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Abstract— How to learn informative representations from
Electromyography (EMG) signals is of vital importance
for myoelectric control systems. Traditionally, hand-crafted
features are extracted from individual EMG channels and
combined together for pattern recognition. The spatial topo-
logical information between different channels can also
be informative, which is seldom considered. This paper
presents a radically novel approach to extract spatial struc-
tural information within diverse EMG channels based on the
symmetric positive definite (SPD) manifold. The object is
to learn non-Euclidean representations inside EMG signals
for myoelectric pattern recognition. The performance is
compared with two classical feature sets using accuracy
and F1-score. The algorithm is tested on eleven gestures
collected from ten subjects, and the best accuracy reaches
84.85%±5.15% with an improvement of 4.04%∼20.25%,
which outperforms the contrast method, and reaches a
significant improvement with the Wilcoxon signed-rank
test. Eleven gestures from three public databases involving
Ninapro DB2, DB4, and DB5 are also evaluated, and better
performance is observed. Furthermore, the computational
cost is less than the contrast method, making it more
suitable for low-cost systems. It shows the effectiveness
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of the presented approach and contributes a new way for
myoelectric pattern recognition.

Index Terms— EMG, non-Euclidean, SPD manifold, Log-
Euclidean metric, pattern recognition.

I. INTRODUCTION

ELECTROMYOGRAPHY (EMG) signal is the faint phys-
iological signal which can be accessed during muscle

contraction. EMG signal is composed of motor unit action
potentials (MUAPs) generated by muscle fibers. It can be
classified into surface EMG and invasive EMG [1]. The former
is collected by electrodes above the skin, whilst the latter
is by needle electrodes inserted in muscles. Other sensors
for human movement analysis, like inertial measurement unit
(IMU) [2], camera [3], data glove [4], etc., reflect human
intentions at the physical level, which means they work only if
the human body really moves. Those sensors are effective for
healthy subjects but not for abnormal subjects who have motor
nerve diseases or limb loss. EMG signals contain physiological
level information from which the movement intention of
abnormal subjects can be decoded. It has excellent potential
for human-machine interaction tasks like prosthesis control
[5], stroke rehabilitation [6], etc., which is more intuitive than
the physical level method.

How to decode human movement intentions from EMG sig-
nals accurately is crucial for an EMG-based human-machine
interface (HMI). One approach usually used for EMG-based
HMI is the model-based method, which employs the kinematic
model or the musculoskeletal model for movement estimation
[7]. It is suited for low degree-of-freedom (DOF) tasks like
movements of the elbow, ankle, etc., which is not appropriate
for multi-DOF tasks like hand gesture classification. Another
popular approach is the model-free method [7], which uses
machine learning algorithms for pattern recognition. It consists
of several processes, containing signal preprocessing, fea-
ture extraction, and pattern recognition, among which feature
extraction occupies an important position.

There has been plenty of research exploiting statistical
features such as time-domain features, frequency-domain fea-
tures, and time-frequency domain features [8], which leads to
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Fig. 1. Diagram illustration of classical feature extraction approach. The
EMG signals are preprocessed at first. Then features of every channel
are extracted and combined to construct feature vectors for pattern
recognition.

the prosperity of EMG feature engineering. Those features are
usually calculated from each channel separately and concate-
nated as a vector, as shown in Fig. 1, leaving structural features
among different channels seldom considered. EMG signal is
unstable temporally, but constant information may exist within
channels spatially. Exploiting latent topological structures is
a geometric approach, which can be a novel perspective for
accurate and efficient EMG decoding.

There have been some studies on this issue. For high-density
(HD) EMG signals, a handful of research has focused on
spatial features in recent years. Jordanic et al. [9] predict four
actions under three force levels of spinal cord injury (SCI)
patients using hybrid spatial information of HD-EMG sig-
nals, which significantly outperforms the other two feature
sets. Xie et al. [10] propose a multiscale two-directional
two-dimensional principal component analysis (MS2D2PCA)
approach to extract spatial information above time-frequency
representations of HD-EMG data, and performance above 96%
is observed on twenty gestures of twelve stroke survivors.
For sparse channel EMG signals, muscle synergy can be
viewed as a spatial feature because it simultaneously extracts
information from multiple channels [11]. It represents high-
level neural control information of the Central Nervous Sys-
tem (CNS) on muscle groups [12]. It usually needs to attach
electrodes on specific muscles, and it’s more suitable for
motion mechanism-related research as neural drives. More
informative spatial features of sparse channel EMG signals
are worth being explored.

