1, CPz, CP2, CP4, P5, P3, P1, Pz, P2, P4,
and P6, were used to obtain the MI-EEG, and nine electrodes,
including Pz, PO5, PO3, POz, PO2, PO4, O1, Oz, and O2,
were used to obtain the SSVEP-EEG. The left mastoid was
selected as a reference electrode, and the ground electrode
was placed between Fz and FPz. All electrode impedances
were maintained below 10 k�. Raw EEG data were band-pass
filtered between 0.15 Hz and 100 Hz, notch filtered at 50 Hz,
and sampled at 1 kHz. In the online experiment, the EEG data
and event triggers were sent from the data acquisition device
to the stimulation device via TCP/IP protocol and then were
analyzed to provide the feedback in real-time.

B. Experimental Design
1) Offline Experiment: The offline experiment included eight

blocks, each of which consisted of 20 trials, namely 10 trials
for the left hand and 10 trials for the right hand. In each block,
the trials were presented in the pseudo-randomized order, and
each trial lasted for 10 s. Also, each trial consisted of three
phases: cue phase, mission phase, and resting phase. In the
cue phase that lasted 3 s, images of closed left- and right-
hand were displayed on the screen first. Then, an image of
a certain hand started to alternate between the closed and
opened statuses at a specific frequency; for the left hand, the
frequency was 1 Hz, and for the right hand, the frequency
was 1.5 Hz. In this way, a visual impression that one hand was

grasping while the opposite hand remained closed was created.
This was a cue for target selection in the next phase. In the
mission phase, each hand began to grasp at the corresponding
frequency, as mentioned above, and simultaneously, images
of both hands flickered at a frequency of 30 Hz. The subjects
needed to concentrate on a particular hand image on the screen
following the cue in the cue phase and performing a movement
imagination of this hand in the mission phase, which lasted 4 s.
Muscle tension should be avoided, and the subjects were asked
to perform first-person kinesthetic rather than visual MI when
performing tasks [37]. Then, a white cross was presented for
3 s in the resting phase, providing a break between trials. There
is a break of an uncertain time between blocks depending on
the subjects’ mental state. The offline experimental procedure
is shown in Fig. 1.

2) Online Verification Experiment: The online verification
experiment consisted of training and test stages. The training
stage included three blocks, each of which included 20 trials,
10 trials for the left hand, and 10 trials for the right hand.
The training data were used to calculate the spatial filter and
classification model. Each trial included the cue, mission, and
resting phases, which lasted for 2 s, 2 s, and 1.5 s, respectively.
No feedback was provided in the training stage. The test stage
consisted of four blocks, each of which included 20 trials, and
was used to evaluate the feasibility of the proposed system.
In the test stage, the resting phase of the training stage was
replaced by the feedback phase. The cue phase, the mission
phase, and the feedback phase lasted for 2 s, 2 s, and 1.5 s,
respectively. The EEG signal was analyzed in real-time to
provide the visual feedback on a red wireframe surrounding
the target after the mission phase. The online verification
experimental procedure is also shown in Fig. 1.

3) Online Comparative Experiment: The online comparative
experiment consisted of 12 blocks. In the two SSVEP blocks,
the subjects performed only the visual task on the flickering
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hand grasp images. In the five MI blocks, the subject per-
formed the movement imagery task; the former three blocks
were used for training, and the latter two blocks with the
feedback were used for the test. In the five fusion blocks, the
subject performed the fusion task, the same as in the online
verification experiment; the former three blocks were used for
training, and the latter two blocks with the feedback were
used for the test. Each block contained 20 trials, and the cue,
task, and resting/feedback phases in each trial lasted for 2 s,
2 s, and 1.5 s, respectively. Note that a white cross would
appear during the resting phase in the training stage, and a
red wireframe surrounding one of the targets would appear
during the feedback phase in the test stage.

After the experiment, each subject was asked to fulfill
a questionnaire consisting of three questions by answer-
ing on a scale from one to five [25]. The first question
was: “Did you find the flickering lights annoying?”; the
offered answers included: “Not Annoying at All,” “Slightly
Annoying,” “Annoying,” “‘Relatively Annoying,” and “Very
Annoying,” which corresponded to 1–5 on the scale, respec-
tively. The second and the third question were respectively:
“Did you find it difficult to image the hand movements?” and
“Did you find the hybrid condition more difficult than the other
two conditions?”; the offered answers to both questions were:
“Very Easy,” “Easy,” “Neither Easy nor Difficult,” “Difficult,”
and “Very Difficult,” which corresponded to 1–5 on the scale,
respectively.