The classical feature extraction method operates EMG sig-
nals in a flattened Euclidean geometric space with statistical
features, which may not be enough to express the underlining
information inside it. Riemann manifold belongs to non-
Euclidean geometry, which studies geometric properties on
the nonlinear curved space. It can be divided into several
categories: Grassmann manifold, Stiefel manifold, symmetric
positive definite (SPD) manifold, etc. [13] SPD manifold is a
cone manifold defined by the Riemannian metric [14], which
chooses SPD matrices like covariance matrix as the input. It is
convenient for calculating, which makes it popular for learning
representations from data.

SPD manifold has been widely used in computer vision
[15], machine learning [16], medical imaging [17], brain-
computer interfaces [18], etc. Tuzel et al. [15] detect pedestri-
ans from the image using covariance descriptor for feature
representation and LogitBoost for classification. Gao et al.
[16] present a new distance measure on SPD manifold for

similarity-based classification, which shows superior perfor-
mance on visual classification tasks. Das et al. [17] propose
a sparse coding and dictionary learning scheme on SPD
manifold for breast cancer evaluation. Tang et al. [18] present a
generalized learning Riemannian space quantization (GLRSQ)
algorithm with SPD matrices as the input. In general, the
SPD manifold has more discriminative metrics than Euclid-
ean geometry for feature extraction [19], which makes it
successful on various types of data. SPD manifold has the
advantage of simplicity, flexibility, and effectivity [20], which
makes it a good alternative for learning representations from
physiological signals. Nevertheless, it remains unexplored for
EMG-based hand gesture classification tasks as far as we have
known.

This work extracts intrinsic structural information inside
EMG envelopes for myoelectric recognition employing the
SPD manifold. The proposed SPD manifold-based myoelec-
tric pattern recognition framework is depicted in Fig. 2.
Raw EMG data is firstly preprocessed and converted into
SPD matrices. Then, the geometric mean of the training
set SPD matrices is calculated, and the SPD matrices are
projected toward a tangent space at their geometric mean.
After that, a tangent feature matrix is flattened and dimen-
sion reduced for pattern recognition. The main novelty of
this research can be two folds: On one hand, this is the
first time that an SPD manifold is used to extract spatial
non-Euclidean structural representations from EMG signals
for hand gesture classification as far as we can know. On the
other hand, the presented approach significantly shrinks the
computational consumption while reaching remarkable perfor-
mance. Our contribution to this work can be summarized as
follows:

1) A framework for EMG-based gesture classification is
established using non-Euclidean representation extracted
by the SPD manifold-based method.

2) The superiority of the SPD manifold-based scheme is
verified by comparing it with several classical feature
sets for hand gesture classification.

3) The effectiveness of the proposed approach is verified
on hand gestures of self-collected data and public data
with various EMG sensors and data formats.

4) The classification performance, computation time, and
significance superiority are introduced to analyze the
SPD manifold-based approach comprehensively.

The remainder of this paper is arranged as follows: Basic
knowledge of principles and attributes for SPD manifold is
described in section II. The proposed method, contrast method,
experiment data, evaluation standards, etc., are illustrated in
section III. In section IV, the result is presented. Section V
makes discussions about this work. The last part is about the
conclusion and prospective works.

II. SPD MANIFOLD

In this section, some basic notions and important attributes
like geometry distance, exponential/logarithm map of SPD
manifold will be introduced, which are the mathematical
foundations of the proposed method.
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Fig. 2. The general procedure of the proposed method.

A. Notions

For a matrix S with the shape of n∗n, if it satisfies uSuT >
0 for any vector u, which is a non-zero vector, then S will
be a positive definite matrix. If S = ST holds, matrix S is
symmetric. An SPD matrix S can be established if the above
two conditions hold at the same time.

S(n) = {S ∈ Rn∗n : uT Su > 0 ∧ S = ST ∀u ∈ Rn ∧ u �= �0}
(1)

where �0 represents for a zero vector. Since an SPD matrix
with the shape of n × n satisfies symmetric, it has n(n +
1)/2 independent parameters.

The SPD manifold has the following properties [21]:

1) ∀S ∈ S(n), det(S) > 0
2) ∀S ∈ S(n), S−1 ∈ S(n)
3) ∀S1, S2 ∈ S(n), S1S2 ∈ S(n)

B. The Exponential and Logarithmic Function of Matrix

The exponential function expm(∗) and logarithmic function
logm(∗) of matrix S can be expanded into a Taylor series:

ex pm(S) =
∑∞

n=0

Sn

n!
logm(S) = −

∑∞
n=1

(I − S)n

n

Matrix S can be decomposed into the following form by
eigenvector decomposition:

S = Udiag(α1, α2, . . . , αn)U T

where matrix U is the eigenvector matrix of matrix S,
α1, α2, . . . , αn are eigenvalues of a matrix S. Since that S
is symmetric, matrix U satisfies U T = U−1. Therefore,
the exponential and logarithmic form of matrix S can be
transformed into the following format [16]:

ex pm(S) = Udiag(exp(a1), exp(a2 ), . . . , exp(an))U T (2)

logm(S) = Udiag(log(a1), log(a2), . . . , log(an))U T (3)

Through the above transformation of equations (2) and (3),
the exponential and logarithmic operation of a matrix is more
computationally efficient.

Fig. 3. Illustration of exponential map operator expM(∗ ) and logarithmic
map operator logM( ∗ ). The expM( ∗ ) operator transforms matrix T from
the tangent space T(n) to the SPD manifold at M. The logM( ∗ ) converts
matrix S back towards the tangent space. L(t) represents the geodesic
between S and M.

C. The Exponential and Logarithmic Map

The tangent space plays a vital role in analyzing the SPD
manifold. Given M on the manifold, the corresponding tangent
space TM (n) represents for all possible tangent vectors that
go through M . For an SPD matrix S ∈ S(n), it can be
projected towards the tangent space at matrix M employing
the logarithmic operation logM : S → TM S. The matrix T
in tangent space can be viewed as the derivative of S along
with M . The inverse of it, which can be called the exponential
map, converts the matrix in tangent space to the SPD manifold,
described by ex pM : T → SM T . The process is illustrated
in Fig. 3.

Under the condition of different geometry metrics, the
logarithmic map operator and the exponential map operator
will be in different formations. The mathematical formula
under specific metrics will be introduced in the following
section E .

D. Geometric Mean

For a set of SPD matrices {Si , i = 1, 2, . . . , n}, their
geometric mean, which can also be called the Riemannian
mean or Fréchet mean [22] is defined as the minimum
summation of squared distances for all the SPD matrices,
as illustrated by the following equations [22]:

M = arg minM

∑n

i=1
β2(M, Si ) (4)
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where β(∗) represents the geometric distance of two SPD
matrices.

Employing the Euclidean metric, the mean value for a
series of SPD matrices satisfies the smallest summation of
squared Euclidean distance toward other SPD matrices accord-
ing to (4). It can be named the arithmetic mean, which can
be calculated by averaging them, as illustrated by [22]:

M(S1, S2, · · · , Sn) = 1

n

∑n

i=1
Si (5)

However, it is not appropriate under some circumstances
due to factors like the swelling effect [23]. More suitable
metrics, which will be introduced in the following parts, are
desired to describe the SPD manifold’s geometry attributes.

E. Geometry Metric

The notion of metric represents an operator that measures
the distance of two elements. In the Euclidean space, the
Euclidean metrics have been widely used. The shortest dis-
tance between two points is a straight line in Euclidean space.
However, the Euclidean metric is not suitable for curved space
like the SPD manifold space, in which the shortest distance
for two points on the SPD manifold is a curved line called
geodesic. Metrics like Affine-Invariant Metric (AIM) [24],
Log-Euclidean Metric (LEM) [23], and Bregman divergences
like Stein divergence [25] can be used to measure the geometry
distance of it. Under different metrics, the ways to calculate
geometry distance, exponential and logarithmic maps, and
geometry means will be in various formats.

The geometry of the SPD manifold can be derived using
AIM, by which the distance of X and Y is described by the
following formula [14]:

βAI M (X, Y ) =
∥∥∥logm(X−1/2Y X−1/2)

∥∥∥
F

(6)

where 
∗
F represents the Frobenius norm. Further, the geo-
metric mean of a series of matrices Si , i = 1, · · · , n under
this metric is given by:

Mt+1 = M1/2
t ex pm(

1

n

∑n

i=1
logm(M−1/2

t Si M−1/2
t ))M1/2

t

(7)

where Mt , Mt+1 is the geometric mean for a set of matrices
at t step and t+1 step in individual.

With Stein divergence, the geometry distance and the geom-
etry mean are calculated by formulas (8) and (9):

βStein(X, Y ) = sqr t (log det (
X + Y

2
) − 1

2
log det (XY ))

(8)

Mt+1 = [ 1

m

∑m

i=1
(

Xi + Mt

2
)]−1 (9)

The above two approaches are computed repeatedly to cal-
culate the geometric mean of a series of matrices, which takes
a relatively higher time cost. What’s more, complicated matrix
operations like inversion, product, etc., further increase the
computational complexity. A more computationally efficient
approach is LEM, which will be introduced in the following.

The Log-Euclidean Metric on SPD manifold is on account
of the Lie group structure and a new scalar product [23],
through which the scalar product of two matrices S1 and S2
on the SPD manifold is achieved by the following [23]:

�S1, S2�M = �DMlogm(S1), DMlogm(S2)� (10)

where DMlogm(S) represents the directional derivative of the
matrix logarithm operation for matrix S at M .