C. Signal Processing Algorithm
1) MI Signal Processing: The collected MI signal was

processed after being down-sampled to 250 Hz and band-pass
filtered in the range between 8 Hz and 30 Hz. Tikhonov
regularized common spatial-spectral pattern (TRCSSP),
which combined Tikhonov regularized common spatial pat-
tern (TRCSP) [38] and common spatial-spectral pattern
(CSSP) [39], was used to analyze the MI signal. Assume
Xk∈R

Nchm ×Np denote the preprocessed MI signal of the kth
trial, where Nchm is the number of channels used in the MI
signal analysis, and Np is the number of sample points; Ck ∈
{1; 2} represents the label of the kth trial, where “1” indicates
left, and “2” indicates right. A time-delayed matrix δτ Xk

was appended to Xk as additional channels, which can be
expressed by,

X̂
k=

(
Xk

δτ Xk

)
, (1)

where δτ denotes a delay operator for notational convenience,
and it is defined by,

δτ
(
X .,t

) = X .,t−τ , (2)

where τ is a user-defined parameter representing the delay
time.

The two class-covariance matrices can be expressed by:
�1 = < X̂

k
X̂

kT

>{k:Ck=1}, (3)

�2 = < X̂
k

X̂
kT

>{k:Ck=2}, (4)

where T denotes transpose. To learn spatial filters ω that
maximize the variance of bandpass-filtered MI signal from

class 1 (i.e., �1) while minimizing those from class 2 (i.e.,
�2), the following objective function was constructed using
Tikhonov regularization and the penalty function P (ω) =
‖ω‖2

2:

JP1 (ω) = ωT �1ω

ωT �2ω + αP (ω)
= ωT �1ω

ωT (�2 + α I)ω
. (5)

Then, the eigenvalue problem derived from (5) was defined
by:

(�2 + α I)−1 �1ω = λω. (6)

The filters ω1 maximizing JP1 (ω) denoted eigenvectors corre-
sponding to the largest eigenvalues of M1 = (�2 + α I)−1�1.
However, the eigenvectors corresponding to the lowest eigen-
values of M1 minimized JP1 (ω) and thus maximized the
penalty function. To obtain filters ω2 that maximized �2 while
minimizing �1, another objective function was defined as
follows:

JP2 (ω) = ωT �2ω

ωT (�1 + αI)ω
. (7)

Filters ω2 denoted the eigenvectors corresponding to the
largest eigenvalues of M2 = (�1 + α I)−1�2. Finally, the
spatial filters W denoted eigenvectors corresponding to m0
largest eigenvalues of M1 and m0 largest eigenvalues of M2.
Using this spatial matrix W , the MI signal X̂

k
were projected

by W as follows:
Zk = W X̂ k = W (0) Xk + W (τ )δτ Xk, (8)

where Zk ∈ R
2m0×2N chm denotes the projected matrices;

columns of W were divided in two submatrices: W (0) that
applied to Xk , and W (τ ) that applied to the delayed channels
δτ Xk .

The feature f eaturek used for the training and classifica-
tion was obtained by:

f eaturek = log
(
var

(
Zk

))
, (9)

where f eaturek is a vector containing 2m0 elements rep-
resenting the feature of the kth trial. Then a support vector
machine (SVM) with a linear kernel function was used as a
classification model.

2) SSVEP Signal Processing: The collected SSVEP signal
was processed after being band-pass filtered in the range
between 20 Hz and 100 Hz. The filter-bank canonical cor-
relation analysis (FBCCA) was used to analyze the SSVEP
signal [11].