With LEM, the logarithmic map operator logM (∗) projects
matrix Ti in SPD manifold space towards the tangent space at
M with [21]:

Ti = logM (Si ) = Dlog m(M)ex pm(logm(Si) − logm(M))

(11)

where Dlogm(M)ex pm(∗) is identical to (DMlogm(∗))−1 as
derived by logm · ex pm = I .

The inverse transform of it is the exponential map operator
ex pM (∗) transforms matrix Si from the tangent space back
towards SPD manifold at M by the following formula [23]:

Si = ex pM(Ti ) = ex pm(logm(M) + DMlogm(Ti )) (12)

Using the LEM method, the geometry distance can be
achieved by equation (5) [23]:

βL E M (X, Y ) = 
logm(Y ) − logm(X)
F (13)

It only takes Euclidean computations in matrix logarithmic,
which is more time-efficient than the AIM or Stein method.

With LEM, the Fréche mean for a set of matrices Si , i =
1, · · · , n is given by the following formula [23]:

M = ex pm(
1

n

n∑
i=1

logm(Xi)) (14)

In contrast with AIM and Stein divergence method, LEM
takes less computational cost, which only needs matrix log-
arithm and matrix exponent without matrix product, inver-
sion, etc., and most importantly, without iteration. This paper
chooses LEM to extract spatial information from EMG signals.

III. METHODOLOGY

A. Database

Four databases, including one self-collected and three pub-
lic databases, are used in this work. The first EMG data-
base is self-collected by ten healthy subjects (All male,
Age: 24.80±0.87 years old, Weight: 68.70±7.43kg, Height:
176.90±4.87cm, Left arm: 3, Right arm: 7) without pretraining
to provide natural hand gestures. The experiment involves
several steps. Firstly, the skin of a participant is wiped with
alcohol before the experiment. Then, a participant will sit on
a chair in front of the EMG acquisition system controlled by
Raspberry Pi 3B. After that, an armband named gForcePro+1

is worn on the forearm to collect EMG data with a frequency
of 400Hz. Lastly, a participant will perform hand gestures
under the guidance of corresponding gestures shown on the
screen, and EMG data will be collected simultaneously. The
experimental scene is shown in Fig. 4(a).

1http://www.oymotion.com/product17/82
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Fig. 4. (a) The experimental scene of data acquisition. (b) The eleven
hand gestures in this work. It contains six gestures of fingers, four
gestures of the wrist, and relaxation.

There are 11 hand gestures used in this work, as shown in
Fig. 4 (b). Each hand gesture lasts for 6 seconds, then follows
a relaxing time of 4 seconds. Since a man needs time to react to
the guidance picture, the first second of EMG data is dropped.
Every gesture is repeated for six repetitions. The experiment
abides by the declaration of Helsinki, and all the subjects have
signed the informed consent of the experiment. We named
the database ’OYData’ in the following parts to keep it
simplified.

Furthermore, we use several public databases to test the
proposed algorithm, including three sparse channel databases
named Ninapro DB2, DB4, and DB5 [26]–[28]. The Ninapro
DB2 contains 49 gestures captured from forty subjects.
It is acquired with twelve wireless double–differential Delsys
Trigno electrodes. There are 52 hand gestures from ten healthy
participants of DB4, which are captured with twelve wireless
Cometa single-differential electrodes. Ninapro DB5 has the
same hand gesture as DB4. The EMG data is acquired with
two Thalmic Myo armbands. It has a sampling frequency of
2000Hz for DB2 and DB4. For DB5, that is 200Hz. As shown
in Fig. 4 (b), we select eleven gestures to test the performance.
The data amount at relaxing keeps the same with other actions.
All three databases have six repetitions of every movement.
Four repetitions, including 1, 3, 4, 6, are used for model
training, and the rest of repetitions 2, 5 are for performance
evaluation on every database, respectively.

B. EMG Preprocessing
The raw data is filtered at first to remove uncorrelated noises

and to keep useful information inside the raw EMG signals as
much as possible. For the acquired EMG signals sampled at
400Hz, the raw data is filtered by a four-order Butterworth
bandpass filter with a bound range of 10∼180Hz. And then
notch filtered at 50Hz to remove powerline interference. For
Ninapro DB2 and DB4, sampled at 2000Hz, the original data
is first filtered by a four-order bandpass Butterworth filter
at 10∼500Hz. Then, powerline interference is removed by a
notch filter at 50Hz. For Ninapro DB5, sampled at 200Hz, the
raw data is filtered using a four-order Butterworth bandpass
filter at 10∼90Hz, and then notch filtered at 50Hz. After that,
the filtered data is rectified and normalized within the range of
[0, 1] employing the Min-Max normalization technique, which

is defined by equation (15):

x = x − min(x)

max(x) − min(x)
(15)

where min(∗) returns the minimum number of vector x ,
max (∗) outputs the maximum number of it.