Assume Y k ∈ R
Nchs ×Np denoted the preprocessed SSVEP

signal of the kth trial, where Nchs is the number of channels
used in the SSVEP signal analysis. First, the SSVEP signal
was processed by multiple zero-phase Chebyshev-type-I infi-
nite impulse response (IIR) filters with different passbands.
Next, sub-band components Y k

S Bn
, n = 1, 2, . . . , N were

obtained. Then, the canonical correlation analysis (CCA) was
performed on the SSVEP sub-band components and reference
signals RC , C ∈ {1, 2}; RC denotes a matrix containing a
series of sine-cosine signals whose frequencies correspond
to the characteristic frequencies that may appear in SSVEP
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Fig. 2. Statistical distributions and the corresponding probability distri-
butions with a similar trend. (a) Statistical distributions of parameters
obtained by the MI algorithm sharing a similar trend with the beta
distribution; (b) Statistical distributions of parameters obtained by the
SSVEP algorithm sharing a similar trend with the normal distribution.

signals of class C . The characteristic frequencies represent
linear combinations of the flicker frequency fz and hand
grasping rate fl or fr . After performing the CCA between ref-
erence signals RC corresponding to class C and all sub-band
components of Y k , a set of Pearson correlation coefficients
ρC

1 , ρC
2 , . . . , ρC

N was obtained:
Then, a weighted sum of squares of the correlation values

corresponding to all sub-band components was calculated for

the target identification:ρ̃C =
N∑

n=1
w (n) ·(ρC

n )
2
; w (n) denotes

a user-defined weight for the sub-band components, and it
holds that w (1) + w (2) = 1. By comparing ρ̃1 and ρ̃2, the
class of Y k could be identified.

3) Fusion Method: In the MI signal processing, SVM classi-
fication model identified the class of test features from the MI
signals by comparing the score for each class. In the offline
data processing, the score of left- and right-handed MI signals
outputted by the classification model in the procedure of
cross-validation were obtained, and its probability distribution
was simulated. Details about the cross-validation process are
given in Section III. The MATLAB function f i tcsvm was
used to train the model while function predict was used to
classify MI signal. By default, the output scores of classes are
opposite to each other. They were standardized and shifted
using the function of f (x) = 1

/ (
1 + e−2x

)
to satisfy the

condition of b1, b2, 0 < b1, b2 < 1. The statistical and
probability distributions are presented in Fig. 2(a), where it
can be seen that the beta distribution g (x | αm , βm) was used
for the simulation of the statistical distribution, which can be
expressed by:

g (x |αm, βm) = xαm−1 (1 − x)βm−1

B (αm , βm)
, 0 < x, αm , βm < 1,

(10)

B (αm , βm) =
∫ 1

0
xαm−1 (1 − x)βm−1 dx . (11)

In the SSVEP signal processing, the FBCCA generates two
values, e1ande2, for the classification of a single trial, which
denote the correlation coefficients between the SSVEP signal
and two target templates. The difference between these two
values was analyzed, and a normal probability distribution
h(x |μ, σ 2) was used to simulate the statistical distribution as
shown in Fig. 2(b) and expressed by:

h
(

x | μ, σ 2
)

= 1√
2πσ

e− (x−μ)2

2σ2 ,−∞ < x < +∞. (12)

The proposed fusion method is to calculate the possibilities
p1 and p2 that a single test trial falls into the two categories,

and p1(2) = p1(2)
M I ∗ p1(2)

SSV E P , where:
pM I

1(2) = G
(
b1(2)|αm , βm

)/
pM I , (13)

pM I = G (b1|αm, βm) + G (b2|αm, βm) , (14)

pSSV E P
1(2) = H

(
e1(2) − e2(1)|μ, σ 2

)/
pSSV E P , (15)

pSSV E P = H
(

e1 − e2|μ, σ 2
)

+ H
(

e2 − e1|μ, σ 2
)

,

(16)

where G and H denote the cumulative distribution functions
of g and h, respectively. The final class was determined by
comparing p1 and p2.

The architecture of the overall signal processing algorithm
is illustrated in Fig. 3.

III. RESULTS

A. Parameter Optimization

1) MI: Reasonable channel optimization aims to improve
the classification accuracy of a MI-BCI. Considering the
dominant brain region of MI signal and symmetry of channel
distribution, the classification performance of MI signal was
evaluated and compared using several channel sets. The whole
data containing 160 trials, each of which had a data length of
4 s, was used to analyze for each subject. 22 channels were
selected for the MI classification to build an online system.
In addition, there were two user-defined parameters denoted
by α and τ in the TRCSSP algorithm, which represented
the regularization parameter and the time delay parameter,
respectively. To obtain optimal values of α and τ , the final
classification performance was estimated for different parame-
ter combinations by the method of cross-validation and grid
search, as shown in Fig. 4(a). Particularly, to keep consistency
with subsequent analysis, 60 trials, of which 30 trials for
the left hand, and 30 trials for the right hand, were used
for training, and the rest 100 trials were used for the test
in each round of cross-validation. Referring to the highest
performance, α and τ were set to 10−5 and seven, respectively.