Finally, the EMG signals are segmented into small
envelopes using a sliding window with a length of 200ms and
a sliding step of 50ms.

C. Learning Representations With SPD Manifold

The proposed method can be divided into two stages. Firstly,
the tangent space features will be extracted. Then PCA will
be used to shrink the dimension of the feature vector.

1) Feature Extraction With Tangent Space Method: The SPD
manifold is utilized to learn spatial representations from EMG
signals. The preprocessed data is transformed onto SPD man-
ifold space, and the feature representations are learned. The
detailed process is as follows:

Firstly, we construct an SPD matrix using EMG envelopes
as the input. Research for EEG signal processing, like [21][22],
chooses the covariance matrix as the SPD matrix, which needs
to keep the input data with zero means. This work provides a
new construction method as shown in (16):

S = ET ∗ E + I ∗ γ (16)

where matrix E is EMG envelope preprocessed using the
procedure in section III B . It is with shape t∗n, where t ,
n are the sample length and channel number, respectively.
It can be viewed as a channel-wise self-correlation matrix,
which reflects the spatial structural information within dif-
ferent channels in that EMG data in different channels is
multiplied mutually. To keep it symmetric and positive def-
inite, a regularization term I ∗ γ is added to the matrix S,
where I represents an n-dimensional identity matrix, and γ
represents a small number (γ = 1.0 ∗ 10−9). Employing
equation (16), An SPD matrix S is constructed, which contains
(n + 1) n/2 independent parameters.

After that, the geometry mean of all samples in the train-
ing database is calculated using the LEM method through
equation (14). The training SPD matrices and the testing
SPD matrices are transformed into the tangent space feature
matrices with the following formulas:

F = logm(Si ) − logm(M) (17)

where matrix M stands for the geometry mean of SPD
matrices in the training set. A squared matrix F is flattened
into a vector by the f latten (∗) operation in the following
form:

f = f latten(F)

= [F11, . . . , F1n; F21, . . . , F2n; Fn1, . . . , Fnn ] (18)

Since the matrix F is symmetric, there are studies like [29]
that use the upper (∗) operator to take the upper triangular
of the feature matrix to get a minimum representation of it.
Although the Euclidean norm of it equals geometry distances,
the operation only reduces fewer than 50% of parameters and



XIONG et al.: LEARNING NON-EUCLIDEAN REPRESENTATIONS WITH SPD MANIFOLD FOR MYOELECTRIC PATTERN RECOGNITION 1519

may lose valuable information. Therefore, a more effective
dimension reduction method, the principal component analy-
sis (PCA) algorithm, is chosen in our research to produce more
compact feature sets. The basic principle of PCA is described
in the following part.

2) Dimension Reduction With PCA: PCA is usually used to
reduce data dimension while keeping the original information
reserved as much as possible. It is a linear approach that can
reach remarkable performance with less computational cost.
The original data is transformed toward a low-dimensional
space under the consumption that the variance is maximal after
transformation [30]. It aims to find an orthogonal matrix W
(shape: n∗t), by which the original data P (shape: n∗m) can
be transformed into low dimensional matrix Q (shape: t∗m),
as shown in (19):

Q = W T P (19)

Every element of the matrix Q is calculated by the following
formula:

qi j = wi p j (20)

In order to obtain the matrix W , the maximum variance is
used as the optimization target:

J = max

[
1

n

∑t

i=1

∑n

j=1
(wT

i p j − wT
i p)

2
]

= max
[∑t

i=1
wT

i Cwi

]
s. t . wT

i wi = 1 (21)

where matrix C represents the covariance matrix of matrix P ,
p̄ represents the mean value of vectors p j . The maximal loss
function can be obtained while wi , j = 1, . . . , t belong to the
eigenvector of top-t largest eigenvalues of matrix S. The eigen-
values and eigenvectors can be obtained by algorithms like
singular value decomposition (SVD). Finally, equation (19)
can be solved.

3) Overall Procedure: The general process of the SPD
manifold-based approach is summarized in Algorithm 1.

D. Pattern Classification
Once spatial representations f eattrain and f eattest are

extracted from EMG data, then machine learning algorithms
are employed for pattern recognition. A model will be trained
using data from the training set, and its performance will
be evaluated using data from the testing set. Four supervised
pattern recognition algorithms that are usually used in related
hand gesture recognition tasks with EMG signals [27], [31]
involving Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), K-Nearest Neighbors (KNN),
and Support Vector Machine (SVM) are employed for hand
gesture classification. These machine learning algorithms are
implemented by a python toolbox named scikit-learn with the
version of 0.24.2 [32].

E. Baseline Methods
To show the effectiveness of the presented feature extrac-

tion method, we compared it with classical feature sets

Algorithm 1 The Proposed Method
Input: EMG signals after preprocessing: Training set

E MGtrain , testing set E MGtest .
Output: Features of training and testing set: f eattrain and

f eattest .

Begin
1. Constructing SPD matrix with (16) to get Strain and Stest.
2. Calculating the geometric mean M using SPD matrices

Strain with formula (14).
3. Projecting SPD matrices onto tangent feature space with

formula (17).
4. Flattening feature matrices into feature vectors with

formula (18).
5. Dimension reduction using PCA to get f eattrain and

f eattest . The reduced dimension is 2n, where n is the
channel number.

End
Return f eattrain , f eattest

involving: the time-domain (TD) feature set [26], [33], the
marginal discrete wavelet transform (mDWT) [26], [34] fea-
ture set, TD-spatial (TDs), mDWT-spatial (mDWTs), and
muscle synergy.

The TD method is a feature set that combines four classical
features, involving mean absolute value (MAV), slope-sign
change (SSC), waveform length (WL), and zero-crossing (ZC).
The mDWT method extracts time-frequency domain features
using discrete wavelet transform. This work chooses a three-
level ’db7’ mother templet for feature extraction, keeping the
same with [26]. The spatial features are also extracted by TD
and mDWT. A spatial matrix in equation (16) is used as the
input to construct TDs and mDWTs.

The EMG signals are preprocessed using the same steps
as the SPD manifold-based method. The feature vector of
TD, TDs, mDWT, and mDWTs is normalized by the z-score
normalization method, as described in equation (22), to keep
the component of the feature vector in the same range and to
improve the classification performance.

xnorm = x − mean(x)

std(x)
(22)

where mean(∗) returns the mean value of x , std(∗) gives the
standard deviation.

Besides, synergy features are extracted with non-negative
matrix factorization (NMF) at two dimensions (Refer to [12])
for spatial feature extraction. After feature extraction, machine
learning algorithms are used for pattern recognition. The
parameters of the classifier are in accordance with the SPD
manifold-based method to make a fair comparison. The overall
processing scheme of the proposed method and the contrast
group is shown in Fig. 5.

F. Performance Evaluation Standards
The performance of algorithms in this work is evaluated

by classification accuracy and F1-score. Accuracy is the most
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Fig. 5. The general processing scheme of relevant algorithms in this
work.

common standard usually used in classification tasks. The
formula of it is defined by equation (23):

Accuracy = Correctedly predicted samples

All samples
∗ 100% (23)

Since the EMG signals of the Ninapro database have been
relabeled, the data amount of classes for each gesture may not
be equal to each other. The F1-score is suited for conditions
where the categories of samples are unbalanced, which can
be calculated as the harmonic mean of precision and recall,
as described in equation (24):

F1 score = 2 ∗ Precision ∗ Recall

Precision + Recall
(24)

in which Precision and Recall are determined by the following
formula:

Precision = T P

T P + F P

Recall = T P

T P + F N

where operator TP, FP, and FN standards for true positive,
false positive, and false negative in respective. The result for
every label is weighted by the samples number of every class
to calculate the F1-score.

The Wilcoxon signed-rank test [35] is used to analyze
whether a significant difference exists between the proposed
method and the contrast method employing a significance level
of 0.05 (p<0.05) by default. There is a considerable difference
between the input samples if p <0.05 holds, and one approach
will be significantly better than the other.

IV. RESULT

This section will present classification accuracy and
F1-score on four databases. The Wilcoxon signed-rank
test will be made for significance analysis of the SPD
manifold-based method compared with two classical methods.
The default format of classification accuracy and F1-score is
mean±standard deviation.

A. Performance on OYData

The classification accuracy on the presented database is
shown in Table I. The best accuracy is 84.85%±5.15%,

TABLE I
CLASSIFICATION PERFORMANCE (%) ON OYDATA

Fig. 6. The F1-score of the proposed method and the contrast method
on the presented database.

which is achieved by the proposed SPD manifold-based
approach with an SVM classifier, and an improvement
of 4.04%∼20.25% is achieved against contrast methods.
The SVM classifier is nonlinear with a radial basis func-
tion (RBF) kernel. Employing LDA, the progress of about
5.52%∼15.25% can be observed. By QDA, the progress
reaches 2.76%∼33.98%. For KNN, the improvement is
3.96%∼15.02%. It shows that our approach outperforms con-
trast methods based on all classifiers on this database.

The F1-score is used to describe the performance under the
condition that the samples of every label are unbalanced.
The performance utilizing the F1-score is shown in Fig. 6. The
best F1-score is 84.95%±5.09%, achieved by the proposed
method with an SVM classifier. It offers a similar trend with
classification accuracy in general. The confusion matrix of
the presented approach with an SVM classifier is depicted in
Fig. 7, through which good performance is observed.