2) SSVEP: According to the visual stimulus design, the
flickering frequency of fz= 30Hz and the grasp frequencies
of fl= 1Hz for the left hand and fr = 1.5Hz for the right
hand, were set. The experimental design aimed to induce
distinguishable intermodulation components for encoding two
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Fig. 3. The overall architecture of the proposed EEG decoding algorithm.

Fig. 4. Results of the grid search method and the optimal parameter values. (a) Regularization parameter α was searched in a set of
10-9, 10-8, . . . , 10-1, and the time delay parameter τ was searched in a set of 1,3, . . . ,15; (b) Statistical model parameters of the MI, αm and
βm,were searched in a set of 0.1,0.2, . . . , 0.9; (c) Statistical model parameters of the SSVEP,μ and σ, were searched in 0.01,0.015, . . . , 0.05. Only
part of the results is presented for a better illustration of the difference. The black ellipses indicate the location of the maximum accuracy and the
corresponding selected parameters.

targets. The amplitude spectrum of the SSVEPs is presented
in Fig. 5, where it can be seen that there were obvious peaks
at intermodulation components of fz ± fl , 2 f z ± fl , fz ±
2 fl , 2 f z±2 f l , fz± fr , 2 f z± fr , fz±2 fr , and 2 f z±2 fr . Thus,
in the FBCCA method, the reference signals corresponding
to these frequencies were adopted for the standard CCA.
Although the SSVEP harmonics with frequencies of up to
90 Hz still showed obvious peaks, intermodulation compo-
nents at 3 f z±n f l and 3 f z±n fr were very weak. In this study,
the number of sub-bands was set to two. The frequency ranges
of the two sub-bands were 25 Hz–100 Hz and 50 Hz–100 Hz.
The sub-band weights w (1) = 0.5 and w (2) = 0.5 were

determined by the grid search method. The results verified
that the proposed experimental design could provide stable
intermodulation components.

3) Fusion Method: Referring to (10) and (12), two sets of
parameters (i.e., αm, βm , μ, σ ) need to be determined. The
optimal value of two sets of parameters were determined
by the grid search method, as shown in Figs. 4(b) and 4(c).
Similarly, the classification performance was obtained by the
cross-validation method, as mentioned in the part about the
MI parameter optimization. As shown in Figs. 4(b) and 4(c),
the optimal values of αm = 0.6, βm = 0.2, μ = 0.015, σ =
0.03 were selected for the online experiment.



Fig. 5. The characteristic frequency peaks corresponding to the left and
right hand from a representing subject. The signals from each channel
and trial were averaged to perform the fast Fourier transform (FFT).

B. Offline Experiment Performance
The offline experiment consisted of eight blocks, which

included a total of 160 trials. To evaluate the influence of
different training set numbers on the performance, 160 trials
were randomly divided into eight groups in each round of
cross-validation; each group included 20 trials, 10 trials for
the left hand, and 10 trials for the right hand. For a certain
training set number ng , the remaining groups 8−ng were used
for test. The mean accuracies of all combinations choosing ng

out of eight were calculated. The cross-validation procedure
was repeated 10 times to reduce the model performance’s
dependence on the data division method. The relationship
between the number of training sets and the classification
accuracies obtained using the MI feature, the SSVEP feature,
and the fusion feature separately is presented in Fig. 6(a).
As shown in Fig. 6(a), the classification accuracies of the
MI and fusion features increased with the number of training
sets. The classification accuracy of the SSVEP feature was
stable because an unsupervised algorithm was selected for
the SSVEP classification. The slight change was caused by a
random selection of data in the cross-validation process. One-
way repeated measure analysis of variance (ANOVA) revealed
that there was a significant difference in the classification
accuracy of fusion (F (6, 91) = 2.6, p< 0.05). However, the
difference existed only between the first and last groups;
there was no significant difference between the remaining six
groups. This study assumed that too many training trials might
cause subjects to get tired easily. Therefore, three groups,
including 60 trials, were adopted in this study. On the basis
of these findings, the relationship between the data length
and classification accuracies was studied further. The average
accuracies obtained using the MI feature, the SSVEP feature,
and the fusion feature separately for different data lengths are
presented in Fig. 6(b). As shown in Fig. 6(b), the classification
accuracies increased with the data length. When the data
length was less than 2 s, the classification accuracies were
below 80%. Fig. 6(c) illustrates the mean ITR for different

TABLE I
ONLINE PERFORMANCE AND THE CORRESPONDING OFFLINE RESULTS

data lengths. Considering that the cue and rest times could be
properly adjusted as the mission time changed in the online
experiment, to maintain a reasonable time distribution, an ideal
ITR based only on the mission time (i.e., the data length) was
calculated. When the data length reached 2 s, the ITR of fusion
results achieved the maximum value. Thus, the data length of
2 s was used to construct the online system.

The fusion label was calculated using the labels and scores
derived from the analysis of the MI and SSVEP signals.
As shown in Figs. 6(a) and 6(b), the accuracy using fusion fea-
ture was higher than the accuracy using MI or SSVEP features.
The paired t-test result revealed a significant difference in the
accuracy between using the MI feature, which was 77.82 ±
9.73%, and the fusion feature, which was 88.51 ± 4.51%,
under the selected number of training sets and data length
(p< 0.001). Since there was an outlier in the accuracy when
using the SSVEP feature, a Wilcoxon signed rank test was
conducted for comparing accuracy using the SSVEP feature,
which was 80.36 ± 11.94%, with that using the fusion feature.
The result showed a significant difference in accuracy for the
selected number of training sets and data length ( p< 0.05).
These results proved the effectiveness of the proposed fusion
method.

C. Online Verification Experiment Performance
Table I lists the results of the online verification experiment

of 12 healthy subjects. The average fusion accuracy achieved
in the experiment was 92.40 ± 7.45%. The corresponding
offline results of the subjects who participated in both offline
and online verification experiments are also given in Table I.
For these subjects, the paired t-test results showed that there
was no obvious difference in fusion accuracy (p= 0.22)
between the offline experiment (i.e., 90.66 ± 4.09%) and the
online verification experiment (i.e., 94.38 ± 7.07%).

Table II shows the information and performance of the
online verification experiment of 11 patients. The average
fusion accuracy declined significantly to 73.07 ± 9.07%
compared to that of healthy subjects but was still much
higher than the random probability of 50%. Three patients,
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Fig. 6. The BCI performances of the MI, SSVEP, and MI+SSVEP modalities under different experimental conditions. (a) The mean accuracies for
different numbers of training set samples. The error bars indicate the standard error. (b) The mean accuracies for a different data length. The error
bars indicate the standard error. (c) The ITR under different data lengths from 0.5 s to 4 s with a step of 0.5 s. The ITR is maximal at the data length
of 2 s. The error bars indicate the standard error.

TABLE II
INFORMATION AND ONLINE PERFORMANCE OF THE PATIENTS

TABLE III
ONLINE PERFORMANCE OF THE COMPARATIVE EXPERIMENT

P1, P4, and P9, used the proposed system with an accuracy of
over 80%.

D. Online Comparative Experiment Performance

Table III lists the performance of the online comparative
experiment. The online performances of the MI, SSVEP, and
hybrid tasks were 84.00 ± 12.81%, 80.75 ± 8.08%, and
89.00 ± 9.94%, respectively. The paired t-test results showed
that there was a significant difference between the SSVEP and

fusion tasks (p< 0.01), and there was marginally significant
difference between the MI and fusion tasks (p= 0.063). For
most of the subjects, the accuracy in the hybrid task was better
than in the other two tasks.

For the hybrid task, the accuracies obtained for the MI and
SSVEP features were 81.75 ± 13.95% and 79.50 ± 11.71%,
respectively. The paired t-test results showed that there was
no significant difference in the accuracy between the MI task
and the hybrid task defined by the MI feature only ( p= 0.29),
as well as between the SSVEP task and the hybrid task defined
by the SSVEP feature only (p= 0.71). This could indicate that
the performance and signal features of a single modality task
were not obviously interfered by another modality task during
the hybrid task.