B. Performance on Ninapro

The classification accuracy on the same 11 gestures of
Ninapro DB2, DB4, and DB5 is shown in Table II. For
Ninapro DB2, which contains data from 40 subjects, the best
accuracy reaches 81.93%±5.96% using the proposed method
and SVM classifier, and the increment of 2.02%∼25.24%
is reached compared with the contrast group. Employing
LDA, comparable performance is achieved with TD, and an
improvement of about 5.01%∼13.23% can be observed against
others. By QDA, the progress reaches 5.56%∼21.62%. With
KNN, the improvement is 4.60%∼16.36%.

For Ninapro DB4, which includes EMG data from
10 healthy subjects, the best performance is 81.75%±7.28%,
achieved by SVM with the presented method. With the SVM



XIONG et al.: LEARNING NON-EUCLIDEAN REPRESENTATIONS WITH SPD MANIFOLD FOR MYOELECTRIC PATTERN RECOGNITION 1521

Fig. 7. The normalized confusion matrix of the SPD manifold-based
method using an SVM classifier.

TABLE II
CLASSIFICATION ACCURACY (%) ON 11 GESTURES OF NINAPRO

DB2, DB4, AND DB5

classifier, the performance is higher than the contrast group,
with an improvement of 1.96%∼18.54%. With LDA, the
proposed method is slightly lower than TD with a drop
of 0.34% but higher than others with an improvement of
7.51%∼17.34%. Employing classifiers of QDA, KNN, the
progress of 5.84%∼24.38%, 4.21%∼20.23% can be achieved.

For Ninapro DB5, which involves EMG data of 10 subjects
captured by two Myo armbands, the best performance reaches
84.52%±3.63% with the presented method and SVM classi-
fier, which gets an improvement of 6.04%∼14.00% than other
methods. For the other three classifiers involving LDA, QDA,
and KNN, the proposed method reaches the improvement
of 4.36%∼11.62%, 3.25%∼32.25%, and 5.74%∼19.11% to
contrast methods.

Fig. 8. Figure (a)∼(c) is in accordance with the F1-score on 11 hand
gestures from Ninapro DB2, DB4, and DB5.

The F1-score on Ninapro DB2, DB4, and DB5 is shown in
Fig. 8. (a)∼(c). The best F1-scores on DB2, DB4, and DB5
are 81.90%±6.00%, 81.60%±7.34%, and 84.45%±3.66%
achieved by the SPD manifold-based method with an SVM
classifier. It reaches a higher F1-score than other classifiers
using any feature set, which shows a similar trend to classifi-
cation accuracy in Table II.

C. Statistic Significance
The statistical significance of the proposed method against

contrast methods using an SVM classifier on all four databases
is summarized in Table III. The p-value is calculated using
the classification accuracy of all the subjects between the
presented approach and the contrast approach employing the
Wilcoxon signed-rank test. The SPD manifold-based method
is significantly better than other approaches on OYData and
Ninapro DB2, DB4, and DB5, because p < 0.05 holds on all
these databases. In general, the SPD manifold-based method is
effective, outperforming the contrast method numerically and
statistically.

D. Computational Cost

Compared with the contrast group, the computation con-
sumption of the proposed SPD manifold-based method against
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TABLE III
THE STATISTICAL SIGNIFICANCE LEVEL OF THE PROPOSED METHOD

AGAINST THE CONTRAST METHOD USING AN SVM CLASSIFIER

TABLE IV
COMPUTATIONAL COST (MILLISECOND) OF EVERY INDIVIDUAL SAMPLE

TABLE V
COMPUTATIONAL COST (MILLISECOND) ON

RASPBERRYPI 3B USING SVM

TD and mDWT is evaluated using a laptop (CPU: Intel
i7-10875H, 2.3GHz, eight-core 16 threads RAM: 32G). The
computational time for feature extraction of every sample on
average is calculated.

The result is illustrated in Table IV. It shows that the
computational cost of the SPD manifold method is about
3.01%∼11.67%, 10.36%∼13.51%, and 2.90%∼4.52% of TD,
mDWT, and NMF, respectively, which is less than 14% against
contrast methods. For TDs and mDWTs, the ratio of time cost
is 23.04%∼40.65%, 13.41%∼24.16% of the SPD manifold
method, which reduces computational cost with a decrease
in accuracy. Less computation cost can be observed for the
proposed method against the contrast group.

The computational cost of every stage is also tested on
Raspberry Pi 3B using OYData and SVM classifier, as shown
in Table V. The online processing time is calculated by
summarizing the time of preprocessing, feature extraction,
and model prediction. The feature extraction time and the
online prediction time on a Raspberry Pi 3B of the proposed
method are 4.94%∼43.08% and 7.37%∼43.57% of the con-
trast group. The feature extraction time takes a significant
part of the online prediction process (63.34%∼94.57%), which
shows the importance of feature extraction in the whole
process.