E. Questionnaire Results
The results of the three questions corresponding to the

visual, movement-imagery, and fusion tasks were 1.70 ± 1.06,
2.2 ± 1.14, and 2.10 ± 1.10, respectively. This means the
subjects generally were of the opinion that the flickering was
slightly annoying and that the fusion task did not significantly
increase the difficulty compared to the single modality task.
Note several special score in questionnaire results, subjects
S16 and S18 were inexperienced in using a BCI, and they
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both answered the second question with a ‘4’, i.e., “Difficult,”
and performed not that well in the movement imagery task.
In addition, subject S3 reported that the flickers were relatively
annoying and that the hybrid task was more difficult than the
other two tasks, giving “4” to both questions. This matches
the performances of S3 in performing the MI and hybrid
tasks. Generally, the questionnaire results reflected objectively
that the subjects considered that performing the proposed
hybrid task was not very difficult and that flickers were still
acceptable.

IV. DISCUSSION

In this study, simultaneously modulating the luminance and
movement of a visual stimulus (i.e., an image of a hand)
for eliciting intermodulation SSVEPs is proposed and used
to build a BCI system. This coding approach not only can
elicit the intermodulation SSVEPs but can also allow subjects
to observe hand grasping movements. In the experiments,
subjects were asked to perform the corresponding hand MI
while looking at the visual stimulus. Features obtained from
the intermodulation SSVEP and MI were fused for target
classification. The feasibility of the proposed system was
verified for both healthy subjects and stroke patients.

The earliest study on the intermodulation frequency can
be traced back to the 1980s [40]. After nearly 40 years of
extensive research efforts, the intermodulation frequency has
not been used only to clarify the neural mechanisms of high-
level visual perception but has also been extended to the BCI
field [32]. For instance, the previous studies have demon-
strated that simultaneously modulating the luminance and the
color of a visual stimulus can provide the intermodulation
SSVEP, which can be used for BCI target coding [10]–[41].
However, most of the existing studies have used the low-
frequency stimulus to obtain intermodulation SSVEPs. The
SSVEP-related studies have proven that a high-frequency
stimulus can improve visual comfort [42]. Therefore, this study
adopted an on/off flicker of 30 Hz for improving user comfort.
As shown in Fig. 5, a high-frequency stimulus can also be
used to induce intermodulation SSVEPs. In this study, two
targets appeared on the screen at the same time and were
modulated using both an on/off flicker (30 Hz) and a hand
movement modulation (1 Hz or 1.5 Hz). To the best of the
authors’ knowledge, this study proposes an approach to obtain
the intermodulation SSVEP with motion information for the
first time. The high classification accuracy obtained for both
healthy subjects and stroke patients has validated the feasibility
of the proposed coding method.

In the experiments, the subjects were instructed to execute
the corresponding hand MI while focusing on the visual stim-
ulus. Thus, each target was encoded by two features, namely,
the MI and intermodulation SSVEP features. The proposed
system represents a hybrid BCI system combining the MI
and intermodulation SSVEP. The SSVEP is a passive response
evoked by a visual stimulus reflected in the frequency domain,
whereas the ERD/ERS is an active change in the signal
energy while imagining a movement. Thus, these two features
have different physiological mechanisms and can be used
simultaneously with less mutual interference. However, the

SSVEP can be evoked and detected with less training, whereas
performing the MI tasks to obtain reliable ERD/ERS patterns
is difficult for most new users. Therefore, supplementing the
SSVEP feature could effectively reduce the BCI illiteracy [26].
These characteristics make the proposed system more robust
and applicable to a wider range of users. The obtained results
in the comparative experiment have proven that reliable MI
and SSVEP signals can be detected simultaneously and that the
proposed MI+SSVEP BCI system has certain advantages over
the MI- and SSVEP-BCI, especially for the participants who
were naïve to the BCI experiments. The high classification
accuracy has further verified the feasibility and robustness of
the proposed system.

The proposed system was tested for both healthy subjects
and stroke patients. The proposed system was tested for
stroke patients to explore its application prospect for patient
rehabilitation. A system or device used for rehabilitation
exercises should sense the movement intention of patients
and facilitate them to undertake a prescribed motion [35].
Therefore, providing accurate control commands according
to the patients’ intentions is crucial. Although the average
accuracy of the proposed system declined when it was applied
on patients, its accuracy was still significantly higher than
the random probability. The performance decline could be
caused by the following factors. First, stroke patients have
suffered brain damage in a different brain region and to a
different degree, which could reduce the quality of data when
performing a hybrid task and affect the ability to control a
BCI system [43]. It has been found that these patients might
elicit weaker intermodulation SSVEPs in most trials. Brain
damage also influences the formation of classical cortical acti-
vation patterns (i.e., ERD/ERS), so patients might be unable
to voluntarily perform the MI tasks, or their contralesional
hemispheres might compensate for the motor functions of the
lesioned cortex [44]. Second, the patients participating in the
experiment had an average age of 62 years. Therefore, except
for the brain damage caused by a stroke, physiological changes
that come with normal aging could also cause a decline in
the BCI accuracy for elder stroke patients [45], [46]. Lastly,
the patients were inexperienced with any BCI paradigms, and
several of them had post-stroke aphasic. Therefore, it could be
hard for some of them to perform the task according to the
requirements.

In the following research, the online experiment perfor-
mance of stroke patients could be improved in certain aspects.
Primarily, the mission duration could be extended depending
on patients’ conditions for achieving higher accuracy. Further,
the classification algorithms could be made more patient-
friendly. Namely, certain data-based operations could be added
to the classification algorithms, such as disease-based chan-
nel selection or trial selection for model training. Moreover,
sometimes the fusion model could not handle some extreme
cases well, namely the accuracy using features of a single
modality was nearly random probability. The fusion accuracy
could not be effectively promoted. Improving the existed
fusion model to ensure the superiority of fusion or applying a
general algorithm framework that can process any one of MI,
SSVEP, and fusion signals could also be indispensable work
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in the future. Finally, implementing a supervised algorithm
into the SSVEP classification could be necessary for stroke
patients. By re-analyzing the patients’ online data using the
TDCA [13] for the SSVEP classification, the fusion accuracy
increased to 79.89 ± 10.82%. This indicates that the proposed
system still has room for improvement for stroke patients.
Similarly, the fusion accuracy in the online verification exper-
iment on healthy subjects were 97.88 ± 1.95%. There was an
obvious ceiling effect leading to the low contribution of the
MI feature to the fusion classification. However, from another
perspective, the proposed system shows great potential for
expanding the number of targets based on its own paradigm.

In addition to possible improvements in the proposed
method, further possibilities of the proposed paradigm could
also be explored in future work. Considering a high classifica-
tion accuracy of a supervised algorithm for the SSVEP signal
in a two-class BCI, the number of MI commands could be
extended with the help of the SSVEP features by combining
the luminance frequency and movement frequency from the
left- and right-hand grasping motion to the movement of
other limbs, such as the movement of the feet, or finer limb
movements, including the waving of the forearm, and even the
movement of the fingers. In addition, further improvements
in the proposed system’s performance could be achieved by
introducing other modalities, such as selective sensation [47],
without increasing the complexity of the hybrid task.

V. CONCLUSION

In this study, an innovative approach is proposed to induce
intermodulation SSVEPs. The online experiment performance
has verified that the proposed encoding approach, which
assigns the combinations of luminance frequency and dif-
ferent movement frequency for each target, can elicit stable
intermodulation SSVEPs and thus is suitable for BCI system
design. In the experimental task, when the subjects focused
their attention on the visual stimuli, they were asked to image
their own hands participating in grasping movements. The
results indicate that visual stimuli help subjects to complete the
MI task better. To make full use of features of intermodulation
SSVEPs and MI to improve the classification accuracy, this
study proposes a fusion algorithm that combines the two
features. The online experiment has validated the feasibility
of the proposed system for both healthy people and stroke
patients. The proposed paradigm might provide an inspiring
viewpoint for the MI-BCI with a multi-class or fine imagina-
tion movement, which could be helpful for the rehabilitation
of patients with movement disorders. In addition, the proposed
paradigm could provide the foundation for other multi-modal
BCI construction for practical BCI systems.
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