TABLE VI
COMPARISON WITH RECENT MYOELECTRIC PATTERN

RECOGNITION RESEARCH

V. DISCUSSION

This work proposes an innovative approach for myoelectric
pattern recognition with SPD manifold for non-Euclidean
spatial structural feature extraction. Traditional features like
TD and mDWT can reach remarkable performance to extract
temporal features [26], [33], [34], but performance drops when
they are used for spatial features extraction, as shown by the
performance of TDs and mDWTs in this work. New methods
like an SPD manifold are worth exploring to extract spatial
features more effectively.

Hand gestures are classified using four machine learning
algorithms, including LDA, QDA, SVM, and KNN, among
which SVM shows superiority over the other three methods.
The best performance on OYData reaches an accuracy of
84.85% achieved by SVM, which is significantly better than
the contrast group with an improvement of about 4%∼20%
under a significant level of p <0.005. The best performance
on eleven gestures of Ninapro DB2, DB4, and DB5 reaches
classification accuracy of 81.93%±5.96%, 81.75%±7.28%,
and 84.52%±3.63%, with an improvement of about 2%∼20%.
A similar trend in the F1-score is observed. The perfor-
mance shows good university of the proposed method with
various EMG sensors of public databases. Statistical sig-
nificance analysis between the SPD manifold-based method
and contrast methods reaches p < 0.005 on all pairs of
groups, which shows significant improvement of the pro-
posed method. The performance comparison with other recent
machine learning-based studies is shown in Table VI. It shows
that the presented approach is competitive with most recent
research.

For the classical feature extraction method, a way to
improve the classification performance is by combining more
statistical features as a feature vector to acquire more affluent
information inside EMG signals. Besides this, deep learning
has been for myoelectric pattern recognition, aiming to extract
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more informative features automatically and recognize EMG
patterns in an end-to-end approach [7], [41]. However, these
two techniques will increase the algorithms’ complexity and
the hardware cost to extract high-quality features. In this work,
the time consumption comparison shows that the time cost
of the SPD manifold-based method is less than the contrast
method, which reduces the computational cost significantly,
and explores a new way for EMG feature extraction. The
fewer computational cost of the proposed method profit from
two aspects: the lower dimension of SPD matrices than EMG
envelopes and the Log-Euclidean Metric with low complexity.
It is appliable in a low-cost system with embedded processors.

This work shows that the SPD manifold has good potential
to extract informative structural representations from EMG
signals in a time-efficient manner. It proves that the non-
Euclidean SPD manifold has good potential in topological
structure excavating from EMG signals. However, limitation
still exists. For one thing, the shortcoming of the tangent
space-based method is that it is the first-order approximation of
curved data, which loses geometric information unavoidably.
A better approach can be mapping the SPD matrix onto the
Reproducing Kernel Hilbert Space (RKHS) [42] and finding a
suitable kernel to describe the information inside EMG signals,
which provides more sophisticated geometric descriptions of
the SPD manifold. For another, this work only focuses on
improving the classification performance and decreasing the
computational cost, leaving robustness against factors like
inter-session/subject, electrode shift, etc., unconcerned. Spa-
tial representation can be a potential choice to improve the
stableness of EMG pattern recognition in that the relative rela-
tionship between different EMG channels may be invariable
and robust against disturbances. Combining domain adaption
approach or incremental learning method with SPD manifold
can be an innovative path for more appliable myoelectric
pattern recognition systems in the future.

VI. CONCLUSION AND FUTURE WORKS

This work proposes an innovative approach for myoelectric
pattern recognition with an SPD manifold. The spatial infor-
mation within different channels of EMG signals is used for
hand gesture recognition. The presented approach is compared
with two classical feature extraction methods on eleven ges-
tures from ten subjects using four machine learning classifiers.
The best performance reaches an accuracy of 84.85%±5.15%
and an F1-score of 84.95%±5.09% with the SPD manifold-
based method and SVM classifier, which outperforms the
contrast group by 4.04%∼20.25% with a significance level of
p <0.005. Furthermore, the computational cost is far less than
the contrast group. The performance is also tested on a subset
of three public databases, and a similar superiority of the
proposed method is achieved. It proves that the SPD manifold-
based method is effective and efficient, which provides a novel
way for EMG pattern recognition.

In the future, more efforts need to be made to design
better algorithms based on the SPD manifold. The SPD matrix
will be projected to the high-dimensional RKHS to find
more appropriate representations. Domain adaption techniques
and incremental learning methods will be integrated into

the scheme to improve the robustness and stability of the
algorithm. The performance of high-density EMG signals will
be analyzed. Furthermore, fusing with other modal information
like computer vision with EMG signals and designing a
unified decoding framework with SPD manifold can also be
a good choice to develop more convenient human-machine
interfaces.
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